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Transition  Region  Capacitance of 
Diffused p-n  Junctions 

Absfracl-The  classical  capacitance-voltage  relations based on 
abrupt  space-charge  edge  approximations,  while  adequate  at  large 
reverse  bias, do not  adequately  describe  the  capacitance  near  zero 
bias. This  paper  presents explicit  capacitance-voltage  relations  valid 
near  zero  bias  for  linearly  graded  and exponential-constant  profiles. 
For  linearly  graded  junctions,  the  intercept in a l/C3 versus voltage 
plot is  shown to be well  approximated by the ‘<gradient  voltage”  de- 
fined by 

v,=--ln-. 2 kT a2ekT/q 
3 q 8qnia 

Also presented is an  accurate  numerical  technique  for  machine 
computation of the transition  region  capacitance  for  any  doping 
profile. Explicit  relations  obtained by dimensional  considerations 
and  curve fitting on numerical  solutions  are free of singularities, 
hence  useful  in  computer-aided device  design and doping profile 
determination. 

I. INTRODUCTION 
HE classical capacitancevoltage  relationships 
for  steps  and  linearly  graded  p-n  junctions  form 
useful  tools  for  evaluating  impurity  concentration 

profiles  in semiconductors [l 1. These  relations,  how- 
ever,  have  certain  limitations.  The  technique  based on 
the so-called “ C  square-root V” relation for step  junc- 
tions  assumes  that  one  side of the  junction is much  more 
heavily  doped  than  the  other.  This  limits  its  application 
to  alloyed  or  very  shallow diffused junctions.  Further- 
more,  since  the  above  relations  were  derived  by  making 
an  abrupt  space-charge  edge  (ASCE)  approximation, 
i.e., that  the  material is either  completely  depleted of 
mobile  carriers  or is completely  neutral,  it is acceptably 
accurate  only  at  large reverse  bias.  This  limits  the 
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evaluation of the  doping profile to  the region away 
from  the  junction. To  “probe”  the  neighborhood  of  the 
junction,  the  bias  range of interest is from low reverse 
bias  to  forward  bias. I t  is exactly i.n this  range  that  the 
classical C square-root V relation  fails to  describe  the 
junction  accurately.  Analyses  that  do  not  assume  the 
ASCE  approximation  and  describe  p+n  step  junctions 
in  this  bias  range  have  recently  been  presented  by 
Gummel  and  Scharfetter [a ] ,  Chang  [SI,  and  Kleink- 
necht [4]. Note  that  the  capacitance in our discussion 
is the  transition region  capacitance  only. 

The  conventional  doping profile analysis is thus 
useful  only  for  highly  asymmetrical  step  junctions. For 
junctions  with  comparable  doping  concentrations on 
both  sides, a unique profile on  one  side  cannot  be  de- 
termined  without  any  a  priori  knowledge of the  doping 
profile of the  other  side.  For  gradual  doping  transition 
and low bias,  such  junctions,  however,  may  be  con- 
sidered  linear-graded  for  which,  with  the  ASCE  ap- 
proximation, d ( l / C 3 ) / d  V is approximately  proportional 
to  the  concentration  gradient.  Treatments of linearly 
graded  junctions  not  restricting  to  abrupt  approxima- 
tion  have  been  given  by  Morgan  and  Smits [SI ,  Sah 
[6],  Kennedy  and  O’Brien [ 7 ] ,  and  Nuyts  and  Van 
Overstraeten  [16]. 

In  practice,  most diffused  junctions  with  error- 
function,  Gaussian,  or  similar  doping profiles lie on  an 
intermediate level between  highly  asymmetrical  and 
linear-graded  junctions.  Lawrence  and  Warner [8] 
have  given  curves  applicable  for  diffused  junctions 
with  error-function  and  Gaussian  doping  profiles, 
which  relate  background  concentration,  junction  depth, 
and  “total  voltage,”  where  total  voltage is the  applied 
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voltage  minus  the  so-called  “built-in  voltage.”  These 
curves  are  very useful  for  large  reverse-bias  voltages. 
However,  difficulties  arise if the  curves  are  to  be used 
near  zero  bias. 

In  the  neighborhood of zero  bias,  the  total  voltage 
is not well defined. For  example,  at  zero  bias,  the  total 
voltage,  according  to  the  definition  in  classical C-V 
relationships  and  the  definition  used  by  Lawrence  and 
Warner [8], would  be  the  negative of the  built-in  vol- 
tage.  For  highly  asymmetrical  step  junctions,  it  has 
been  shown [2]-[4] t ha t ,   a t  zero  bias, the  total  voltage 
differs  significantly  from  the  negative of the  built-in 
voltage.  In  this  paper, we shall  develop  the  concept of 
a quantity  termed (‘offset voltage,” which depends  on 
doping  parameters  and  to a lesser extent on applied 
voltage.  The  total  voltage at zero  bias is then  given  by 
the  negative of the offset voltage at zero  bias. The  
basic  concepts  underlying  the  definitions of the  transi- 
tion-region  capacitance,  as  distinguished  from  the  diffu- 
sion  capacitance,  and of the offset  voltage  are  pre- 
sented in Section 11. 

In  Section I11 we make  the  abrupt  space-charge  edge 
approximation  to  obtain  an  analytical expression  for 
the  capacitance-voltage  relationship for an  exponential- 
constant  doping profile. Such profiles provide  a  realistic 
approximation  for  many  diffused  p-n  junction profiles. 

In  Section  IV we present a numerical  technique,  not 
involving  the  ASCE  approximation,  for  computing 
transition  region  capacitance  for  arbitrary  doping  pro- 
files a t  reverse  as well as  forward bias. The  technique 
is based  on  an  operational  definition  described  in  Sec- 
tion 11. 

I n  Section V we consider the offset voltage  for  linearly 
graded  junctions.  Based  on  dimensional  considerations, 
an  analytical expression is found  which is termed 
“gradient  voltage”  and is shown  to  be  an  excellent  ap- 
proximation  to  the offset  voltage. 

Section  VI  contains  the  application of the  technique 
of Section TV to  the  doping profile analysis of diffused 
p-n  junctions  and  computer-aided  analysis of circuits 
containing  semiconductor  components  fabricated  by 
diffusion  technology.  First we  find  offset  voltage  values 
for a  set of applied  voltages  and a set of doping  pa- 
rameters  for  exponential-constant  doping  profile.  An 
analytical  expression is then  fitted  to  the  above  values, 
and used  in  plotting  constant  capacitance  curves  in 
doping  parameter  space  for  different  bias  values. 

11. BASIC COKCEPTS 
Differential  capacitance is conventionally  defined 

as the  derivative of stored  charge  with  respect  to  voltage. 
This  definition will be used  in this  paper.  The  total 
capacitance of p-n  junction  diodes,  or of devices  con- 
taining  p-n  junctions, is usually  considered as  consisting 
of two  components,  transition-region  capacitance  and 
diffusion  capacitance. 

Qualitatively  these  two  components  are  easily  dis- 

tinguished.  Transition-region  capacitance  is  associated 
with  differential  charge  storage at the  edges of the  de- 
pletion  region. I t  is the  dominant  capacitance  for 
reverse-biased  junctions. T h e  transition-region  capaci- 
tance is independent of frequency up to  very high fre- 
quencies. The  admittance of a reverse-biased p-n junc- 
tion  diode at low frequencies  may  differ  from  its 
capacitive  susceptance  due  to  series  resistance. If the 
series  resistance  is low, the  diode  exhibits a large  value 
of the  quality  factor Q. Transition-region  capacitance 
depends  only on the  doping profile in  the  depletion 
region and its  immediate  vicinity. Diffusion capacitance, 
on the  other  hand, is associated  with  storage of carriers 
in  regions adjacent  to  the  depletion region. I t  is signifi- 
cant  only for forward-biased  junctions. Diffusion capac- 
itance  depends on the  structure of the  diode  as a whole; 
it depends on recombination  properties  (lifetime)  and 
may (for short  diodes)  depend  on  the  nature of the con- 
tacts. Diffusion  capacitance is strongly  frequency- 
dependent.  At high  frequencies  the  diffusion  capacitance 
may become  negative  (e.g.,  Misawa [ 9 ] ) ,  giving  rise  to 
inductive  effects.  When  in a p-n  junction  diode  the 
diffusion  capacitance is dominant  over  the  transition 
region  capacitance,  the  quality  factor Q of the  diode is 
always  low. 

While a qualitative  distinction of transition-region 
and diffusion capacitance is easily  made, a quantitative 
separation  becomes  problematic.  With  modern  tech- 
niques of analysis [ lo ] ,  [ll],  p-n  junction  devices  may 
be  analyzed  on  the  basis of transport,  continuity,  and 
space-charge  balance  equations;  terminal  character- 
istics  including  all  the  capacitive  effects  are  reproduced 
by  such  calculations  without  the need of classification 
of capacitance  into  various  categories.  On  the  other 
hand,  for  the  construction of compact  device  models, 
it is very  desirable  to  have  available  simple,  quantita- 
tive  models of charge  storage  effects  having  reasonable 
accuracy. 

Existing  descriptions of transition-region  capacitance 
are well developed  and  quite  adequate for  reverse-biased 
junctions.  For  heavily  forward-biased  junctions,  the 
transition-region  capacitance is typically  negligibly 
small  in  comparison  with  diffusion  capacitance,  and is 
thus of minor  interest. I t  is for  forward  bias of such 
magnitude  that  the  transition-region  capacitance is 
comparable  to,  or less than, diffusion  capacitance  that 
compact  representations of transition-region  capacitance 
are  not  readily avai1able.l This  range of bias is of great 
practical  importance in  bipolar  transistors,  since  the 
highest  frequency  response  is  obtained  when  the 
emitter-junction  forward  bias is such that  transition- 
region and  diffusion  capacitance  are  roughly  compar- 
able. 

In  the  present  paper we propose an  operational 

present  work,  has  recently  been  reported by Poon and Gummel [12]. 
l A model of transition-region  capacitance, based in part  on  the 
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definition of transition-region  capacitance  that  has the 
following features. 

1) For  reverse-biased  junctions  it  coincides  with  the 
conventional  definition of transition  region  capacitance. 

2) I t  gives  a  finite  value of transition-region  capac- 
itance  for  any  bias, especially for  forward  bias  equal  to 
or  larger  than  the  built-in  voltage. 

3) I t  selects  charge  storage  associated  only  with 
carriers in the  immediate  vicinity of the  p-n  junction, 
in accordance  with  the  qualitative  concept of transi- 
tion-region  capacitance. 

4) Transition-region  capacitance  computed  accord- 
ing  to  the definition  depends  on  the  doping profile only, 
not on  recombination  properties. 

We define the  transition-region  capacitance  as  the 
change in the net hole charge  per  change in voltage.  The 
net hole concentration is defined as  the difference  be- 
tween the actual hole concentration  and  the  hole  con- 
centration which  would exist if space-charge  neutrality 
prevailed  throughout  the  structure.  We  shall refer to  
the  latter  quantity  as space-charge  neutral  hole  concentra- 
tiolz. Note  that  there will be an  equal  change in the 
net electron  charge  and we  could have defined the 
transition-region  capacitance  with  respect  to  changes in 
the  net  electron  charge. 

Let  us now  consider the  dependence of the  transition- 
region  capacitance  on  the  applied  voltage.  Consider a 
step  junction  with  uniform  doping  on  the  two  sides. 
We could  express  the  transition-region  capacitance  for 
this  junction  in  terms of the  capacitance  given  by  the 
classical C square-root V relation,  except  that difficulties 
arise  when  the  applied  voltage is equal  to  the so called 
built-in  voltage,  since  the  capacitance  given  by  that 
relation  then goes to  infinity.  Alternatively, we can use 
the  same  mathematical  form,  but replace the  built-in 
voltage  by a more  appropriate  quantity.  This  alter- 
native looks  more  attractive  and is pursued  in  the 
following. 

Let  us consider  a  junction  with an  arbitrary  doping 
profile. Then using the  ASCE  approximation, i.e., 
assuming  the  mobile  carrier  density at  the  edge of the 
depletion region to  be  zero,  the  electric field in the 
depletion region can  be  written  as 

E ( X )  = Eo + s,; 9 :\7(%)d% (1) 

where N ( x )  is the  impurity  concentration, EO is the 
field at the  metallurgical  junction x =0, and  other 
quantities  have  the  conventional  meaning. 

The  total  voltage is then  defined as  the  integral of the 
electric field across  the  depletion region : 

vt = J-:rR(r)dz ( 2 )  

where x1 and x r  are,  respectively,  the  left  and  the  right 

edge of the  depletion  region, i.e., the position  where the 
electric field as given  by (1) goes to zero. 

Now, since  the  depletion-region  capacitance is pro- 
portional  to  the  inverse of the  width W = x , - x l ,  (2) 
can  be  stated  as 

vr = F(CA (3)  

where C, is the  capacitance  per  unit  area  found  by 
using the  ASCE  approximation  and  depends  on  the 
doping profile. The  exact  capacitance C,, however, is 
obtained  by  removing  the  above  approximation  and 
hence will in general differ  from C,. Replacement of 
C, in (3) by C, will therefore  yield  a  different  value  for 
the  total  voltage.  We  define  this new total  voltage as 
the difference  between  the applied  voltage and  a  quan- 
t i ty oflset  voltage. 

V a P P  - Voefset F(C,). (4) 

The  ofse t  voltage is therefore  defined as 

Voffset 3 v,,, - F(C,), ( 5 )  

and is a  function of applied  voltage  and  the  doping 
parameters.  The offset  voltage is thus  an  exact  quantity 
in that  when used  in place of built-in  voltage  in  the 
standard C- V relations,  one  obtains  “exact”  transition- 
region capacitance a t  all  applied  voltages. In  this re- 
spect,  the  built-in  voltage  can  be  regarded  as a first- 
order  approximation  to  the  offset  voltage.  Higher  order 
approximations,  based  on  dimensional  considerations 
and  the  numerical  technique of Section  IV,  are  pre- 
sented in this  paper  for  linearly  graded  and  exponential- 
constant profiles. 

111, EXPONENTIAL-CONSTANT PROFILE- 
ASCE APPROXIMATION 

A first-order  calculation of the  transition-region 
capacitance  can  be  performed  by  making  the  abrupt 
space-charge  edge  approximation.  Let us consider an 
exponential-constant  doping profile described  by 

N B  = S (  1 - e-2: iL ) ,  (6) 

and  let  the  electric field at the  metallurgical  junction 
x=O be Eo. Then, using the  ASCE  approximation  and 
Poisson’s  equation, we obtain 

Denoting  by E=x/L the  normalized  distance  and  by 
[ L  and  the  values of E for  which the  electric field goes 
to  zero,  and  letting w = E R - E L  be the  width of the  de- 
pletion  region  in  units of the  characteristic  length L ,  
from (7) we obtain 
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f -  

Fig. 1. The function g versusf (10) 

Denote  by V t  the  total  voltage  as  the  integral of the 
field 

where  the  function f of argument g is defined by 

Equation (9) together  with (10) has  recently  been  re- 
ported  in  the  literature [Is]. Now, under  the ASCE 
approximation  the  capacitance  per  unit  area C is de- 
fined as 

e c = -  
WL 

whence 

C L  1 
- = - =  (12) 

E W 

where g( f)  is the  inverse  function  to f(g)  (10). A plot 
of g versus f is shown in Fig. 1. 

Equation (12)  is a  general,  analytic  relation  between 
N ,  L,  C, and Vi. As shown  in  Fig. 1, the  function g ( f )  
approaches dfp for  small  arguments  and  (f/lZ)1'3  for 
large  arguments.  Thus,  for  CL/e<<l, (12) yields 

and for CL/e>>l, (12) yields 

Equations (13) and (14) are  the  standard expressions 

for the  capacitance of the  asymmetric  step  junction 
and  the  linear-graded  junction,  respectively,  where Vi 
is the difference  between the  applied  voltage  and  the 
so-called built-in  voltage.  For  Gaussian  and  error- 
function  complement diffusion  profiles having  a  surface 
concentration N,  and  junction  depth x?, the  equivalent 
exponential  decay  length L at  the  metallurgical  junc- 
tion  can  be  given  approximately by 

where 1 is the  characteristic  length of the diffusion pro- 
file to  be  determined  as follows. 

For  Gaussian profiles 

and for  complementary  error  function profiles 

Equation (12) is then  the  equivalent of Lawrence- 
Warner  curves [g] .  

A more  exact  relation  between  the  capacitance,  dop- 
ing parameters,  and  the  bias  voltage  can now be  ob- 
tained  by  incorporating  correction  terms in (9), based 
on exact  calculations  using  the  numerical  technique 
discussed in the following section. 

I\'. NUMERICAL SOLUTION 

The  basic  concepts for calculating  the  transition- 
region  capacitance  were  set  forth in Section 11. In  the 
numerical  technique  described  here,  the hole quasi- 
Fermi level  (in units of k T / q )  & is assumed  to  be  spa- 
tially  constant  from  the p-region contact  up  to  and 
through  the  junction,  and  likewise,  the  electron  quasi- 
Fermi level & is  assumed to be  spatially  constant  from 
the n-region contact  up  to  and  through  the  junction 
region. This  assumption is excellent  for  reverse  bias. 
However, a t  forward  bias  the  current flow causes  a 
significant  bending of the  quasi-Fermi  levels,  and  hence 
the  assumption loses validity  insofar  as  the  calculation 
of current is concerned.  But  it  does  not  cause  any  serious 
error  in  calculating  the  transition  region  capacitance. 
This  has  been verified by  comparing  results  with  those 
obtained  by a more  accurate  analysis which takes  into 
account  the  bending of the  quasi-Fermi  levels.  The 
above  assumption  is  made  for  reasons of economy in 
computation; i t  is also  consistent  with  the  operational 
definition  (feature 4 of Section  11).  Furthermore,  it is 
assumed  that all the  donors  and  acceptors  are fully 
ionized and  that  the  amount of stored  charge in deep 
states is negligible. 

Let  us  now  denote  by f i S  and n, the  space-charge 
neutral hole and  electron  concentrations  corresponding 
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to  space-charge  neutrality. In  terms of the  quasi-Fermi 
levels, they  are  given  by 

where  the  space-charge  neutral  electrostatic  potential $8 

is adjusted so that  p+ N E  = n, whence 

with N E  as  the effective  doping  and  the  quantities p s ,  
n,, and I)~ as  functions of distance. 

Kext we denote  by pn the  net hole  concentration  as 
the difference  between  the  actual  hole  concentration 
p and  space-charge  neutral  concentration p s .  Similarly, 
we denote  by n, the  net  electron  concentration as the 
difference  between  the  actual  electron  concentration 
n and  space-charge  neutral  concentration n,. Denoting 
by y the difference  between  the  actual  electrostatic 
potential $ (in  units of k T / q )  and .the  space-charge 
neutral  potential $^, 

the  net hole and  electron  concentrations  may  be  ex- 
pressed as 

and 

Poisson’s  equation 

write  the following equations which are  equivalent  to 
(18)-(20): 

from  which i t  follows tha t  

S p ,  = Sn, = --- 6V. 
psns 

p s  + n, 
(29) 

Consequently,  from  (18)  and (19) we obtain 

Using (29) and (30) in taking  the  variation of (25) with 
respect  to V and defining the  variation in y as A y ,  we 
obtain 

Note  that  (26) and (31) are  similar  in  form.  They differ 
only in the  “driving  term,”  i.e.,  the  error R in (26) and 
the  term  proportional  to 6 V in  (31). Boundary  condi- 
tions  are  imposed  such  that  the  domain of the  inde- 
pendent  variable,  i.e.,  the  physical  distance,  ends  in 
space-charge  neutral  regions on either  side of the  transi- 
tion  region,  in  which  case  the  boundary  conditions  are 
tha t  y and A y  must be  zero at  both  ends.  Note  that 
whereas (26) is solved  iteratively  until R ,  and  hence  the 
change 6y in y is acceptably  small, (31) need be  solved 
only  once  for a given  bias  value.  Having  found  a solu- 
tion A y  of (31)  for 6 V =  1, the  total  change of net holes 
per  unit  area 6PdV may  be  written  as can  now  be  rewritten  as 

where R is required  to  be  zero  by (24). 
Equation (25) may  be  solved  iteratively  for y .  If R 

is not  negligibly  small  everywhere  for a given  trial 
solution y ,  we  seek an  increment 6y in y which  reduces 
R. Linearizing ( 2 5 )  with  respect  to y, we  find tha t  6y 
must  obey  the  equation 

Consider  now  that  a  satisfactory  solution y has been 
found  for  which  the  error R is acceptably  small.  We 
then  seek  the  change  in y per  unit  change in the  normal- 
ized bias  voltage V = ~ p = - 4 ~ .  T o  obtain  this, we first 

and  hence  the  capacitance  per  unit  area is 

(33) 

The  technique  described  above  was  formulated 
keeping  in  view  the  usage of a digital  computer  to  ob- 
tain  a  solution.  The  function y is clamped  to  zero  by 
boundary  conditions,  and it changes  very  little in the 
space-charge  neutral  regions.  Hence  by  evaluating 
(ei-u- 1) as ( + y +   ( y 2 / 2  !) + ( y 3 / 3  !) + . ) for small y ,  
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Fig. 2. Numerically  computed  actual hole and electron concentra- 
tions  in a diode  with a constant  background  concentration of 
1017 cm-3 donors  and a superposed exponential profile of acceptors 
with a characteristic  length of 10-5 cm.  Applied voltage is varied 
from - 1 to 0.8 V. 

we have effectively  obtained  a  symbolic  rather  than a 
numerical  cancellation of mobile and fixed charges  with 
attendant  benefits  regarding roundoff errors. I t  is also 
of advantage  that  with  only  minor  changes,  the  same 
computer  program  may  be used to  obtain  actual  carrier 
concentrations  and  their  derivatives  with  bias. 

As an  example,  the  above  technique is applied  to a 
silicon p-n  junction  diode  with  doping  profile  consisting 
of a constant  background  concentration of 10'' ~ m - ~  
donors  on which  is  superposed an  exponential profile 
of acceptors  with a characteristic  length of cm  or 
0.1 p .  The  values of the  physical  constants used are 
ni=1.5X1010 ~ m - ~ ,   ~ = l O - ~ ~ F / c r n ,  and kT/q=0.02585 
V at room  temperature. 

Fig. 2 shows  the  computed  actual hole and  electron 
concentrations  for  applied  voltages  from -1 to  0.8 V. 
The  ordinate is carrier  concentration  plotted on a 
linear  scale,  and  the  abscissa is distance.  The  total  dis- 
tance  shown is 0.5 p ;  the  voltage  increments  are  chosen 
not  to  be  equal for better  presentation.  At  reverse  and 
zero  bias,  the  carriers  approach  the  doping  values 
asymptotically  on  either  side of the  junction.  Near  the 
metallurgical  junction we observe  the  depletion  region 
where  the  carrier  concentrations  are negligible com- 
pared  to  the  doping  concentrations,  and  are indis- 
tinguishable  from  zero  on  the  scales  used.  One  can  then 
define  with  reasonable  accuracy  the  transition-region 
capacitance  to  be  that of a plate  capacitor  with  plate 
separation  equal  to  the  depletion  layer  width.  The  de- 
pletion  layer  width  narrows  as  one goes from  reverse 
bias  to  forward  bias.  At  large  forward  bias we observe 
regions of overlapping  hole  and  electron  concentrations 
in what  was  the  depletion region at reverse  and  zero 
bias. I t  is in this  range  that  the  parallel  capacitor defini- 
tion  for  transition  region  capacitance is no  longer  valid, 

----0.8 

5 

DISTANCE (ern) 

Fig. 3. For  the  same  diode  as in Fig. 2,  actual  carrier  concentration 
(lower curve)  and  the  carrier  concentration corresponding to 
space-charge neutral solution  in the diode  (upper  curve). 

- 
5 
6 
'I 
I 
f; b.10'6) 

?5 1 1  '* 
... 

-2 

5 -  DISTANCE (cm) 

Fig. 4. For  the  same diode as in  Fig. 2, the  derivative of net  carrier 
concentrations  with respect to  applied voltage. 

requiring  modifications  embodied  in  this  paper.  Note 
also  that  even at the  highest  voltage  shown, which  ex- 
ceeds the so-called built-in  voltage,  there  are  no  singu- 
larities.  Carrier  concentrations,  though  rising,  remain 
finite. 

Fig. 3 shows  the  computed  net  carrier  concentrations, 
depicted  by  crosshatched  regions  for  bias  values  shown 
in Fig. 2 .  The  upper  curves in  these  regions  correspond 
to space-charge neutral carrier  concentrations,  while  the 
lower  curves  are  the actual carrier  concentrations  shown 
in  Fig. 2 .  For  reverse  and  zero  bias,  the  net  carrier 
concentrations  are  negative,  but  at  forward  bias,  both 
negative  and  positive  net  carrier  concentrations  prevail. 

Fig. 4 shows  the  derivative of net  carrier  concentra- 
tions  with  respect  to  bias.  At  reverse  bias  the  carrier 
concentration  change is appreciable  only in narrow 
regions,  whereas at forward  bias  the  change  is  spread 
over  a  wide  region. The  centers of gravity of these re- 
gions  correspond  to  the  location of equivalent  capacitor 
plates.  The  capacitance  per  unit  area  equals  exactly 
C = E / W ,  where w is the  separation  between  the  centers 
of gravity.  At  large  forward  bias,  the regions of net 
carrier  change  overlap;  hence  the  mental  picture of 
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charge  accumulation a t   the  edges of a depletion  region 
breaks  down. I t  is,  however,  still  true  that  the  capac- 
itance C =  E/W where w is the  separation of the  centers 
of gravity,  but now the  widths of the regions of net 
carrier  change  are  larger  than w .  Clearly, at forlvard 
bias, w cannot  be  thought of as  the  width of a depletion 
region. Note  that  starting  from large  reverse  bias,  with 
more  positive  bias,  the  peaks  move closer together  and 
the areas  under  them  increase,  resulting in an increase 
Jf the  capacitance.  Beyond 0.7 V,  however,  the  transi- 
tion-region  capacitance,  as  defined  here,  decreases. The  
total capacitance,  which  includes diffusion capacitance, 
however,  increases  since  storage in .the space-charge 
neutral regions is now enhanced. T o  reiterate,  the  im- 
portant  point is that  total  capacitance,  as well as  transi- 
tion  region  capacitance,  remain  finite. 

At  0.8 V ,  the  last  curve  shown in Fig.  4, we observe 
that  the  net hole and  net  electron  curves  cross  on  the  p 
side which is the  more  heavily  doped  side.  Thus  one 
may consider the  junction  to  have moved  over  from  its 
metallurgical  location  into  the  more  heavily  doped  side. 
This  has  previously  been  pointed  out b57 Ghosh  [14]. 

v. GRADIENT VOLTAGE-LINEARLY 
GRADED  JUKCTIONS 

The  numerical  technique  described in Section  IV 
is useful  for  detailed  device  modeling.  For  circuit 
analysis  programs  which  simultaneously  handle  many 
p-n  junction  devices,  this  approach would require  too 
much  memory  and  execution  time  to  be  practical.  What 
is desirable is a  compact  analytical  expression,  free of 
sjngularities,  which  approximates  the  numerical  data 
reasonably well. The  concept of  offset voltage  developed 
in Section  I1 is helpful  here. In this  section we shall 
show tha t  for a linearly  graded  junction  the offset 
voltage  can  be well approximated  by  a  quantity which 
we shall  term  as  “gradient  voltage.”  The  gradient  voltage 
which is proportional  to  the  logarithm of the  doping 
gradient, is found  by  making  use of some  dimensional 
considerations, following the  treatment of the  linear- 
graded  junction  problem  by  Morgan  and  Smits [j]. 
In  the following we derive  the expression  for the  gradi- 
ent  voltage.  Let us recast  the  differential  equation  (24) 
in terms of the  normalized  potential  distribution in the 
junction, Y ( X )  = ( q / k ~ )  [ + - - I / ~ ( + ~ + + J ]  asin [ S I ,  [ 2 1 ] :  

d 2  Y 

d X 2  

__ - - sinh Y - Kx 

where the  parameter K in the  present  notation is 

(34) 

with 

and N I L  = a  is the  doping  gradient for the  junction. 

The  space-charge  capacitance  C in [ 5 ]  is given by a 
normalizing  capacitance CO multiplied  by  a  function of 
K .  The  functional  dependence is given  in Table 111 of 
[SI in the  column  headed  by Cp/Co and we denote i t  
here  by G ( K ) :  

C = C, = CoG(K). (3  6) 
The  quantity CO can  be  written in our  notation as 

(3 7) 

and  hence  the  normalized  capacitance is 

CL S113G(K) __- - 
E 4 (3  8) 

Now, since  for  large  reverse  bias  (large K )  the ASCE 
approximation  is  quite good and yields (see (14)) 

C L  -- - i 
(39) 

denoting ( k T / q  [U+(2/3)ln(8S)] in (35) as the  total 
voltage Vt, we can  write  the  asymptotic  form of G ( K ) a s  

(40) 

A comparison of the  actual  data of Morgan  and 
Smits [ j ]  with  the  asymptotic  values  as  per (40) is 
shown in Fig. 5 ,  which  also  contains  numerical  values 
computed  for  linearly  graded  junctions  by  the  technique 
described  in  Section  IV.  The  asymptotic  form  is  found 
to  be  an  excellent  approximation for K >  20e2 

Thus,  except for very shallow  junctions ( a  < 1014cm-4) 
the  asymptotic  relation (40) may  be used  for  reverse 
bias,  including  zero  bias  and  small  forward  bias: 

which in unnormalized  form  can  be  written  as 

where V,  is termed  as gradient voltage and is given  by 

2 KT a2ckT/q v, = - -1 n--j 
3 q  8qni3 

(43) 

and V ,  is the  voltage  applied  to  the  junction. 
Note  that  the  gradient  voltage V u  given  by (43)  is 

independent  of  applied  voltage, and for 2 given  material 
a t  ,a given temperature  it is dependent  only on the 
doping  gradient.  From  the  agreement of (40) with 
numerical  values  shown  in  Fig. 5,  and  the  comparison. 

with a = 1020 cm-4. 
K=20 corresponds to a forward bias of 0.44 V for a junction 
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Fig, 5. Comparison of the present work and  the  asymptotic  result 
(40) with  the  calculations of Morgan  and  Smits [3]. 

of (43) with ( 5 ) ,  it  can  be  concluded  that  for  linear- 
graded  junctions  the  gradient  voltage is an  excellent 
approximation  to  the offset  voltage. 

A comparison of V,  with  the  built-in  voltage3 
VAA = (kT/g)In(N1Nz/ni2) obtained  by  making  the 
ASCE approximation,  where N I  and NZ are  the  impurity 
concentrations at the  edges of the  depletion  region at 
zero  bias, is shown in Table I for  several  values of the 
concentration  gradient a.  

From  Table I i t  is  seen tha t  V ,  is of the  order of 100 
mV smaller  than VAA, and  that  for  the  lowest  concen- 
tration  gradient  considered,  the  discrepancy  in VA* 
compared  to V ,  is 37 percent.  This could  introduce 
significant  errors  in  calculations of capacitance  near 
zero  bias.  Nuyts  and  Van  Overstraeten [I61 have re- 
cently  reported  that  the  intercept in  numerically  com- 
puted l /C3  versus  V  curves is about 0.13 V smaller 
than VAA. The  intercept in  their  results,  however,  is 
not well defined.  Detailed  calculations  show  that  the 
offset voltage is a  function of the  applied  voltage,  thus 
causing  curvature in a l /C3 versus  voltage  plot.  The 
intercept  formed  by  drawing a tangent  on  the  curve is 
therefore  dependent on the  point considered on the 
curve.  Hence  an  accurate  comparison  with  their  results 
cannot be made  here.  Shown  in  Table I1 are  the  com- 
puted  values  of offset voltage as a function of the  ap- 
plied  voltage  for  a  junction  with a = 1022~m-4. 

For  this  junction,  the  voltage  intercept  given  by 
Nuyts  and  Van  Overstraeten [I61 in their  Fig. 2B is 
about 0.685 V, whereas  the  gradient  voltage is equal 
to 0.7058 V. Nuyts  and  Van  Overstraeten's  intercept 
value  thus  agrees  with  the  offset  voltage  near + O . j  V, 
whereas  the  gradient  voltage  agrees  with  the offset 
voltage  near 0 V. 

* This is the  quantity GB in Fig, 6.11 of [15]. 

TABLE I 

a ( c~n-~)  VAA (volts) v, (volts) 
- 

0.3155 
0.3989 
0.4815 

0.6453 
0.5636 

0.8079 
0.7267 

0.8889 

0.2296 
0.3089 
0.3883 

0.5471 
0.4677 

0.7058 
0.6264 

0.7851 

TABLE I1 

Applied  Voltage  (volts)  Offset  Voltage  (volts) 

+0.5 0.6869 
0 0,7065 

-0.5 0.7154 

- 

VI.  EXPONENTIAL-CONSTANT  DOPING PROFILE 
Exponential-constant  doping profiles, as  stated 

earlier,  provide  realistic  approximations  for  many 
diffused p-n  junction profiles. Relationships  between  the 
characteristic  length of this profile and those of Gaus- 
sian-constant  and  error  function-constant profiles were 
given  by (15)-(17).  A capacitance-voltage  relationship 
for  this  profile,  based on the ASCE approximation,  was 
given by (12). To  make  this  relationship  more  accurate, 
we again  seek  the  offset  voltage  for  the  profile  under 
consideration.  But  unlike  the  results of Section V ,  i t  
does not appear  that  an  analytical expression  approxi- 
mating  the offset  voltage  can  be found by  some  simple 
dimensional  considerations. We  do  know,  however,that 
diodes  with a very  steep diffusion  profile  should  behave 
like step  junctions,  while  diodes  with a very shallow 
diffusion  profile  should  behave  like  linearly  graded 
junctions.  This is evident  from  the following computa- 
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6 ~ 1 0 ~  
N= 10'6cm-s p, L= 1.271 x 10-4cm. 

0 0.2 0.4 0.6 0.8 

I LI IUU 

u 
0.6 0.8 

VOLTAGE, VOLTS 

Fig. 6. 1/C2 versus  applied volta  e for  diodes  with constant  back- 
ground  concentration of 1018 fonors cm-3 and  varying  decay 
lengths for the superposed  exponential  profiles of acceptors. 

tions of transition-region  capacitance  versus  voltage, 
obtained  by using the  numerical  technique of Section 
IV,  for  silicon  diodes  with a background  concentration 
of 10I8 donors  per  cm3  and  diffused  with  acceptor  expo- 
nential profiles of various  characteristic  lengths. 

Fig. 6 shows  the  reciprocal  squared  capacitance  as 
a function of applied  voltage  for  forward  bias. The  
lowest curve for the  smallest  characteristic  length  in 
this  figure  has a large  portion of approximately  linear 
variation  with  voltage.  The  slope is very  nearly  pro- 
portional  to  the  inverse of the  background  donor  con- 
centration.  This  diode is thus  similar  to a step-junction 
diode. As we  have  seen  previously,  the  transition-region 
capacitance  reaches a maximum  and  then  decreases. 
This is depicted  here  by a turning  up of the  curves.  Let 
us now  consider  the  second  curve  from  the  top  for  a 
more  gradual  doping  transition.  On  this  plot  there is 
some  curvature of the  same sign as  when we plot  a 
linearly  graded  junction  diode  on  a l / C z  versus V plot. 
!Not shown  here  is  the  portion of the  curve for  large 
reverse  bias.  In  this  range  the  curve  straightens  out 
and  eventually  reaches  the  same  slope  as  the  lowest 
curve.  The  intercept  with  the  voltage  axis,  after  extra- 
polation, is then  much  above 1 V. 

Let us now  see  how  the  same  data look on a l / C 3  
versus  voltage  plot.  Fig. 7 shows  this  plot.  For  the  most 
shallow  diffusion,  the  curves  have  straight  line  segments, 
while  the  curves  for  steep  diffusion  have  an  upward 
curvature.  This  curvature,  not  noticeable  here, becomes 
quite  noticeable  when  the  lowest  curve is plotted  on  an 
expanded  scale.  Let us now  review the  concept of built- 
in voltage  in  light of these  plots.  The  diode  correspond- 
ing to  the  topmost  curve has a concentration  gradient 
of 8x1019 ~ m - ~  at the  metallurgical  junction.  For  this 

a .  \ \ C / ~ ~ ~ ~ ~ - ~ ~  VOLTAGE APPROXIMATION 

c I 
2 
s 3  e 
3 
c 
- 2  

I 

0 0.2 0.4 
VOLTAGE ,VOLTS 

0.6 

Fig. 7. Same data  as in Fig. 6 ,  plotted on a 1/c3 
versus  applied  voltage  plot. 

the  conventional  built-in  voltage  has a value of 0.62 
V. Also,  with a given  concentration  gradient,  there is an 
associated  slope  according  to  the  simple  theory  based 
on the  ASCE  approximation;  the line corresponding  to 
this  slope  and  intercept is shown  as a dashed  line. I t  is 
seen  that  the  slope of this  line is in good agreement  with 
the  slope of the  curve  obtained  by  detailed  computation. 
But  the  intercept of the  dashed line is about 100 mV 
higher  than  the  extrapolated  intercept  from  the  com- 
puted  curve.  We recall  from  Section V that  the offset 
voltage  for a linearly  graded  junction,  approximated 
by  the  gradient  voltage, is  also about 100 mV lower 
than  the  built-in  voltage. 

In  the following,  we  give a comprehensive  description 
of the  results of accurate  numerical  calculations,  per- 
formed  by  using the  techniques of Section  IV, for the 
capacitance of exponential-constant  doping profiles. In  
accordance  with  the  considerations  in  Section  I  I  and I I I ,  
the  format for the  representation is chosen as 

(44) 

where S, as  previously  defined, is given  by 

qizTL2 

Ek T/q 
s=-- 

and  where  the  major  dependence  on  the  applied  voltage 
V, is provided  through  the  function g, which,  as  defined 
in  Section  I I I ,  is the  inverse of 

Details of the  numerical  results  are  represented  in (44) 
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V.  q (  Vg - V e ) /  k t  

Fig. 8. Numerically  computed  (asterisks)  correction  term V,(v, S), 
normalized to kT/q ,  versus v and S for doping  parameters of Figs. 
6 and 7. The solid  lines  represent the  analytical fit using (46)-(49). 

through  appropriate  adjustment of the offset  voltage 
Vo. As described  in  Section V, for  linearly  graded  junc- 
tions V ,  is approximated  by  the  gradient  voltage V, 
(43).  The  numerical  results  show  that  for all  exponen- 
tial-constant  profiles,  the  offset  voltage  (in  the  region of 
interest) is within a few kT/q of the  gradient  voltage 
corresponding  to  the  doping  gradient (a = N/L)  a t   the  
metallurgical  junction.  Hence,  for  moderate  accuracy 
the offset  voltage  can  simply  be  taken as the  gradient 
voltage.  Doing so at zero  bias,  errors of the  order of 5 
percent  or  less  would  be  incurred. For  improved  ac- 
curacy  we  express  the  offset  voltage  as  the sum of the 
gradient  voltage  and a correction  term V,. This  correc- 
tion  term  depends on applied  voltage  and  doping 
through  the  arguments v = ( V ,  - V,)q/kT and S :  

vo = v, + VC(D, S) .  (45) 

Numerically  obtained  values of the  correction  term V, 
are  shown  in  Fig. 8 as asterisks. The  solid  lines  represent 
a fit provided  by 

qv',/,$T L- 1 + A !0.26(1.-0.00033~) + B (4 6) 

where 

A = - 6 + 2 loglo S (47) 

B = - 0.935(1.614 - P) exp(-P2/8.608) - 2.364 (48) 

with 

P = log10 s + 3. (49) 

This fit is  reasonably  good  for v 2 7 .5 ,  i.e., for  applied 
voltages 0.2 V below the  gradient  voltage  or  less.  For 
v<7.5,  although  the fit may  not  be  acceptable,  it is not 
very  important  since  in  this  range  the diffusion  capaci- 
tance  begins  to  dominate  over  the  transition  region 
capacitance. Also note  that (46) is free of singularities 
and  hence  can be  used conveniently in computer-aided 
circuit  analysis. 

Equations (44)-(49) are  general  and  apply  to  any 
material,  provided  that  the  basic  assumptions  are  satis- 
fied,  viz.,  complete  ionization  and  absence of trapping 
effects. T o  provide a convenient  reference,  the  capaci- 
tance of silicon  diodes,  as  computed  by (44)-(49), using 
the  numerical  values n; = 1.5  X  10l6 ~ r n - ~ ,  E = 1.00  X 
Fjcm,  and kT/q =0.02585 V, is shown  in  Figs. 9-16. 
These figures  show  contours of capacitance  in  the  doping 
parameter  space  for  the following  selected  values  of  bias 
voltages -50, -10, - 5 ,  -1, -0.1, 0, 0.1,  and 0.2 V. 
Now, if besides the  capacitance  and  the  voltage,  the 
background  doping of the  material  is also  given,  then 
the  characteristic  length  for  the  desired  diffusion  can  be 
found  very  simply  from  these  curves. The  curves  shown 
in  these  figures  are  not  extended  to  the  lower  left-hand 
corner,  since  in  this  region (S<5 X low3) the fit using 
(44)-(49) starts losing  accuracy.  Similar loss of accuracy 
occurs  for  v<7.5,  and  it  is reflected in the  upper  left- 
hand  corner of Figs. 15 and 16. 

For  determining  the  doping profile  from  a  pair of 
C-V measurements,  these  plots  can  be  used  as  shown 
in Fig. 17.  Shown  here  are  curves  corresponding  to 
measured  values of 3.0X  104pF/cm2  at 0 V and 1.OX IO4 
pF/cm2  a t  - 10 V. The  point of intersection  yields 
L=1.25X10-5cm-1  and  N=1.7X1016cm-3. If the  two 
capacitances  were  measured  for  voltages low enough 
that  the  diode  is  essentially  in  a  linearly  graded  region, 
then  the  corresponding  capacitance  contours  would  not 
intersect,  but  rather  would  coincide in the  linearly 
graded  region. As is  reasonable,  in  this  case  only  the 
concentration  gradient N I L  is revealed by  the  mea- 
surements.  Likewise, if the  two  capacitance  values  are 
measured  for  large  reverse  bias,  the  vertical  portions 
of the  curves  may  coincide,  and  only N but   not  L is 
determined. 

The  above  scheme of graphical  manipulations is 
prone  to loss of some  accuracy  besides  requiring  trans- 
parent  graphs.  To  obviate  these  limitations, we have 
plotted  Figs. 18-21. They  may be  used to  find the 
doping  parameters  when  capacitance  values  for  one 
of the following  voltage  pairs  are  available: 0, - 10  or 0, 
-1 V. The  ordinate in the figures is the  capacitance 
ratio,  and  the  abscjssa is the  capacitance  (per  unit  area) 
at the  reverse  bias.  Figs. 20 and 21 contain  enlarged 
sections of Fig. 19. In Fig. 21, the  point  having  an 
abscissa of 1 X  104pF/cm2  (capacitance a t  a bias of - 10 
V), and  an  ordinate of 3  (ratio of capacitances at 0 and 
-10 V) corresponds  to  the  doping  parameters of 
L=1.25X10-5cmandN=1.7~1016cm-~.  

The  work  presented  in  this  paper is applicable  for 
flat,  homogeneous  junctions.  Sidewall  effects  must  be 
considered  separately.  Not  all of the N - L  region of 
Figs. 9-16 is accessible  in  conventional  measurements 
because  of  junction  breakdown.  Some of the region may 
be  accessible  with  pulse  measurements.  Van  Over- 
straeten  and  DeMan [ 17 ]  have  given  curves of break- 
down  voltage  versus  the  background  doping  with 
doping  gradient ( N I L )  as a paramete,r. For ready 
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Fig. 11. Contours of constant  capacitance  in N-L space  for -5  V applied to the  junction. 
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Fig. 12. Contours of constant  capacitance  in N-L space  for - 1 V applied to  the  junction. 
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Fig. 13. Contours of constant  capacitance  in N-L space  for -0.1 V applied to the junction. 
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Fig. 14. Contours of constant  capacitance  in N-L space  for 0 V applied to  the  junction. 
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Fig. 15. Contours of constant  capacitance in N-L space for 0.1 V applied to the  junction. 
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Fig. 16, Contours of constant  capacitance  in N-L space for 0.2 V applied to  the junction. 
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Fig. 1 7 .  Use of the contours of constant  capacitance at different voltages in determining the doping  parameters of a junction. 

Fig. 18. Contours of constant  doping  parameters in the space of capacitance at - 10 V and  the  ratio of capacitances a t  0 and - 10 V. 
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Fig. 19. Contours of constant  doping  parameters in the  space of capacitance a t  - 1 V and  the  ratio of capacitances a t  0 and - 1 V. 
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Fig. 21. Portion of Fig. 18 on expanded  scale. 
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Fig. 22. Contours of constant  avalanche 
breakdown  voltage  in N-L space. 

reference, we have  included  here  the  contours of con- 
stant  breakdown  voltage in the N - L plane  as  shown 
in Fig. 2 2 .  These  curves  are  applicable  for flat, homoge- 
neous  junctions.  The  values of avalanche  coefficients 
used in these  calculations  were  taken  from  Sze  and 
Gibbons [18]. Planar  junctions  exhibit  breakdown 
lowering due  to  junction  curvature [19], [20]. 

VII, SUMMARY 
In this  paper we have  attempted  to  put  the  capac- 

itance-voltage  relationships  for  p-n  junctions on a  firm 
basis. An operational  definition of the  transition-region 
capacitance is presented,  which  facilitates  the  develop- 
ment of a numerical  technique  for its computation  for 
any given  arbitrary  doping  profile.  Further,  the  concept 
of “offset  voltage” is developed  which  lends itself to 

accurate  relationships  between  capacitance  and  voltage, 
and  replaces  the  incorrect  usage of the  “built-in  voltage” 
near  zero  bias.  For  linearly  graded  junctions,  a  quantity 
termed  “gradient  voltage,”  derived  by  some  dimen- 
sional  considerations, is shown  to  be  an  excellent  ap- 
proximation  for  the  corresponding  offset  voltage.  For 
exponential-constant  profiles,  which  form  a  realistic 
approximation  for  many  diffused  p-n  junction  profiles, 
an  analytical  expression  for  the  offset  voltage  is  found 
by  curve-fitting  on  the  numerically  computed  values. 
This  expression,  being  free of singularities  and  providing 
accurate C-V relationship  near  zero  bias  and  into 
forward  bias,  is  useful  for  computer-aided  circuit 
analysis  and  determination  or  design of doping  profiles. 
The  latter is particularly  facilitated  here  by  constant 
capacitance  curves in doping  parameter  space  for 
various  applied  voltages,  and  plots of constant  param- 
eters  for  capacitance  values a t  different  voltages. 

ACKNOWLEDGMENT 
The  authors wish to  thank  Mrs. D. ha. Stoughton 

and Mi. E. Carter  for  assistance  in  programming  and 
preparation of figures. 

REFERENCES 
J: Hilibrand  and R. D. Gold,  “Determination of the  impurity 
dlstribution in  junction  diodes  from  capacitance-voltage  mea- 
surements,” RCA Rev., vol. 21, June 19$0,  pp. 245-252. 
H. K.  Gummel  and D. L. S;harfetter,  Depletion  layer  capaci- 
tance of p+n  step  junctions, J .  Appl. Phys. ,  vol. 38,  Apr.  1967, 

Electron., vol.  10,  Apr.  1967,  pp. 281-287. 
Y .  F. Chang, “The  capacitance of p-n junctions,” Solid-State 

H. P. Kleinknecht,  “Space-charge  capacitance of asymmetric, 
abrupt p-n junctions,” J .  Appl .  Phys., vol. 38, June 1967,  pp. 

S. P. Morgan  and F. M. Smits,  “Potential  distribution  and 
capacitance of graded  p-n  junctions,” Bell Syst.  Tech. J.,  vol. 39, 

characteristics of linearly  graded P - N  junctions, Prac. I R E ,  
C. T. Sah, “Effects of electrons  and holes on  the  trysition layer 

vol. 49, Mar. 1961,  pp. 603-618. 

pp. 2148-2153. 

3034-3035. 

NOV.  1960, pp. 1573-1602. 



LEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-18, NO. 3, MARCH 1971 195 

[71 D. P. Kennedy  and R.  R. O’Brien,  “On  the  mathematical  theory 
of the  linearly-graded  p-n  junction,” I B M  J. Res. Develop., 
May 1967, pp. 252-270. 
H. Lawrence and R. M. Warner,  Jr., “Diffused junction deple- 
tion  layer  calculations,” Bell Syst. Tech. J . ,  vol. 39, Mar. 1960, 

T. Misawa,  (‘Impedance of bulk  semiconductor  in  junction 
diode,” J .  Phys. SF. Jap., vol.  12,  Aug.  1957, pp. 882-890. 
H. K. Gummel,  A  self-consistent iterative scheme  for  one- 
dimensional steady  state  transistor  calculations,” IEEE Trans. 
Electron  Devices, vol. ED-11, Oct. 1964,  pp. 455-465. 
A. DeMari,  “An  accurate numerical steady-state  one-dimen- 
sional  solution of the P-N junction,” Solid-State Electron., vol. 
11, 1968, pp. 33-58. 

tance,” Proc. IEEE (Letters),  vol. 57, D;c. 1969, pp. 2181-2182. 
H. C .  Poon and H. K. Gummel, (‘Modeling of emitter  capaci- 

R. E. Thomas  and A. R. Boothroyd,  Estimation of junction 
depths  in double-diffused transistors,” Proc. IEEE (Letters), 
vol. 54, Dec.  1966,  pp. 1944-1945. 
H. N. Ghosh,  “A  distributed model of the  junction  transistor 
and  its  application in the  prediction of the  emitter-base diode 
characteristic,  base  impedance,  and  pulse  response of the de- 

pp. 389-404. 

vice,” IEEE  Trans. Electron  Devices, vol. ED-12,  Oct.  1965,  pp. 

[15] A. S .  Grove, Physics and Technology of Semiconductor  Devices. 
New York:  Wiley,  1967. 

[16] W. Nuyts  and R. J .  Van  Overstraeten,  “Numerical  calculations 
of the  capacitance of linearly  graded  Si  p-n  junctions,” Electron. 

[17] R. Van  Overstraeten  and H. DeMan,  “Measurement of the 
Lett., vol.  5, Feb. 6, 1969,  pp. 54-55. 

ionization rates in  diffused  silicon  p-n junctions,” Solid-State 
Electron., vol.  13,  1970,  pp. 583-608. 

[18] S. M. Sze and G. Gibbons,  “Avalanche  breakdown  voltages of 
abrupt  and linearly  graded  p-n  junctions  in  Ge, Si, GaAs, 

[19] G.  Gibbons  and J. Kocsis,  Breakdown of voltages of german- 
Gap,” Appl. Phys. Lett., vo;; 8, Mar. 1, 1966,  pp. 111-113. 

ium  plane-cylindrical junctions,” IEEE Trans. Electron  Devices, 
vol. ED-12, Apr.  1965,  pp. 19311198. 

[20] S. M. Sze  and  G.  Gibbons, Effect of junction  curvature  on 
breakdown  voltages  in  semiconductors,” Solid-State Electron., 

[21] W. Shockley, “The  theory of p-n junctions in  semiconductors 
and p-n  junction  transistors,” Bell Syst. Tech. J., vol. 28, 1949, 

513-531. 

vol. 9, 1966, pp. 831-845. 

pp. 435-489. 

Lumped Modeling of Optical  Generation in 
Nonuniformly  Doped Semiconductors 

Abstract-When  carrier  density is normalized  and  recombination 
neglected,  a  single  transport  element  accounts  for  both  drift  and 
diffusion.  Optical  generation is modeled by discrete  current  sources, 
and  expressions  for  lumped  elements  are  obtained in terms of in- 
tegrals of the doping profile. Good physical  intuition  with  respect  to 
the effect of the profile on photocurrent  transport is obtained,  and 
analytical  calculation of device quantum efficiency is  facilitated. 

I.  INTRODUCTION 

I T IS well known [l 1 ,  [ 2 ]  that  a drift field caused  by 
an  impurity  gradient  can  enhance  the collection 
efficiency of junction  photodevices.  Exact  computa- 

tion of the effects of such a field on the  transport of 
photogenerated  carriers is often  quite  laborious.  In  this 
paper a rather  simple  approximate  lumped  model of 
photogeneration is derived  that is both  simple  and  intu- 
itively  appealing. 

The  derivation  involves  both a change of variable 
and  an  approximation.  The  change of variable is the 
normalization of excess  minority  carrier  density  by  its 
equilibrium  value.  This  use of relative  excess  minority 
carrier  density  leads  to a simple  model  for  current  trans- 
port in nonuniformly  doped  regions.  The  approximation 
is that  of negligible  bulk  recombination.  By  assuming  a 
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diffusion  length  much  greater  than  the  width of the 
modeled  region, the  procedure follows the  classical 
analysis of drift  transistors [3]  in  determining  the 
minority  carrier  density  distribution.  For  thin  diffused 
layers  (e.g., a phototransistor  base  region)  the  lifetime 
is  generally  sufficient  for  the  approximation  to  be  good. 
As in  all  lumped  models,  recombination  elements  can  be 
added  and  the  number of lumps  increased so that  the 
the  model  approaches  the  actual  distributed  minority 
carrier  transport  case  with  arbitrary  accuracy. 

The  minority  carrier  transport is first  analyzed  using 
the  relative  excess  density  formulation,  and  it is shown 
that  a single  element  accounts  for  both  drift  and  diffu- 
sion.  Next,  the  model is extended  to  include  lumped 
photocurrent  sources.  In  the  subsequent  discussion,  the 
relationship of the  lumped  currents  to  impurity  gra- 
dients is considered.  Finally, a few illustrative  calcula- 
tions  show  the  utility of the  technique. 

11. A LUMPED ELEMENT FOR 
MINORITY  CARRIER TRANSPORT 

The  reader is assumed  to  be  familiar  with  lumped 
models [4], [ 5 ]  relating  carrier  density  and  current  in 
semiconductor  devices  under  low-level  injection  condi- 
tions.  Previous  models of transport  in  nonuniform  re- 
gions  have  required  two  transport  elements,  one  each 
for  drift  and  diffusion.  In  this  section  it is shown  that 
current flow exhibits  reciprocity  when  model  port  vari- 


