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current flow in the inhomogeneous but isotropic semi-
conductor is ¢gD(r)Vn(r). Although it would appear
desirable to formulate the current flow equations in
terms of the conductivity parameter as in (1), such a
formulation is not a logical development for materials
with point to point variations of the transport param-
eters such as are caused by a large spatial variation of
the impurity concentration.
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Transition Region Capacitance of
Diffused p-n Junctions
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Abstract—The classical capacitance=~voltage relations based on
abrupt space-charge edge approximations, while adequate at large
reverse bias, do not adequately describe the capacitance near zero
bias. This paper presents explicit capacitance-voltage relations valid
near zero bias for linearly graded and exponential-constant profiles.
For linearly graded junctions, the intercept in a 1/C? versus voltage
plot is shown to be well approximated by the “gradient voltage” de~
fined by

2 kT 2%ekT,
v, =2 kT, 2okT/a
3 ¢ 8gn;®

Also presented is an accurate numerical technique for machine
computation of the transition region capacitance for any doping
profile. Explicit relations obtained by dimensional considerations
and curve fitting on numerical solutions are free of singularities,
hence useful in computer-aided device design and doping profile
determination.

I. INTRODUCTION

HE classical capacitance—voltage relationships

| for steps and linearly graded p-n junctions form
useful tools for evaluating impurity concentration
profiles in semiconductors [1]. These relations, how-
ever, have certain limitations. The technique based on
the so-called “C square-root V” relation for step junc-
tions assumes that one side of the junction is much more
heavily doped than the other. This limits its application
to alloyed or very shallow diffused junctions. Further-
more, since the above relations were derived by making
an abrupt space-charge edge (ASCE) approximation,
i.e., that the material is either completely depleted of
mobile carriers or is completely neutral, it is acceptably
accurate only at large reverse bias. This limits the
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evaluation of the doping profile to the region away
from the junction. To “probe” the neighborhood of the
junction, the bias range of interest is from low reverse
bias to forward bias. It is exactly in this range that the
classical C square-root V relation fails to describe the
junction accurately. Analyses that do not assume the
ASCE approximation and describe ptn step junctions
in this bias range have recently been presented by
Gummel and Scharfetter [2], Chang [3], and Kleink-
necht [4]. Note that the capacitance in our discussion
is the transition region capacitance only.

The conventional doping profile analysis is thus
useful only for highly asymmetrical step junctions. For
junctions with comparable doping concentrations on
both sides, a unique profile on one side cannot be de-
termined without any a priori knowledge of the doping
profile of the other side. For gradual doping transition
and low bias, such junctions, however, may be con-
sidered linear-graded for which, with the ASCE ap-
proximation, d(1/C?®)/dV is approximately proportional
to the concentration gradient. Treatments of linearly
graded junctions not restricting to abrupt approxima-
tion have been given by Morgan and Smits [5], Sah
[6], Kennedy and O’Brien [7], and Nuyts and Van
Overstraeten [16].

In practice, most diffused junctions with error-
function, Gaussian, or similar doping profiles lie on an
intermediate level between highly asymmetrical and
linear-graded junctions. Lawrence and Warner [8]
have given curves applicable for diffused junctions
with error-function and Gaussian doping profiles,
which relate background concentration, junction depth,
and “total voltage,” where total voltage is the applied
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voltage minus the so-called “built-in voltage.” These
curves are very useful for large reverse-bias voltages.
However, difficulties arise if the curves are to be used
near zero bias.

In the neighborhood of zero bias, the total voltage
is not well defined. For example, at zero bias, the total
voltage, according to the definition in classical C-V
relationships and the definition used by Lawrence and
Warner [8], would be the negative of the built-in vol-
tage. For highly asymmetrical step junctions, it has
been shown [2]-[4] that, at zero bias, the total voltage
differs significantly from the negative of the built-in
voltage. In this paper, we shall develop the concept of
a quantity termed “offset voltage,” which depends on
doping parameters and to a lesser extent on applied
voltage. The total voltage at zero bias is then given by
the negative of the offset voltage at zero bias. The
basic concepts underlying the definitions of the transi-
tion-region capacitance, as distinguished from the diffu-
sion capacitance, and of the offset voltage are pre-
sented in Section II.

In Section 11T we make the abrupt space-charge edge
approximation to obtain an analytical expression for
the capacitance—voltage relationship for an exponential-
constant doping profile. Such profiles provide a realistic
approximation for many diffused p-n junction profiles.

In Section IV we present a numerical technique, not
involving the ASCE approximation, for computing
transition region capacitance for arbitrary doping pro-
files at reverse as well as forward bias. The technique
is based on an operational definition described in Sec-
tion II.

In Section V we consider the offset voltage for linearly
graded junctions. Based on dimensional considerations,
an analytical expression is found which is termed
“gradient voltage” and is shown to be an excellent ap-
proximation to the offset voltage.

Section VI contains the application of the technique
of Section IV to the doping profile analysis of diffused
p-n junctions and computer-aided analysis of circuits
containing semiconductor components fabricated by
diffusion technology. First we find offset voltage values
for a set of applied voltages and a set of doping pa-
rameters for exponential-constant doping profile. An
analytical expression is then fitted to the above values,
and used ‘in plotting constant capacitance curves in
doping parameter space for different bias values.

11. Basic CONCEPTS

Differential capacitance is conventionally defined
as the derivative of stored charge with respect to voltage.
This definition will be used in this paper. The total
capacitance of p-n junction diodes, or of devices con-
taining p-n junctions, is usually considered as consisting
of two components, transition-region capacitance and
diffusion capacitance.

Qualitatively these two components are easily dis-
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tinguished. Transition-region capacitance is associated
with differential charge storage at the edges of the de-
pletion region. It is the dominant capacitance for
reverse-biased junctions. The transition-region capaci-
tance is independent of frequency up to very high fre-
quencies. The admittance of a reverse-biased p-n junc-
tion diode at low frequencies may differ from its
capacitive susceptance due to series resistance. I{ the
series resistance is low, the diode exhibits a large value
of the quality factor Q. Transition-region capacitance
depends only on the doping profile in the depletion
region and its immediate vicinity. Diffusion capacitance,
on the other hand, is associated with storage of carriers
in regions adjacent to the depletion region. It is signifi-
cant only for forward-biased junctions. Diffusion capac-
itance depends on the structure of the diode as a whole;
it depends on recombination properties (lifetime) and
may (for short diodes) depend on the nature of the con-
tacts. Diffusion capacitance is strongly frequency-
dependent. At high frequencies the diffusion capacitance
may become negative (e.g., Misawa [9]), giving rise to
inductive effects. When in a p-n junction diode the
diffusion capacitance is dominant over the transition
region capacitance, the quality factor Q of the diode is
always low.

While a qualitative distinction of transition-region
and diffusion capacitance is easily made, a quantitative
separation becomes problematic. With modern tech-
niques of analysis [10], [11], p-n junction devices may
be analyzed on the basis of transport, continuity, and
space-charge balance equations; terminal character-
istics including all the capacitive effects are reproduced
by such calculations without the need of classification
of capacitance into various categories. On the other
hand, for the construction of compact device models,
it is very desirable to have available simple, quantita-
tive models of charge storage effects having reasonable
accuracy.

Existing descriptions of transition-region capacitance
are well developed and quite adequate for reverse-biased
junctions. For heavily forward-biased junctions, the
transition-region capacitance is typically negligibly
small in comparison with diffusion capacitance, and is
thus of minor interest. It is for forward bias of such
magnitude that the transition-region capacitance is
comparable to, or less than, diffusion capacitance that
compact representations of transition-region capacitance
are not readily available.! This range of bias is of great
practical importance in bipolar transistors, since the
highest frequency response is obtained when the
emitter-junction forward bias is such that transition-
region and diffusion capacitance are roughly compar-
able.

In the present paper we propose an operational

' A model of transition-region capacitance, based in part on the
present work, has recently been reported by Poon and Gummel [12].



definition of transition-region capacitance that has the
following features.

1) For reverse-biased junctions it coincides with the
conventional definition of transition region capacitance.

2) 1t gives a finite value of transition-region capac-
itance for any bias, especially for forward bias equal to
or larger than the built-in voltage.

3) It selects charge storage associated only with
carriers in the immediate vicinity of the p-n junction,
in accordance with the qualitative concept of transi-
tion-region capacitance.

4) Transition-region capacitance computed accord-
ing to the definition depends on the doping profile only,
not on recombination properties.

We define the transition-region capacitance as the
change in the nef hole charge per change in voltage. The
net hole concentration is defined as the difference be-
tween the actual hole concentration and the hole con-
centration which would exist if space-charge neutrality
prevailed throughout the structure. We shall refer to
the latter quantity as space-charge neutral hole concentra-
#on. Note that there will be an equal change in the
net electron charge and we could have defined the
transition-region capacitance with respect to changes in
the net electron charge.

Let us now consider the dependence of the transition-
region capacitance on the applied voltage. Consider a
step junction with uniform doping on the two sides.
We could express the transition-region capacitance for
this junction in terms of the capacitance given by the
classical C square-root V relation, except that difficulties
arise when the applied voltage is equal to the so called
built-in voltage, since the capacitance given by that
relation then goes to infinity. Alternatively, we can use
the same mathematical form, but replace the built-in
voltage by a more appropriate quantity. This alter-
native looks more attractive and is pursued in the
following.

Let us consider a junction with an arbitrary doping
profile. Then using the ASCE approximation, l.e.,
assuming the mobile carrier density at the edge of the
depletion region to be zero, the electric field in the
depletion region can be written as

E(X) = Eo+ f —Z—N(x)dx 1)

where N(x) is the impurity concentration, E, is the
field at the metallurgical junction x=0, and other
quantities have the conventional meaning.

The total voltage is then defined as the integral of the
electric field across the depletion region:

v, = f " B(x)dx 2

where x; and x, are, respectively, the left and the right

IEEE TRANSACTIONS ON ELECTRON DEVICES, MARCH 1971

edge of the depletion region, i.e,, the position where the
electric field as given by (1) goes to zero.

Now, since the depletion-region capacitance is pro-
portional to the inverse of the width W=ux,—x;, (2)
can be stated as

V= F(Cs) 3)

where C, is the capacitance per unit area found by
using the ASCE approximation and depends on the
doping profile. The exact capacitance C,, however, is
obtained by removing the above approximation and
hence will in general differ from C,. Replacement of
C, in (3) by C, will therefore yield a different value for
the total voltage. We define this new total voltage as
the difference between the applied voltage and a quan-
tity offset woltage.

Vapp - Voffseb = F(Ce) (4)

The off set voltage is therefore defined as
Voffset = Vapp - F(Ce)y (5)

and is a function of applied voltage and the doping
parameters. The offset voltage is thus an exact quantity
in that when used in place of built-in voltage in the
standard C-V relations, one obtains “exact” transition-
region capacitance at all applied voltages. In this re-
spect, the built-in voltage can be regarded as a first-
order approximation to the offset voltage. Higher order
approximations, based on dimensional considerations
and the numerical technique of Section IV, are pre-
sented in this paper for linearly graded and exponential-
constant profiles.

111, ExPONENTIAL-CONSTANT PROFILE—
ASCE APPROXIMATION

A first-order calculation of the transition-region
capacitance can be performed by making the abrupt
space-charge edge approximation. Let us consider an
exponential-constant doping profile described by

I'VB = I’\T(l _— 6—Z/L), (6)

and let the electric field at the metallurgical junction
x=0 be E; Then, using the ASCE approximation and
Poisson’s equation, we obtain

L
al (% + e — 1>. )

€
Denoting by £=x/L the normalized distance and by
£, and £z the values of £ for which the electric field goes
to zero, and letting w=§r—£; be the width of the de-
pletion region in units of the characteristic length L,
from (7) we obtain

E(x) = Eo +

w
e“ER =

. (8)

e — 1
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Equation (9) together with (10) has recently been re-
ported in the literature [13]. Now, under the ASCE
approximation the capacitance per unit area C is de-
fined as

flg) = (10)

(11)

whence

L 1 < gNL? ) (12)
€ w § (=vy/)
where g(f) is the inverse function to f(g) (10). A plot
of g versus f is shown in Fig. 1.

Equation (12) is a general, analytic relation between
N, L, C, and V,. As shown in Fig. 1, the function g(f)
approaches +/f/2 for small arguments and ( f/12) for
large arguments. Thus, for CL/e1, (12) yields

. gelV (13)
20=Vy’
and for CL/e>>1, (12) yields
N/L
G0N (14)
12(=V))

Equations (13) and (14) are the standard expressions

for the capacitance of the asymmetric step junction
and the linear-graded junction, respectively, where V.
is the difference between the applied voltage and the
so-called built-in voltage. For Gaussian and error-
function complement diffusion profiles having a surface
concentration N, and junction depth x;, the equivalent
exponential decay length L at the metallurgical junc-
tion can be given approximately by

l2

L~-—— (15)

2.46]‘
where / is the characteristic length of the diffusion pro-
file to be determined as follows.

For Gaussian profiles

xﬂ
In (N,/N)
and for complementary error function profiles
X5
N = N,erfc <—l—> (17)

Equation (12) is then the equivalent of Lawrence-
Warner curves [8].

A more exact relation between the capacitance, dop-
ing parameters, and the bias voltage can now be ob-
tained by incorporating correction terms in (9), based
on exact calculations using the numerical technique
discussed in the following section.

IV. NUMERICAL SOLUTION

The basic concepts for calculating the transition-
region capacitance were set forth in Section II. In the
numerical technique described here, the hole quasi-
Fermi level (in units of 2T/¢) ¢, is assumed to be spa-
tially constant from the p-region contact up to and
through the junction, and likewise, the electron quasi-
Fermi level ¢, is assumed to be spatially constant from
the n-region contact up to and through the junction
region. This assumption is excellent for reverse bias.
However, at forward bias the current flow causes a
significant bending of the quasi-Fermi levels, and hence
the assumption loses validity insofar as the calculation
of current is concerned. But it does not cause any serious
error in calculating the transition region capacitance.
This has been verified by comparing results with those
obtained by a more accurate analysis which takes into
account the bending of the quasi-Fermi levels. The
above assumption is made for reasons of economy in
computation; it is also consistent with the operational
definition (feature 4 of Section II). Furthermore, it is
assumed that all the donors and acceptors are fully
ionized and that the amount of stored charge in deep
states is negligible. ‘

Let us now denote by p, and #, the space-charge
neutral hole and electron concentrations corresponding
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to space-charge neutrality. In terms of the quasi-Fermi
levels, they are given by

P-? = niedm—\bs

(18)

ie“”d’" (19)

Hs =10
where the space-charge neutral electrostatic potential ¥,
is adjusted so that p+ Ng=mn, whence

7\’ 12 ZVE
¥ = ¢p—1In [: {( ) + exp (¢, — d’n)} - __:l
2n; 2n;
Nz\? 172 Ng
=¢, + ln[ {<—-> + exp (¢p — ¢n)} + ——] (20)
. 2%1' 2%5

with Np as the effective doping and the quantities p,,
ns, and ¥, as functions of distance.

Next we denote by p, the net hole concentration as
the difference between the actual hole concentration
» and space-charge neutral concentration p,. Similarly,
we denote by #, the net electron concentration as the
difference between the actual electron concentration
#n and space-charge neutral concentration #,. Denoting
by y the difference between the actual electrostatic
potential ¥ (in units of k7/q) and the space-charge
neutral potential ¥,

yLay — (21)
the net hole and electron concentrations may be ex-
pressed as

pnap— po= ps(ev — 1) (22)
and
Hy DN — ns = #s(e¥ — 1). (23)
Poisson’s equation
Y= ekT/ (Pn — 1) (24)
can now be rewritten as
RAY + ———[ple — 1) —n(ev — D]+ 9" (25)

kT/

where R is required to be zero by (24).

Equation (25) may be solved iteratively for y. If R
is not negligibly small everywhere for a given trial
solution y, we seek an increment 3y in vy which reduces
R. Linearizing (25) with respect to ¥, we find that 8y
must obey the equation

8y — ——— (poev + nse¥)dy = — R. (26)

kT/

Consider now that a satisfactory solution y has been
found for which the error R is acceptably small. We
then seek the change in y per unit change in the normal-
ized bias voltage V=¢,—¢,. To obtain this, we first
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write the following equations which are equivalent to
(18)—(20):

Patts = n%e” (27)
ps+ Ng = ns (28)
from which it follows that
8ps = bm, = Py (29)
Pe + s

Consequently, from (18) and (19) we obtain

B = — (5¢p + 86,) + — (‘b — "*)aV. (30)
ps + 7,

Using (29) and (30) in taking the variation of (25) with
respect to V and defining the variation in y as Ay, we
obtain

Ay” - _kz_:/_ (?se Y + nsel/)Ay

[ g mps(e? — ¢ev)
kT/q (ns+ ps)
144
5
2 \ps + #s

Note that (26) and (31) are similar in form. They differ
only in the “driving term,” i.e., the error R in (26) and
the term proportional to 6V in (31). Boundary condi-
tions are imposed such that the domain of the inde-
pendent variable, i.e., the physical distance, ends in
space-charge neutral regions on either side of the transi-
tion region, in which case the boundary conditions are
that ¥ and Ay must be zero at both ends. Note that
whereas (26) is solved iteratively until R, and hence the
change 8y in y is acceptably small, (31) need be solved
only once for a given bias value. Having found a solu-

tion Ay of (31) for §V =1, the total change of net holes
per unit area 6Py may be written as

(31)

0Py = f 5Pnd®

f{ el ( 1) A }d (32)
= — e ¥ — — pse7¥ x,
Ds + #e ? 7

and hence the capacitance per unit area is

C=——sPy.

kT/q (33)

The technique described above was formulated
keeping in view the usage of a digital computer to ob-
tain a solution. The function y is clamped to zero by
boundary conditions, and it changes very little in the
space-charge neutral regions. Hence by evaluating
(etv—1) as (£y+ (/20 £ (»3/3)+ « - - ) for small y,
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Fig. 2. Numerically computed actual hole and electron concentra-
tions in a diode with a constant background concentration of
10 cm~3 donors and a superposed exponential profile of acceptors
with a characteristic length of 107% cm. Applied voltage is varied
from —1t0 0.8 V.

we have effectively obtained a symbolic rather than a
numerical cancellation of mobile and fixed charges with
attendant benefits regarding roundoff errors. It is also
of advantage that with only minor changes, the same
computer program may be used to obtain actual carrier
concentrations and their derivatives with bias.

As an example, the above technique is applied to a
silicon p-n junction diode with doping profile consisting
of a constant background concentration of 107 ¢m—?
donors on which is superposed an exponential profile
of acceptors with a characteristic length of 10~% ¢cm or
0.1 4. The values of the physical constants used are
n;=1.5X10% cm~3, e=10"1F/cm, and k7T/g=0.02585
V at room temperature.

Fig. 2 shows the computed actual hole and electron
concentrations for applied voltages from —1 to 0.8 V.
The ordinate is carrier concentration plotted on a
linear scale, and the abscissa is distance. The total dis-
tance shown is 0.5 u; the voltage increments are chosen
not to be equal for better presentation. At reverse and
zero bias, the carriers approach the doping values
asymptotically on either side of the junction. Near the
metallurgical junction we observe the depletion region
where the carrier concentrations are negligible com-
pared to the doping concentrations, and are indis-
tinguishable from zero on the scales used. One can then
define with reasonable accuracy the transition-region
capacitance to be that of a plate capacitor with plate
separation equal to the depletion layer width. The de-
pletion layer width narrows as one goes from reverse
bias to forward bias. At large forward bias we observe
regions of overlapping hole and electron concentrations
in what was the depletion region at reverse and zero
bias. It is in this range that the parallel capacitor defini-
tion for transition region capacitance is no longer valid,
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Fig. 3. For the same diode as in Fig. 2, actual carrier concentration
(lower curve) and the carrier concentration corresponding to
space-charge neutral solution in the diode (upper curve).
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Fig. 4. For the same diode as in Fig. 2, the derivative of net carrier
concentrations with respect to applied voltage.

requiring modifications embodied in this paper. Note
also that even at the highest voltage shown, which ex-
ceeds the so-called built-in voltage, there are no singu-
larities. Carrier concentrations, though rising, remain
finite.

Fig. 3 shows the computed net carrier concentrations,
depicted by crosshatched regions for bias values shown
in Fig. 2. The upper curves in these regions correspond
to space-charge neutral carrier concentrations, while the
lower curves are the actual carrier concentrations shown
in Fig. 2. For reverse and zero bias, the net carrier
concentrations are negative, but at forward bias, both
negative and positive net carrier concentrations prevail.

Fig. 4 shows the derivative of net carrier concentra-
tions with respect to bias. At reverse bias the carrier
concentration change is appreciable only in narrow
regions, whereas at forward bias the change is spread
over a wide region. The centers of gravity of these re-
gions correspond to the location of equivalent capacitor
plates. The capacitance per unit area equals exactly
C=¢/w, where w is the separation between the centers
of gravity. At large forward bias, the regions of net
carrier change overlap; hence the mental picture of
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charge accumulation at the edges of a depletion region
breaks down. It is, however, still true that the capac-
itance C=¢/w where w is the separation of the centers
of gravity, but now the widths of the regions of net
carrier change are larger than w. Clearly, at forward
bias, w cannot be thought of as the width of a depletion
region. Note that starting from large reverse bias, with
more positive bias, the peaks move closer together and
rhe areas under them increase, resulting in an increase
of the capacitance. Beyond 0.7 V, however, the transi-
tion-region capacitance, as defined here, decreases. The
total capacitance, which includes diffusion capacitance,
however, increases since storage in the space-charge
neutral regions is now enhanced. To reiterate, the im-
portant point is that total capacitance, as well as transi-
tion region capacitance, remain finite.

At 0.8 V, the last curve shown in Fig. 4, we observe
that the net hole and net electron curves cross on the p
side which is the more heavily doped side. Thus one
may consider the junction to have moved over from its
metallurgical location into the more heavily doped side.
This has previously been pointed out by Ghosh [14].

V. GRADIENT VOLTAGE—LINEARLY
GRADED JUNCTIONS

The numerical technique described in Section IV
is useful for detailed device modeling. For circuit
analysis programs which simultaneously handle many
p-n junction devices, this approach would require too
much memory and execution time to be practical. What
is desirable is a compact analytical expression, free of
singularities, which approximates the numerical data
reasonably well. The concept of offset voltage developed
in Section II is helpful here. In this section we shall
show that for a linearly graded junction the offset
voltage can be well approximated by a quantity which
weshall term as “gradient voltage.” The gradient voltage
which is proportional to the logarithm of the doping
gradient, is found by making use of some dimensional
considerations, following the treatment of the linear-
graded junction problem by Morgan and Smits [5].
In the following we derive the expression for the gradi-
ent voltage. Let us recast the differential equation (24)
in terms of the normalized potential distribution in the
junction, ¥(x) = (¢/k7) [¥ —=1/2(¢,+¢.) asin [5], [21]:

a2y
- = sinh ¥V — Kx

4
= (34)

where the parameter K in the present notation is
e~ GIOT 3 2 )
K = —=— = exp {— —i:U + —1In (85)]} (33)
/88 - 4 3
with
gNL?
ekT/q

‘ M2
UEQSp—d)n—hl(—), S =

2

and N/L =a is the doping gradient for the junction.
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The space-charge capacitance C in [5] is given by a
normalizing capacitance Cy multiplied by a function of
K. The functional dependence is given in Table 111 of
[5] in the column headed by Cp/Cy and we denote it
here by G(K):

C = C, = CoG(K). (36)
The quantity Cycan be written in our notation as
(Y. 2, -
€ 64
and hence the normalized capacitance is
CL SY3G(K)
—_— = (38)

€ 4

Now, since for large reverse bias (large K) the ASCE
approximation is quite good and yields (see (14))

CL S

T

1/3

’

(39)

denoting (RT/q [U+(2/3)In(8S)] in (35) as the total
voltage V', we can write the asymptotic form of G(K)as

G(K) = <~4——>1/3, K — . (40)

In K

A comparison of the actual data of Morgan and
Smits [3] with the asymptotic values as per (40) is
shown in Fig. 5, which also contains numerical values
computed for linearly graded junctions by the technique
described in Section IV. The asymptotic form is found
to be an excellent approximation for K >20.?

Thus, except for very shallow junctions (¢ <10%cm—*)
the asymptotic relation (40) may be used for reverse
bias, including zero bias and small forward bias:

LC S 173
- = [: :l ’ (41)
€ —12(U 4+ £ 1n (8S))
which in unnormalized form can be written as
gae?
Cr = — — (42)
12(V, — Vo)

where V, is termed as gradient voltage and is given by

a%ekT
y,oo 2 A /q
3 g 8gn®

, (43)

and V,is the voltage applied to the junction.

Note that the gradient voltage V, given by (43) is
independent of applied voltage, and for 1 given material
at a given temperature it is dependent only on the
doping gradient. From the agreement of (40) with
numerical values shown in Fig. 5, and the comparison.

? K =20 corresponds to a forward bias of 0.44 V for a junction
with a =102 cm™.
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Fig, 5. Comparison of the present work and the asymptotic result
(40) with the calculations of Morgan and Smits [3].
of (43) with (5), it can be concluded that for linear- TABLE 1
graded.Jun(.:tlons the gradient voltage is an excellent o (cm—4) Vas (volts) v, (volts)
approximation to the offset voltage. _— —_—
A comparison of V, with the built-in voltage? 10t 0.3155 0.2296
K . . 10t 0.3989 0.3089
Vas=(kT/@In(N1Ny/n:?) obtained by making the 108 0.4815 0.3883
ASCE approximation, where Ny and N; are the impurity %8;; 822?? 8§Z;Z
concentrations at the edges of the depletion region at 102 0.7267 0.6264
i i H 102 0.8079 0.7058
zero bias, is shown‘m Table I for several values of the Lo 0’ 8380 0 7831
concentration gradient a.
From Table I it is seen that V, is of the order of 100
mV smaller than V44, and that for the lowest concen- TABLE II

tration gradient considered, the discrepancy in Viu
compared to V, is 37 percent. This could introduce
significant errors in calculations of capacitance near
zero bias. Nuyts and Van Overstraeten [16] have re-
cently reported that the intercept in numerically com-
puted 1/C*® versus V curves is about 0.13 V smaller
than V44. The intercept in their results, however, is
not well defined. Detailed calculations show that the
offset voltage is a function of the applied voltage, thus
causing curvature in a 1/C? versus voltage plot. The
intercept formed by drawing a tangent on the curve is
therefore dependent on the point considered on the
curve. Hence an accurate comparison with their results
cannot be made here. Shown in Table II are the com-
puted values of offset voltage as a function of the ap-
plied voltage for a junction with @ = 1022cm—*.

For this junction, the voltage intercept given by
Nuyts and Van Overstraeten [16] in their Fig. 2B is
about 0.685 V, whereas the gradient voltage is equal
to 0.7058 V. Nuyts and Van Overstraeten’s intercept
value thus agrees with the offset voltage near +0.3 V,
whereas the gradient voltage agrees with the offset
voltage near 0 V,

® This is the quantity ®z in Fig, 6,11 of [15].

Applied Voltage {volts) Offset Voltage (volts)

+0.5 0.6869
0 0.7063
-0.5 0.7154

V1. ExpoNENTIAL-CONSTANT DOPING PROFILE

Exponential-constant doping profiles, as stated
earlier, provide realistic approximations for many
diffused p-n junction profiles. Relationships between the
characteristic length of this profile and those of Gaus-
sian-constant and error function-constant profiles were
given by (15)-(17). A capacitance-voltage relationship
for this profile, based on the ASCE approximation, was
given by (12). To make this relationship more accurate,
we again seek the offset voltage for the profile under
consideration. But unlike the results of Section V, it
does not appear that an analytical expression approxi-
mating the offset voltage can be found by some simple
dimensional considerations. We do know, however,that
diodes with a very steep diffusion profile should behave
like step junctions, while diodes with a very shallow
diffusion profile should behave like linearly graded
junctions. This is evident from the following computa-
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tions of transition-region capacitance versus voltage,
obtained by using the numerical technique of Section
IV, for silicon diodes with a background concentration
of 10?® donors per cm? and diffused with acceptor expo-
nential profiles of various characteristic lengths.

Fig. 6 shows the reciprocal squared capacitance as
a function of applied voltage for forward bias. The
lowest curve for the smallest characteristic length in
this figure has a large portion of approximately linear
variation with voltage. The slope is very nearly pro-
portional to the inverse of the background donor con-
centration. This diode is thus similar to a step-junction
diode. As we have seen previously, the transition-region
capacitance reaches a maximum and then decreases.
This is depicted here by a turning up of the curves. Let
us now consider the second curve from the top for a
more gradual doping transition. On this plot there is
some curvature of the same sign as when we plot a
linearly graded junction diode on a 1/C? versus V plot.
Not shown here is the portion of the curve for large
reverse bias. In this range the curve straightens out
and eventually reaches the same slope as the lowest
curve. The intercept with the voltage axis, after extra-
polation, is then much above 1 V.

Let us now see how the same data look on a 1/(C?®
versus voltage plot. Fig. 7 shows this plot. For the most
shallow diffusion, the curves have straight line segments,
while the curves for steep diffusion have an upward
curvature. This curvature, not noticeable here, becomes
quite noticeable when the lowest curve is plotted on an
expanded scale. Let us now review the concept of built-
in voltage in light of these plots. The diode correspond-
ing to the topmost curve has a concentration gradient
of 8 X101 cm™* at the metallurgical junction. For this
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Fig. 7. Same data as in Fig, 6, plotted on a 1/C%

versus applied voltage plot.

the conventional built-in voltage has a value of 0.62
V. Also, with a given concentration gradient, there is an
associated slope according to the simple theory based
on the ASCE approximation; the line corresponding to
this slope and intercept is shown as a dashed line. It is
seen that the slope of this line is in good agreement with
the slope of the curve obtained by detailed computation.
But the intercept of the dashed line is about 100 mV
higher than the extrapolated intercept from the com-
puted curve. We recall from Section V that the offset
voltage for a linearly graded junction, approximated
by the gradient voltage, is also about 100 mV lower
than the built-in voltage.

In the following, we give a comprehensive description
of the results of accurate numerical calculations, per-
formed by using the techniques of Section 1V, for the
capacitance of exponential-constant doping profiles. In
accordance with the considerations in Section II and I1I,
the format for the representation is chosen as

L (S0

44
€ Vo‘_Va ( )

where .S, as previously defined, is given by
‘ gNL?
 ekT/q
and where the major dependence on the applied voltage

V., is provided through the function g, which, as defined
in Section I11, is the inverse of

2 2
(g) = ————

coth|{ —) — 2g
2g

Details of the numerical results are represented in (44)

(10)
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Fig. 8. Numerically computed (asterisks) correction term V.(z, S),
normalized to 2T /g, versus v and .S for doping parameters of Figs.
6 and 7. The solid lines represent the analytical fit using (46)~(49).

through appropriate adjustment of the offset voltage
V. As described in Section V, for linearly graded junc-
tions Vo is approximated by the gradient voltage V,
(43). The numerical results show that for all exponen-
tial-constant profiles, the offset voltage (in the region of
interest) is within a few k7T/g of the gradient voltage
corresponding to the doping gradient (e =N/L) at the
metallurgical junction. Hence, for moderate accuracy
the offset voltage can simply be taken as the gradient
voltage. Doing so at zero bias, errors of the order of 5
percent or less would be incurred. For improved ac-
curacy we express the offset voltage as the sum of the
gradient voltage and a correction term V.. This correc-
tion term depends on applied voltage and doping
through the arguments v =(V,— V,)¢/kT and S:

Vo=V, + Vv, S). (45)

Numerically obtained values of the correction term 7V,
are shown in Fig. 8 as asterisks. The solid lines represent
a fit provided by

qVo/kT = | v+ A [0-200~0.00088) 4 B (46)
where
A= —64+2log,S (47)
B = — 0.935(1.614 — P) exp(—P?/8.608) — 2.364 (48)
with
P = logy S + 3. (49)

This fit is reasonably good for v =7.5, i.e., for applied
voltages 0.2 V below the gradient voltage or less. For
v<7.5, although the fit may not be acceptable, it is not
very important since in this range the diffusion capaci-
tance begins to dominate over the transition region
capacitance. Also note that (46) is free of singularities
and hence can be used conveniently in computer-aided
circuit analysis.

Equations (44)—(49) are general and apply to any
material, provided that the basic assumptions are satis-
fied, viz., complete ionization and absence of trapping
effects. To provide a convenient reference, the capaci-
tance of silicon diodes, as computed by (44)—(49}, using
the numerical values #;=1.5 X10*% cm™3, e=1.00 X10™12
F/cm, and kT/g=0.02585 V, is shown in Figs. 9-16.
These figures show contours of capacitance in the doping
parameter space for the following selected values of bias
voltages —50, —10, =5, —1, —0.1, 0, 0.1, and 0.2 V.
Now, if besides the capacitance and the voltage, the
background doping of the material is also given, then
the characteristic length for the desired diffusion can be
found very simply from these curves. The curves shown
in these figures are not extended to the lower left-hand
corner, since in this region (S<5X107%) the fit using
(44)—(49) starts losing accuracy. Similar loss of accuracy
occurs for v<7.5, and it is reflected in the upper left-
hand corner of Figs. 15 and 16.

For determining the doping profile from a pair of
C-V measurements, these plots can be used as shown
in Fig. 17. Shown here are curves corresponding to
measured values of 3.0X10*pF/cm?at 0V and 1.0 10!
pF/cm? at —10 V. The point of intersection yields
L=125X10"%cm~! and N=1.7X10%cm™3, If the two
capacitances were measured for voltages low enough
that the diode is essentially in a linearly graded region,
then the corresponding capacitance contours would not
intersect, but rather would coincide in the linearly
graded region. As is reasonable, in this case only the
concentration gradient N/L is revealed by the mea-
surements. Likewise, if the two capacitance values are
measured for large reverse bias, the vertical portions
of the curves may coincide, and only N but not L is
determined.

The above scheme of graphical manipulations is
prone to loss of some accuracy besides requiring trans-
parent graphs. To obviate these limitations, we have
plotted Figs. 18-21. They may be used to find the
doping parameters when capacitance values for one
of the following voltage pairs are available: 0, —10 or 0,
—1 V. The ordinate in the figures is the capacitance
ratio, and the abscissa is the capacitance (per unit area)
at the reverse bias. Figs. 20 and 21 contain enlarged
sections of Fig. 19. In Fig. 21, the point having an
abscissa of 1 X 10 F/cm? (capacitance at a bias of —10
V), and an ordinate of 3 (ratio of capacitances at 0 and
—10 V) corresponds to the doping parameters of
L=1.25X10"%mand N=1.7 X 10%¥cm3,

"The work presented in this paper is applicable for
flat, homogeneous junctions. Sidewall effects must be
considered separately. Not all of the N—L region of
Figs. 9-16 is accessible in conventional measurements
because of junction breakdown. Some of the region may
be accessible with pulse measurements. Van Over-
straeten and DeMan {17] have given curves of break-

~down voltage versus the background doping with

doping gradient (N/L) as a parameter. For ready
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V/F/ ;;/ Ao near zero bias. For linearly graded junctions, a qua'ntity
/ / g /’ /;/ / termed “gradient voltage,” derived by some dimen-
// /] vV 20 sional considerations, is shown to be an excellent ap-
Em’“ / //,/ / ] proximation for the corresponding offset voltage. For
3 17 /9 7 AT exponential-constant profiles, which form a realistic
z / A/ 4 approximation for many diffused p-n junction profiles,
% / / / an analytical expression for the offset voltage is found
. l / 1 / by curve-fitting on the numerically computed values.
g ° T+ This expression, being free of singularities and providing
1] accurate C-V relationship near zero bias and into
[ / ] forward bias, is useful for computer-aided circuit
I ’ [ analysis and determination or design of doping profiles.
168 - . L - N The latter is particularly facilitated here by constant
© 0 0 ° 10 capacitance curves in doping parameter space for
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Fig. 22. Contours of constant avalanche
breakdown voltage in N-L space.

reference, we have included here the contours of con-
stant breakdown voltage in the N —L plane as shown
in Fig. 22. These curves are applicable for flat, homoge-
neous junctions. The values of avalanche coefficients
used in these calculations were taken from Sze and
Gibbons [18]. Planar junctions exhibit breakdown
lowering due to junction curvature [19], [20].

VII. SUMMARY

In this paper we have attempted to put the capac-
itance-voltage relationships for p-n junctions on a firm
basis. An operational definition of the transition-region
capacitance is presented, which facilitates the develop-
ment of a numerical technique for its computation for
any given arbitrary doping profile. Further, the concept
of “offset voltage” is developed which lends itself to

various applied voltages, and plots of constant param-
eters for capacitance values at different voltages.
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Lumped Modeling of Optical Generation in
Nonuniformly Doped Semiconductors

J. STEPHEN BRUGLER, MEMBER, IEEE

Abstract—When carrier density is normalized and recombination
neglected, a single transport element accounts for both drift and
diffusion. Optical generation is modeled by discrete current sources,
and expressions for lumped elements are obtained in terms of in-
tegrals of the doping profile. Good physical intuition with respect to
the effect of the profile on photocurrent transport is obtained, and
analytical calculation of device quantum efficiency is facilitated.

]. INTRODUCTION

T IS well known [1], [2] that a drift field caused by
]:[: an impurity gradient can enhance the collection

efficiency of junction photodevices. Exact computa-
tion of the effects of such a field on the transport of
photogenerated carriers is often quite laborious. In this
paper a rather simple approximate lumped model of
photogeneration is derived that is both simple and intu-
itively appealing.

The derivation involves both a change of variable
and an approximation. The change of variable is the
normalization of excess minority carrier density by its
equilibrium value. This use of relative excess minority
carrier density leads to a simple model for current trans-
port in nonuniformly doped regions. The approximation
is that of negligible bulk recombination. By assuming a
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diffusion length much greater than the width of the
modeled region, the procedure follows the classical
analysis of drift transistors [3] in determining the
minority carrier density distribution. For thin diffused
layers (e.g., a phototransistor base region) the lifetime
is generally sufficient for the approximation to be good.
As in all lumped models, recombination elements can be
added and the number of lumps increased so that the
the model approaches the actual distributed minority
carrier transport case with arbitrary accuracy.

The minority carrier transport is first analyzed using
the relative excess density formulation, and it is shown
that a single element accounts for both drift and diffu-
sion, Next, the model is extended to include lumped
photocurrent sources. In the subsequent discussion, the
relationship of the lumped currents to impurity gra-
dients is considered. Finally, a few illustrative calcula-
tions show the utility of the technique.

II. A LumrED ELEMENT FOR
MiNORITY CARRIER TRANSPORT

The reader is assumed to be familiar with lumped
models [4], [5] relating carrier density and current in
semiconductor devices under low-level injection condi-
tions. Previous models of transport in nonuniform re-
gions have required two transport elements, one each
for drift and diffusion. In this section it is shown that
current flow exhibits reciprocity when model port vari-



