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The Influence of Debye Length on the
C-V Measurement of Doping Profiles

WALTER C. JOHNSON, rerrow, 1EEg, AND PETER T. PANOUSIS, MEMBER, IEEE

Abstract—The doping profile of a semiconductor is given only
approximately by the conventional analysis of C-V measurements.
The present study employs computer simulation of semiconductors
with one-sided doping profiles that consist of high and low doped
sections joined by steps and linear ramps. The computation yields
the apparent doping profile that would be obtained by the conven-
tional use of C-V data, and this result is compared with the actual
profile, with the majority-carrier distribution, and with the outcome
of a correction previously proposed in the literature.

The results show that a step in the profile cannot be resolved
satisfactorily to less than several Debye lengths corresponding to
the doping on the high side of the profile. A ramp cannot be dis-
tinguished accurately from a step unless its width is appreciably
greater than a Debye length. Furthermore, the apparent doping
profile is not identical with the majority-carrier distribution with
contacts far away, as has been suggested, and the discrepancy is
shown to depend on the side from which depletion is done.

I. INTRODUCTION

OPING profiles in semiconductors are commonly
D determined by a differential capacitance tech-
nique [1]. A degenerately doped p-n junction or
a metallic Schottky barrier is formed at the surface of
the semiconductor. This junction is placed in reverse
bias, and the capacitance of the transition layer is
measured as a function of the bias voltage. The analysis
of the capacitance versus bias voltage relationship is
conveniently done using the depletion-layer approxima-
tion in which the semiconductor is assumed to be
divided into two distinct regions: a layer that is en-
tirely depleted of charge carriers, and an interior region
of perfect charge neutrality. The foregoing is equivalent
to assuming zero value for the Debye screening length
in the vicinity of the assumed edge of the space-charge
layer. If the doping profile has large gradients and if
spatial resolution is attempted on the order of a few
Debye lengths in the vicinity of these gradients, the
assumption of a zero Debye length can produce serious
errors in the calculation of the doping profile from the
C-V data. Unfortunately, a more accurate interpreta-
tion of C-V data is considerably more difficult because
of the nonlinear relations that are involved. This paper
states briefly the conventional interpretation, considers
the physical basis for a more accurate interpretation,
and reviews recent hypotheses regarding the role of the
free charge carriers; then, using computer simulation
for step and ramp doping profiles, shows the effect of
the Debye length on the interpretation of C-V data.
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Fig. 1. Illustrating the usual assumption of a sharp-edged distribu-
tion of n(x). The shaded ordinates represent the increment
An(x) =n1(x) —na(x).

II. CONVENTIONAL INTERPRETATION
oF (—V Dara

In the usual analysis of C—V data, it is assumed that
the transition region has a sharply defined edge in the
manner illustrated in Fig. 1. The notation is as follows.

x Distance measured from the contact into the
semiconductor.
w Width of the depletion layer.
N(x) Net density of ionized impurity atoms.
n(x) Density of majority carriers.

Specifically, the usual assumptions are that n(x) =0 for
0<x<w, and that for x>w the semiconductor is
electrically neutral with n(x) = N(x). Minority carriers
are neglected throughout.

Fig. 1 shows the assumed sharp edge of #(x) for two
bias voltages that differ by a small increment AV, thus
producing an increment in width Aw. In effect, the
majority-carrier increment An(x) =n:(x) —n:(x), shown
shaded in Fig. 1, provides a sample of the doping profile
N{x) at x =w. The charge removed from the edge of the
depletion layer is AQ=¢gN(w)Aw C/unit area, where ¢
is the magnitude of the electronic charge. The charge
AQ is passed through the external circuit, while within
the depletion layer there is produced an increment of
electric field AE=AQ/¢ where ¢ is the dielectric per-
mittivity of the semiconductor. The increment of
voltage is given by AV=wAE=¢gN(w)wAw/¢, and the
capacitance measured by external instruments is C
=AQ/AV =¢/w F/unit area. The latter expression can
be written as w=eC™!. Thus Aw= —eC?A(, and
we can write the increment of wvoltage as AV
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=gN(w) (—eC?AC)(eC~1) /¢, from which we obtain
the following conventional formulas:

3

¢
Nw) = ——(dC/dy)! )
qe

where
w = ¢/C. (2)

III. Tae ErFrFeECT OF A NONZERO DEBYE LENGTH—
PravsicaL DiscuUssioN

It is well known that the use of (1) and (2) provides
only an approximation to the actual doping profile.
The zero value of current that is tacitly assumed re-
quires a balance between diffusion and drift currents,
and this in turn requires an electric field wherever
dn/dx is different from zero. In particular, the diffusion
of majority carriers prevents #{x) from having the
sharp step that was envisioned in Fig. 1, and therefore
the increment An(x) does not provide a precise sample
i N(x) at x=w. ,

The true situation, which will be detailed in mor
quantitative fashion in Section V, is illustrated in Fig. 2,
which is drawn for a high~low step profile. The graph
labeled #(x) represents the distribution of majority
carriers that would be obtained in thermal equilibrium
if both contacts were infinitely far away. The natural
measure of distance here is the extrinsic Debye screen-
ing length:

kTe

A=A/ —
N

3)

where % is the Boltzmann constant, I is the absolute
temperature, and N is the local density of doping. On
the horizontal axis of Fig. 2(a) are shown the two
Debye lengths, Mow and Mign, that correspond to the
intensities of doping, Niow and Nnign, on the two sides of
the step. It is only at a distance of several Debye lengths
from the step that the carrier density n(x) approaches
closely to the density of doping, N(x).

The solid graph labeled #;(x) in Fig. 2(a) represents
the general form of the majority carrier distribution
that is obtained if a rectifying contact is placed on the
semiconductor at the left and is reverse biased. The

region near the contact is essentially depleted of charge
carriers, while far to the right #,(x) approaches N(x).
The transition between these two extremes depends on
the space-charge distribution ¢[N(x)—#ni(x)] which
produces an electric field E(x) such that at every point
there exists a balance between the drift current
gun(x)E(x) and the diffusion current gD dun(x)/dx. As is
shown in Section V, the principal portion of the transi-
tion from depletion to space-charge neutrality occupies
several Debye lengths.

If the reverse bias voltage is increased by an incre-
ment AV, there results a new majority-carrier distribu-
tion such as the one shown by the dashed curve labeled
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Fig. 2. Actual distributions of majority carriers for a step-function
doping profile, and the increment An(x)=wn(x)—ns(x) pro-
duced by an increment in bias voltage,

Now = VETe/*N 1ow; Muigh = VET e/ P Nnigh.
(a) Depletion from low side. (b) Depletion from high side.

ny(x) in Fig. 2(a). The shaded ordinates, which are re-
plotted in the lower graph of Fig. 2(a), represent the
majority-carrier increment An(x)=n;(x)—n.(x). This
increment is spread out over several Debye lengths and
clearly does not sample N(x) in the manner that was
visualized in Fig. 1. The capacitance measured by an
external instrument does not define the width of the
space-charge layer to better than a few Debye lengths,
and the variation of capacitance with bias voltage can
resolve changes in N(x) only to about this degree of
accuracy. For a relative dielectric constant of 12 and a
net doping density of N=10% cm™3, we have A=0.13
um at I"=300°K. Therefore the errors will be of concern
only if the semiconductor is doped lightly or if one is
attempting to resolve the profiles of very thin doped
layers such as those that can be produced by ion im-
plantation.

The calculation of n(x) for a given doping function
N(x) and for a given bias voltage V requires the solution
of a Dboundary-value problem involving nonlinear
differential equations (see the Appendix). Numerical
solution by iteration is feasible, however, on a large-
scale digital computer, and from the results one can
predict the capacitance C as a function of V for a given
doping profile. On the other hand, the converse problem
of computing N(x) from the dependence of C on V is
intractable, and it appears that one must be content
with approximations. The interpretation of the approxi-
mate results may be aided, however, by insight gained
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from analyses of the C-V relationships for various types
of doping profiles.

A further consideration should now be mentioned.
Whereas Fig. 2(a) showed a high—low step profile with
depletion done from a contact on the low side, Fig. 2(b)
shows the results with an identical profile but with de-
pletion done from a contact on the high side. The
thermal-equilibrium distribution of majority carriers
with contacts far away, #,(x), would of course be the
same in both cases. With the contacts in place and with
bias voltage applied, however, the results are quite
different, and the carrier distributions #;(x) and #.(x)
are not at all the same in Fig. 2(a) and 2(b). The results
of capacitance measurements, therefore, are expected to
be different for depletion done from contacts on op-
posite sides, and from this one can reason that such
measurements cannot yield precise information regard-
ing either V(x) or n¢(x). The foregoing conclusions are
confirmed by the results given in Section V.

IV. DiscussioN oF SOME REcCENT HYPOTHESES

The use of thin doped layers and of doping profiles
with large gradients has recently stimulated efforts to
formulate a relation between N(x) and the C-V data
that would give an improved estimate of N(x) and still
be reasonably easy to use. A valuable contribution in
this direction has been made by Kennedy, Murley, and
Kleinfelder (KMK) [2], who have pointed out the
central role of the free majority carriers in the C-V
relationship and have proposed that formula (1), in-
stead of yielding the doping profile, gives the distribu-
tion of majority carriers with contacts far away [#,(x) in
the present notation]. Thus, they would replace (1) by

no(x) = — ¢ (éc/avy—L (4)
ge

Kennedy and O’Brien (KOB) [3] point out that if (4) is
indeed correct, then the true doping profile can be ob-
tained from the C-T data by using (4) and then apply-
ing the following formula:

=i~ (D))t 2]

The successful use of (5), however, rests on the accuracy
of (4). In their arguments regarding (4), KMK used the
full and accurate formulation for #y(x), but in expressing
the free carrier distribution for biased conditions they
made the approximation of an edge in #(x) such that, in
the present notation, n(x)=0 for 0<x<w and n(x)
=no(x) for x>w, thus essentially assuming a zero value
of Debye length at this stage of the calculations. In the
KMK approximation, an increment of voltage causes a
quantity of mobile electrons equal to n,(w)Aw to cir-
culate through the external circuit, thus sampling 7¢(x)
atx =w and leading to (4).

The accuracy of (4) must be determined before the
range of validity of (5) can be evaluated. A general
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solution of the problem seems out of the question.
Carter [4] and Carter, Gummel, and Chawla [5] have
reported the results of computer studies of Gaussian
profiles which show that expression (4) is not precise,
although for the profiles analyzed it provided good ap-
proximations. The present paper investigates these
matters further.

V. REsuLts oF COMPUTER SIMULATIONS

This section presents the results of a computer study
(see the Appendix) which was designed to show the rela-
tionship between the true doping profile of a semicon-
ductor and the conclusions regarding that profile which
can be deduced from externally measured C-V data.
Two types of profiles were used in this study: step
functions, which should impose the most stringent tests
on the relationships, and linear ramps to show the
effects of finite gradients. For each assumed doping
profile, a set of bias voltages was assumed, and for each
of these an iterative procedure was used to compute the
majority-carrier distribution #(x) and the distributed
increment of majority carriers An(x) that would be pro-
duced by an increment in voltage AV, From the results
of these calculations the C—V relationship corresponding
to the assumed N(x) was computed. The calculated
C-V relationship was then used in the formulas designed
for the determination of N(x) from such data, and the
results were compared with the known doping profile.

In presenting the results of the computer simulation
we shall define an “apparent doping profile,” N*(x),
which is the result of substituting the C—V relationship
into the conventional formula (1), i.e.,

N (&) = — - (aC/avy )
ge
where
x =¢/C. . (7

In the conventional depletion-layer approximation we
would have N*(x) = N(x). In the KMK approximation,
N*(x) =no(x).

We shall also define a “second estimate,” N**(x), by
an equation analogous to the KOB formula (5) in order
to determine the effect of the KOB correction when
applied to the KM K approximation:

N**¥(x)

R CoICC L

In the KMK approximation we would have N**(x)
=N(x).

The results of the calculations are presented in nor-
malized form. Normalization of doping intensities and
of majority-carrier densities is done with respect to the
intensity of doping on the high side; i.e., using the sub-
script # to denote normalized :
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N, = v
" N
"
- Nnign
and
Mo
o = Nnigh

Distance are normalized with respect to the Debye
length on the high side of the doping profile:
x

Xp = —

Ahigh

N 1/“k:re
hi; = *
- ¢*Nuigh

Voltages are normalized with respect to kT /q:

v
Vn T= e—em——
kT/q

where

The normalized results of the computations are pre-
sented in Figs. 3 through 13. They can be divided con-
veniently into the four categories labeled A through D
below,

A. Majority-Carrier Distributions

Fig. 3 contrasts the distributions of majority carriers
when depletion is done from contacts placed on the low
and high sides of the doping profile, respectively. In
these examples the doping profile is a step with a high—
low ratio of 10:1. Shown in Fig. 3(a) are the normalized
#o(x) and the normalized majority-carrier distributions
for various values of voltage, identified by the labels,
applied to a contact located on the low side of the pro-
file at x, = —30. Fig. 3(b) is drawn for the same doping
profile but with the contact located on the high side at
%,=6+/10. It can be seen 1) that the majority-carrier
distributions do not have sharp edges but instead re-
quire several Debye lengths to make the transition from
approximate depletion to approximate space-charge
neutrality; 2) that an increment in voltage does not
provide a sample of either N, (x) or n,0(x); and 3) that
the results depend on the side from which depletion is
done.

B. Comparisons Among N*(x), N(x), and n.(x)

Figs. 4 through 8 compare the apparent doping profile
deduced conventionally from C-V data, i.e.,, N*(x) as
defined by (6), with the true profile N(x) and the
majority-carrier distribution with contacts far away,
ﬂo(x)
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Fig. 3. A set of majority-carrier distributions for a step profile
with a high-low ratio of 10:1, for various values of bias voltage
applied to a contact on the (a) low side, (b) high side.
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Fig. 4. Comparison among N(x), #n.(x), and N*(x) for a step
profile with a high-low ratio of 100:1 and with depletion from
the low side.

Fig. 4 is drawn for a step profile with a high-low ratio
of 100:1 and with depletion done from the low side.! It
can be seen that the discrepancy between N*(x) and
N(x) will be clearly visible if spatial resolution is at-
tempted to better than several Debye lengths. Also,

1 The points on N*(x) shown by the solid triangles were com-
puted by D. L. Scharfetter, using a different computer program, to
provide us with an independent check on the present results,
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Similar to Fig. 4, but with depletion
from the high side.
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Fig. 6. Similar to Figs. 4 and 5, but for a step profile
with a high-low ratio of 10:1.

N*(x) is appreciably different from #u,(x). Fig. 5 is
similar to Fig. 4 except that here depletion is done from
the high side. The apparent doping profile, N*(x) as
obtained from (6), is not quite as good an approxima-
tion to NV(x) as it was in Fig. 4, but it is a better ap-
proximation to #g(x).

Fig. 6 is like Figs. 4 and 5 except that it is drawn for a
step profile with a high—low ratio of 10:1. Here the two
functions N*(x) are not quite so much different for
depletion from opposite sides, but, within a spatial re-
solution of several Debye lengths, neither provides a
good approximation to N(x). Inasmuch as the differ-
ential-capacitance method provides a correct measure
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Fig. 7.

For a linear ramp with a width equal to Anign connecting
uniform sections with a high-low ratio of 100:1.
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Fig. 8. Tor a linear ramp with a width equal to SAnin connecting
uniform sections with a high-low ratio of 100:1.

of doping density regardless of Debye length when the
doping is uniform, smaller discrepancies are to be ex-
pected as the step ratio is diminished.

Fig. 7 shows the results obtained for a profile which
consists of a linear ramp of width equal to Aunign which
joins two uniformly doped sections with a high-low
ratio of 100:1. The results are barely distinguishable
from those of the step profile presented in Figs. 4 and 5.

In Fig. 8 the linear ramp has a width equal to SAnign,
and the high-low ratio is again 100:1. Here the results
are approximately the same for depletion from either
side. Over most of the ramp section, either of the func-
tions N*(x) represents N(x) to within a spacial accuracy
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Fig. 9. Comparison among N(x), N*(x), and N**(x) for a step

profile with a high-low ratio of 100:1 and with depletion from
(a) low side, (b) high side.

of about 0.5Apign. Throughout the whole range, both
functions N*(x) are quite close to #,(x), in the manner
proposed by KMK.

C. Comparisons Among N*(x), N**(x), and N(x)

KOB showed that, if #(x) were known, (5) could be
used to determine N(x). In the actual situation, how-
ever, we do not know #,(x), but from C-V measure-
ments we can determine N*(x) by use of (6). Thereupon
we can use (8) to compute the second estimate, N**(x).
As we have seen, N*(x) is not identical with n.(x), and
so N**(x) will not in general be identical with N(x).
Figs. 9 through 11 compare the two estimates, N*(x)
and N**(x), with N(x) for the various profiles previ-
ously examined in Figs. 4 through 8.
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Fig. 10. Similar to Fig. 9, but drawn for a step profile with a
high-low ratio of 10:1. Depletion is from (a) low side, (b) high
side.

Fig. 9(a) is drawn for a 100:1 step with depletion
from the low side and corresponds to Fig. 4. It can be
seen in Fig. 4 that N*(x) has a much greater curvature
than #o(x) in the vicinity of x, =2. Formula (8) requires
two derivatives, and the result, as shown in Fig. 9(a), is
a large overcorrection in N**(x) near x,=2. Here the
function N**(x) might well be regarded as a poorer
estimate of N(x) than was provided by N*(x) itself.

Fig. 9(b) is drawn for a 100:1 step with depletion
from the high side. This corresponds to Fig. 5 where it
was seen that capacitance measurements made with
depletion from the high side provide a function N*(x)
that is a somewhat better approximation to #,(x) than
would be obtained with depletion from the low side.
Particularly, the excessive curvature near x,=2 is
missing. In consequence, N**(x) in Fig. 9(b) is a better
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Fig. 11. Comparison among N(x), N*(x), and N**(x) for ramps
of widths (a) Apign, (b) SApin that join uniform sections with a
high-low ratio of 100:1. Depletion is from the low side,

estimate of N(x) than was provided by N*(x) itself. The
differences, however, will be clearly visible if spatial
resolution is attempted to better than one or two Debye
lengths.

Fig. 10 is drawn for a 10:1 step. The results are
similar to those for the 100:1 step. The smaller step
produces a smaller overshoot in the low-side N**(x), as
might be expected.

Fig. 11(a) shows the results for a linear ramp of width
equal to Mnign Which joins uniform sections with a high—
low ratio of 100:1. Depletion is from the low side. The
results are very similar to those of Fig. 9(a) for a 100:1
step.

Fig. 11(b) is drawn for a ramp with a width equal to
SAnigh. Depletion is from the low side. N**(x) is a better
estimate of V(x) than is provided by N*(x). The over-
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Fig. 12. Comparison among the apparent doping profiles, N*(x),
as they would be deduced from C-V data, for three doping pro-
files: a step and two ramps. The high-low ratio is 100:1. Deple-
tion is from the low side,.
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Fig. 13. Similar to Fig. 12, but with
depletion from the high side.

shoot of N**(x) to the right of the ramp is inappreciable.
Spacial resolution on the order of a Debye length is
feasible.

D. Comparison of the Functions N*(x) for the Various
Doping Profiles

In order to illustrate the practical difficulties inherent
in the attempted measurement of doping profiles with
large gradients by the differential-capacitance tech-
nique, Figs. 12 and 13 show capacitance-deduced ap-
parent doping profiles N*(x) for the 100:1 step and for
the two ramps with @w=»Npien and w= SAyien. For ease of
comparison, these curves are plotted so that their 90
percent points coincide. In a practical situation these
curves would be derived from experimental data, and
any two curves that cannot be distinguished from each
other do not contain sufficient information to distinguish
between the two doping profiles that produced them.
We see that if we allow for only a little experimental
error, the graphs of N*(x) for the step and for the ramp
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with @w=MAnisn are essentially indistinguishable. It ap-
pears that the function N*(x) is so insensitive to the
details of a change that occurs in one Debye length or
less that the information regarding the exact profile is
essentially lost. The situation is somewhat better for the
ramp that makes the transition from low to high in five
Debye lengths.

VI. SuMMARY AND CONCLUSIONS

We have shown the results of a computer simulation
of the differential-capacitance technique that has been
carried through for semiconductors with one-sided step
and ramp doping profiles. The object has been to study
the accuracy of the estimates of doping profiles that can
be made from C-V data.

It is shown that an increment in applied voltage pro-
duces an increment in majority-carrier distribution that
is not localized as is assumed in the simple theory but
which is distributed over several Debye lengths. Con-
sequently, the apparent doping profile obtained from
the C—V measurements, i.e.,, N*(x) as defined by (6), is
somewhat different from the actual doping profile N(x).
The discrepancy can be phrased in terms of the spatial
resolution of the profile expressed in Debye lengths
corresponding to the doping on the high side of the
profile.

For step profiles, the differences between N*(x) and
N{x) become evident if spatial resolution is attempted
to less than a few Debye lengths. The high-low ratio of
the step is not of great significance in the resolution
achieved. The apparent doping profile is somewhat
different if depletion is done from a contact placed on
the high side of the profile than if depletion is done from
the low side.

For a linear ramp that joins uniformly doped high and
low sections, the results depend on the width of the
ramp. For a ramp with a width of one Debye length, the
results obtained from C—7V measurements can hardly be
distinguished from those of an abrupt step. With a
width of five Debye lengths, the spatial resolution of the
profile is of the order of a Debye length and the ramp
can therefore be distinguished from a step.

The results of the computations also show that the
apparent doping profile, N*(x), is a somewhat closer
representation of the majority-carrier distribution with
contacts far away, #o(x), than it is of the doping profile
itself, but the two functions are not identical. The dis-
crepancy between N*(x) and #.(x) becomes smaller
with shallower ramps, and for a ramp with a width of
five Debye lengths the two functions are quite close to
each other.

Also compared in this paper are the results of a second
estimate of N(x), i.e., N**(x) as defined by (8), which is
predicated on a close representation of no(x) by N*(x).
Either for a step or for a ramp with a width of one Debye
length, and for depletion from the low side, the function
N**(x) shows a large overshoot on the high side of the
profile. If depletion is done from the high side, N**(x)
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provides a slightly improved estimate of N(x). For a
ramp with a width of five Debye lengths, N**(x) pro-
vides an improved estimate of N(x) even with depletion
from the low side, but the spatial resolution of the profile
is still of the order of a Debye length. Depletion from the
high side improves the accuracy somewhat, but it will be
recognized that the two derivatives required in applying
(8) will greatly reduce the practical value of attempting
the correction.

In brief, the results of the present study of semi-
conductors with high—low profiles indicate that C-V
data are insensitive to changes in the doping profile that
occur in a distance that is smaller than the Debye length
corresponding to the doping on the high side, and that
profiles determined by the C—V method should be ex-
pected to provide a spatial resolution only of the order
of a Debye length.

APPENDIX

We neglect the contribution of minority carriers to

space charge and write Poisson's equation as
dE q
€

— == [n(®) = N )] ©)
X

where E is the electric field intensity defined with posi-
tive direction opposite to positive x, n(x) is the density
of majority carriers, and N(x) is the net density of
ionized impurity atoms. Current in the reverse-biased
junction is assumed to be essentially zero, and so

an
Je = g<D — - ,unE) = 0. (10)

dx

In solving these equations it is useful to introduce the

potentialy, given by

E= ——.

o (1)

From this and the Einstein relation D/u=%7/q we can
reduce (10) to

n = poe W/ (12)
where », is the value of #(x) at the position where ¢ is
taken to be zero. We shall place ¢ =0 deep in the body of
the semiconductor, and so o= N( =), where N(«) is the
intensity of doping as x— .
The substitution of (11) and (12) with »o=N(«) into
(9) vields the relation
axy q
€

[N(x) — N(0)eaitT],
dx?

(13)
This is to be solved subject to the boundary conditions
that () =0 and ¢(0) =V, where V is the sum of the
built-in and applied reverse-bias voltages. In solving
(13) numerically, it is expedient to start the solution
with a given value of ¥V and an assumed value of E(Q)
= — (d¥/dx), and iterate through an appropriate series
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of values of £(0) until the boundary condition ¢(«) =0
is satisfied to a satisfactory degree of accuracy.

The capacitance C was determined by solving (13) for
two applied voltages which differ by a small increment
AV, The increment of charge is given by

Il

20 = — [ " glm@) = m@lax

0

It

e[E2(0) — E4(0)]
eAE(0)

where the subscripts 1 and 2 refer to the values for the
first and second applied voltages, respectively. The
capacitance is given by

C=£=€£E_((£. (14)
AV AV

Equations (6) and (8) were then used to obtain the ap-
parent and “corrected” doping profiles, N*(x) and
N*%(x),
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Thermal Resistance Measurement of Avalanche Diodes

Abstract—A new method of thermal resistance measurement is
presented. The variation of diode breakdown voltage with input
power as a function of time is the basis of the method. Diode space-
charge resistance and series resistance together with separate com-
ponents of heat-flow resistance are measured using this method. The
technique of the measurement is straightforward and provides re-
sults with little ambiguity and high accuracy.

INTRODUCTION

The extreme power densities of current avalanche diodes require
careful consideration of the heat-flow properties of these devices in a
useful circuit environment. Of great importance is the method of heat-
flow measurement. This measurement should portray all of the intri-
cacies of heat flow from the diode junction through the diode-package
interface into the heat sink.

A number of techniques exist for the measurement of heat-flow
resistance [1], [2]. Of these, the most valuable are those which use
the temperature dependence of the breakdown voltage [2]. This ap-
proach not only affords a convenient indication of junction tempera-
ture, but also allows heat-flow measurements in the actual operating
mode of the diode.

Fig. 1 shows a reverse voltage—current characteristic of an ava-
lanche diode. The finite resistance of the reverse characteristic is
largely due to the temperature dependence of breakdown voltage.
An incremental increase in current Iz causes an incremental power
increase with an attendant increase in junction temperature. The
junction temperature increase, in turn, causes an incremental rise
AVs(T) in breakdown voltage. The resistance thus derived is referred
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Reverse
Current

Reverse
Voltage

Fig. 1. Reverse voltage~current characteristic of an avalanche diode.

to as the thermal resistance of the diode [2]. Measurement of the
thermal resistance leads directly to the heat-flow resistance by the
equation [3] Rrag=~»B8V35? where 7 is the heat-flow resistance! and g8
the temperature coefficient of Vg, 8Ve=AVa/AT. If Vp and 3 are
known, » may be calculated.

There are several complications in the determination of the ther-
mal resistance, The incremental slope of the curve in Fig. 1 has resis-
tive components other than thermal. One is the spreading resistance
of the diode and the other is the space-charge resistance. In nearly all
cases for avalanche diodes the spreading resistance is negligible. The
space-charge resistance may or may not be negligible. Its contribu-
tion to the total incremental resistance should be measured.?

. Ly =(T;—To/VBIB); where T;=junction temperature, To=heat sink tempera-
ure. )

.2 The test of poorer diodes shows a contact resistance which further complicates
this measurement,



