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The Influence of Debye Length on the 
C-v Measurement of Doping Profiles 

Abstract-The  doping profile of a  semiconductor  is  given  only 
approximately  by  the  conventional  analysis of C-V measurements. 
The  present  study  employs  computer  simulation of semiconductors 
with  one-sided  doping  profiles  that  consist of high  and  low  doped 
sections  joined  by  steps  and  linear  ramps.  The  computation  yields 
the  apparent  doping profile that would  be  obtained  by  the  conven- 
tional  use of C-V data,  and  this  result  is  compared  with  the  actual 
profile,  with the  majority-carrier  distribution,  and  with  the  outcome 
of a  correction  previously  proposed  in  the  literature. 

The  results  show  that  a  step  in  the profile cannot  be  resolved 
satisfactorily  to  less  than  several  Debye  lengths  corresponding to 
the  doping on the high side of the profile. A ramp  cannot  be  dis- 
tinguished  accurately  from  a  step  unless  its  width  is  appreciably 
greater  than  a  Debye  length.  Furthermore,  the  apparent  doping 
profile is  not  identical  with  the  majority-carrier  distribution  with 
contacts  far  away, as  has  been  suggested,  and  the  discrepancy  is 
shown  to  depend on the  side  from which  depletion is done. 

I.  INTRODVCTION 

D OPING profiles in semiconductors  are  commonly 
determined  by  a  differential  capacitance  tech- 
nique [l ]. A degenerately  doped  p-n  junction or 

a metallic  Schottky  barrier  is  formed at the  surface  of 
the  semiconductor.  This  junction is placed in reverse 
bias,  and  the  capacitance of the  transition  layer is 
measured  as  a  function of the  bias  voltage.  The  analysis 
of the  capacitance  versus  bias  voltage  relationship is 
conveniently  done  using  the  depletion-layer  approxima- 
tion  in  which  the  semiconductor is assumed  to  be 
divided  into  two  distinct  regions:  a  layer  that is en- 
tirely  depleted of charge  carriers,  and  an  interior region 
of perfect  charge  neutrality.  The foregoing  is  equivalent 
to  assuming zero  value  for  the  Debye  screening  length 
in the  vicinity of the  assumed  edge of the  space-charge 
layer. If the  doping profile has  large  gradients  and if 
spatial  resolution is attempted on the  order of a few 
Debye  lengths in the  vicinity of these  gradients,  the 
assumption of a zero Debye  length  can  produce  serious 
errors in the  calculation of the  doping profile from  the 
C-V data.  Unfortunately, a more  accurate  interpreta- 
tion of C-V data  is considerably  more  difficult  because 
of the  nonlinear  relations  that  are  involved.  This  paper 
states briefly the  conventional  interpretation,  considers 
the  physical basis  for  a  more  accurate  interpretation, 
and  reviews  recent  hypotheses  regarding  the  role of the 
free  charge  carriers;  then,  using  computer  simulation 
for step  and  ramp  doping profiles, shows  the effect  of 
the  Debye  length on the  interpretation of C-V data.  
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Fig. 1. Illustrating  the  usual  assumption of a  sharp-edged  distribu- 
tion of %(x). The  shaded  ordinates  represent  the  increment 
A ? z ( x ) = % I ( x ) - ~ ~ ~ ( x ) .  

11. CONVENTIONAL  INTERPRETATIOK 
OF C-V DATA 

In  the  usual  analysis of C- V data ,  i t  is assumed  that 
the  transition  region  has a sharply defined edge in the 
manner  illustrated in Fig. 1. The  notation is as follows. 

x Distance  measured  from  the  contact  into  the 

w Width of the  depletion  layer. 
N ( x )  Net  density of ionized impurity  atoms. 
%(x) Density of majority  carriers. 

semiconductor. 

Specifically, the  usual  assumptions  are  that %(x) = O  for 
0 < x  <w, and  that for x> w the  semiconductor is 
electrically  neutral  with %(x) = N ( x ) .  Alinority  carriers 
are  neglected  throughout. 

Fig. 1 shows the  assumed  sharp  edge of n(x) for two 
bias  voltages  that differ by  a  small  increment A V ,  thus 
producing  an  increment in width Aw. In  effect, the 
majority-carrier  increment An(x) = nl(x) -%?(x), shown 
shaded  in  Fig. 1, provides  a  sample of the  doping profile 
N ( x )  a t  x = w. The  charge  removed  from  the  edge of the 
depletion  layer is AQ =qN(w)Aw C/unit  area, where 4 
is the  magnitude of the  electronic  charge.  The  charge 
AQ is  passed  through the  external  circuit, while within 
the  depletion  layer  there is produced  an  increment of 
electric field AE =AQ/E where E is the  dielectric  per- 
mittivity of the  semiconductor.  The  increment of 
voltage is given  by AV=wAE  =qN(w)wAw/e, and  the 
capacitance  measured  by  external  instruments is C 
= AQ/AV=e/w F/unit  area.  The  latter expression  can 
be  written as w = Thus Aw = -EC-~AC, and 
we can  write  the  increment of voltage as AT/ 
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= q N ( w ) .  (-CC-~AC) ( E C - ~ ) / E ,  from which we obtain 
the following conventional  formulas: 

where 

w = €/C. 

111. THE EFFECT OF A NONZERO DEBYE LENGTH- 
PHYSICAL DISCUSSION 

I t  is well known  that  the use of (1) and ( 2 )  provides 
only  an  approximation  to  the  actual  doping profile. 
The zero  value of current  that is tacitly  assumed  re- 
quires a balance  between diffusion and  drift  currents, 
and  this in turn  requires  an  electric field wherever 
dn/dx is different  from  zero. In  particular,  the diffusion 
of majority  carriers  prevents %(x) from  having  the 
sharp  step  that  was envisioned  in  Fig. 1, and  therefore 
the  increment An(x) does  not  provide  a  precise  sample 
L; N ( x )  a t  x=w.  

The  true  situation, which will be  detailed in more 
quantitative fashion  in  Section V, is illustrated in Fig. 2 ,  
which is drawn  for a high-low step profile. The  graph 
labeled %,,(x) represents  the  distribution of majority 
carriers  that would  be obtained in thermal  equilibrium 
if both  contacts were  infinitely far  away.  The  natural 
measure of distance  here  is  the  extrinsic  Debye  screen- 
ing  length : 

x =  P q2,v 

where K is the  Boltzmann  constant, T is the  absolute 
temperature,  and N is the local density of doping.  On 
the  horizontal  axis of Fig.  2(a)  are  shown  the  two 
Debye  lengths, blow and h h i g h ,  that  correspond  to  the 
intensities of doping, N,,, and N h i g h ,  on the  two sides of 
the  step.  It is  only a t  a  distance of several  Debye  lengths 
from the  step  that  the  carrier  density %,,(x) approaches 
closely to  the  density of doping, N ( x ) .  

The solid graph labeled nl(x) in  Fig.  2(a)  represents 
the  general  form of the  majority  carrier  distribution 
tha t  is obtained if a  rectifying  contact is placed on the 
semiconductor at the  left  and is reverse  biased.  The 
region  near  the  contact is essentially  depleted of charge 
carriers,  while  far  to  the  right nl(x) approaches N ( x ) .  
The  transition  between  these  two  extremes  depends on 
the  space-charge  distribution q [ N ( x )  - nl(x) ] which 
produces an  electric field E(%) such  that  at  every  point 
there  exists  a  balance  between  the  drift  current 
qpn(x)E(x) and  the diffusion current qD dn(x) /dx.  As  is 
shown  in  Section V, the  principal  portion of the  transi- 
tion  from  depletion  to  space-charge  neutrality  occupies 
several  Debye  lengths. 

If the  reverse  bias  voltage is increased by  an  incre- 
ment A V ,  there  results  a new majority-carrier  distribu- 
tion  such as the  one  shown by the  dashed  curve labeled 

! 

(b 1 
Fig. 2. Actual  distributions of majority  carriers  for a step-function 

doping  profile, and the  increment An(%) = n ~ ( x ) - n l ( x )  pro- 
duced  by  an  increment  in  bias  voltage. 

XIOW = d k T e / q 2 N l u w ;  Xh>gh z / k T e / Q ’ N h i g h .  
-_._- --__- 

(a)  Depletion  from low side. (b) Depletion from high  side. 

nz(x) in Fig.  2(a).  The  shaded  ordinates, which are  re- 
plotted in the lower graph of Fig.  2(a),  represent  the 
majority-carrier  increment An(%) = nl(x)  -nz(x). This 
increment is spread  out  over  several  Debye  lengths  and 
clearly  does  not  sample N ( x )  in the  manner  that was 
visualized in  Fig. 1. The  capacitance  measured  by  an 
external  instrument  does  not define the  width of the 
space-charge  layer  to  better  than  a few Debye  lengths, 
and  the  variation of capacitance  with  bias  voltage  can 
resolve  changes  in N ( x )  only  to  about  this degree of 
accuracy.  For  a  relative  dielectric  constant of 1 2  and  a 
net  doping  density of 1V = 1015 cm+, we have h = 0.13 
pm  a t  T = 300’K. Therefore  the  errors will be of concern 
only if the  semiconductor is doped  lightly  or if one is 
attempting  to resolve the profiles of very  thin  doped 
layers  such  as  those  that  can be  produced  by  ion  im- 
plantation. 

The  calculation of %(x) for a  given  doping  function 
N ( x )  and for a given  bias  voltage V requires  the  solution 
of a boundary-value  problem  involving  nonlinear 
differential  equations (see the  Appendix).  Numerical 
solution  by  iteration is feasible,  however, on a  large- 
scale  digital  computer,  and  from  the  results  one  can 
predict  the  capacitance C as a function of V for  a  given 
doping profile. On the  other  hand,  the  converse  problem 
of computing N ( x )  from the  dependence of C on V is 
intractable,  and i t  appears  that  one  must be content 
with  approximations.  The  interpretation of the  approxi- 
mate  results  may be  aided,  however,  by  insight  gained 
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from  analyses of the C-V relationships  for  various  types 
of doping profiles. 

A further  consideration  should  now  be  mentioned. 
Whereas  Fig.  2(a)  showed  a high-low step profile  with 
depletion  done  from a contact on the low side,  Fig.  2(b) 
shows  the  results  with  an  identical profile but  with  de- 
pletion done from a contact  on  the high  side. The  
thermal-equilibrium  distribution of majority  carriers 
with  contacts  far  away, no(%), would of course  be  the 
same in both cases. With  the  contacts in place and  with 
bias  voltage  applied,  however,  the  results  are  quite 
different,  and  the  carrier  distributions nl(x) and %,(x) 
are  not at all the  same in  Fig.  2(a)  and  2(b).  The  results 
of capacitance  measurements,  therefore,  are  expected  to 
be  different  for  depletion  done  from  contacts on op- 
posite  sides,  and  from  this  one  can  reason  that  such 
measurements  cannot  yield  precise  information  regard- 
ing  either N ( x )  or no(%). The  foregoing conclusions are 
confirmed by  the  results  given in  Section V. 

IV. DISCUSSIOX OF SOME RECENT  HYPOTHESES 

T h e  use of thin  doped  layers  and of doping profiles 
with  large  gradients  has  recently  stimulated  efforts  to 
formulate a relation  between N ( x )  and  the C-V data  
that  would give  an  improved  estimate  of N ( x )  and still 
be  reasonably  easy  to  use. A valuable  contribution in 
this  direction  has  been  made  by  Kennedy,  Murley,  and 
Kleinfelder (KMK) [ 2 ] ,  who have  pointed  out  the 
central role of the  free  majority  carriers  in  the C-V 
relationship  and  have  proposed  that  formula (l),  in- 
stead of yielding  the  doping  profile,  gives  the  distribu- 
tion of majority  carriers  with  contacts  far  away [no(x)  in 
the  present  notation].  Thus,  they would replace (1) by 

c3 

qe 

Kennedy  and  O'Brien (KOB) [3] point  out  that  if (4) is 
indeed  correct,  then  the  true  doping profile can  be  ob- 
tained  from  the C- I/ data   by using (4) and  then  apply- 
ing the following formula: 

no(%) = - - (dC/dV)- l .  (4) 

The  successful  use of ( S ) ,  however,  rests on the  accuracy 
of (4). In  their  arguments  regarding (4), KA'IK used the 
full and  accurate  formulation  for no(x), but  in  expressing 
the  free  carrier  distribution  for  biased  conditions  they 
made  the  approximation of an  edge in n(x) such  that, in 
the  present  notation, n ( x )  =0 for 0 < x < w  and %(x) 
= no(x) for x > w, thus  essentially  assuming  a  zero  value 
of Debye  length a t  this  stage of the  calculations. In  the 
KRIK  approximation,  an  increment of voltage  causes  a 
quantity of mobile  electrons  equal  to no(w)Aw to  cir- 
culate  through  the  external  circuit,  thus  sampling no(x) 
a t  x = w and  leading  to (4). 

The  accuracy of (4) must  be  determined  before  the 
range of validity of ( 5 )  can  be  evaluated. A general 

solution of the  problem  seems  out of the  question. 
Carter [4] and  Carter,  Gummel,  and  Chawla [ 5 ]  have 
reported  the  results  of  computer  studies of Gaussian 
profiles  which show  that expression (4) is not precise, 
although  for  the profiles analyzed  it  provided good ap- 
proximations.  The  present  paper  investigates  these 
matters  further. 

V. RESULTS OF COMPUTER SIMULATIONS 
This  section  presents  the  results of a  computer  study 

(see the  Appendix) which  was  designed to  show  the  rela- 
rionship  between  the  true  doping profile of a  semicon- 
ductor  and  the conclusions  regarding tha t  profile  which 
can  be  deduced  from  externally  measured C-V data.  
Two  types of profiles  were  used  in this  study:  step 
functions,  which  should  impose  the  most  stringent  tests 
on the  relationships,  and  linear  ramps  to  show  the 
effects of finite  gradients.  For  each  assumed  doping 
profile, a set of bias  voltages  was  assumed,  and  for  each 
of these  an  iterative  procedure  was used to  compute  the 
majority-carrier  distribution %(x) and  the  distributed 
increment of majority  carriers An(x) that  would  be pro- 
duced  by  an  increment in  voltage A V.  From  the  results 
of these  calculations  the C- V relationship  corresponding 
to  the  assumed N ( x )  was  computed.  The  calculated 
C- Vrelationship  was  then used  in the  formulas designed 
for the  determination of N ( x )  from  such  data,  and  the 
results  were  compared  with  the  known  doping profile. 

In  presenting  the  results of the  computer  simulation 
we shall  define an  "apparent  doping profile," N*(x ) ,  
which is the  result of substituting  the C-V relationship 
into  the  conventional  formula (l), i.e., 

c3 

4' 
Lv*(x) = - - (dC/dV)-l (6) 

where 

x = e/c. (7) 

In  the  conventional  depletion-layer  approximation we 
would have N*(x )  = N ( x ) .  In  the  KMK  approximation, 

We  shall  also  define a "second estimate," N**(x), by 
an  equation  analogous  to  the  KOB  formula ( 5 )  in order 
to  determine  the effect of the  KOB  correction when 
applied  to  the  KM  K  approximation : 

N*(x) =no(%). 

A'**(%) 

= N*(x)  - (F) (z)  2 [-- 1 d  - N*(x )  . (8) 
q dx  N*(x )  d x  1 

In  the  KMK  approximation we would have N**(x)  
= N ( x ) .  

The  results of the  calculations  are  presented  in  nor- 
malized  form.  hTormalization of doping  intensities  and 
of majority-carrier  densities is done  with  respect  to  the 
intensity of doping  on  the high side; i.e., using the  sub- 
script n to  denote normalized: 
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and 

N 
ATn = ~ 

N h i g h  

n 

Nhigh 
na = ___ 

no 
n,o = __ " 

N h i a h  

Distance  are  normalized  with  respect  to  the  Debye 
length  on  the  high  side of the  doping  profile: 

X 

Xhigh 
X, = -- 

where 

khigh = ~ ' J" q2hrhigh 

Voltages  are  normalized  with  respect  to kT/p :  

v v ---. 
- KT/p 

The normalized  results of the  computations  are  pre- 
sented  in  Figs.  3  through  13.  They  can  be  divided  con- 
veniently  into  the  four  categories  labeled A through  D 
below. 

A .  Majority-Carrier  Distributions 
Fig.  3  contrasts  the  distributions of majority  carriers 

when  depletion  is  done  from  contacts  placed  on  the low 
and  high  sides of the  doping  profile,  respectively.  In 
these  examples  the  doping  profile is a step  with a high- 
low ratio of 10: 1. Shown  in  Fig.  3(a)  are  the  normalized 
no(x) and  the  normalized  majority-carrier  distributions 
for  various  values of voltage,  identified  by  the  labels, 
applied  to a contact  located  on  the low side of the  pro- 
file at xn = -30.  Fig.  3(b) is drawn  for  the  same  doping 
profile but  with  the  contact  located  on  the  high  side a t  
x n = 6 4 i 0 .  I t  can  be  seen 1) that  the  majority-carrier 
distributions  do  not  have  sharp  edges  but  instead  re- 
quire  several  Debye  lengths  to  make  the  transition  from 
approximate  depletion  to  approximate  space-charge 
neutrality; 2 )  that  an  increment in voltage  does  not 
provide  a  sample of either Nn(x) or n,o(x); and  3)  that 
the  results  depend  on  the  side  from  which  depletion is 
done. 

B. Comparisons Among N*(x ) ,  N ( x ) ,  and no(%) 
Figs. 4 through 8 compare  the  apparent  doping profile 

deduced  conventionally  from C-V data ,  i.e., N*(x )  as 
defined by (61, with  the  true profile N ( x )  and  the 
majority-carrier  distribution  with  contacts  far  away, 

NORMALIZED 
DENSITIES rNn(x) 

-30 -10 -8 -6 -4 -2 0 2 4 6 8 IO 
NORMALIZED  DISTANCE, x, 

(a) 

NORMALIZED 
DENSITIES /Nn(x) 

0 1  
Fig. 3. A set of majority-carrier  distributions  for a step profile 

with a high-low ratio of l O : l ,  for  various  values of bias  voltage 
applied  to a contact on the  (a) low side,  (b)  high  side. 

NORMALIZED 
DENSITIES 

1 I I I 

-3 -2 -I 0 I 2 3 
NORMALIZED  DISTANCE, X, 

Fig. 4. Comparison  among N ( x ) ,  no(x), and N*(x) for a step 
profile  with a high-low ratio of 1OO:l and  with  depletion  from 
the low  side. 

Fig. 4 is  drawn  for a step profile  with  a  high-low  ratio 
of 100: 1 and  with  depletion  done  from  the low side.1 I t  
can  be  seen  that  the  discrepancy  between N*(x)  and 
N ( x )  will be  clearly  visible if spatial  resolution is at- 
tempted to better  than  several  Debye  lengths. Also, 

puted  by D. L. Scharfetter,  using a different  comuuter  mograrn. to 
1 The points on N*(x)  shown by  the solid  triangles  were  com- 

n d x ) .  provide u s  with  an  indepedent clTeck on the preserit  resuits. 
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Fig. 5. Similar to  Fig. 4, but  with depletion 
from  the high side. 

n,,(x) 
---0--- N~(X),DEPLETION FROM LOW SIDE 

-4- N;(x),DEPLETION FROM HIGH SIDE 

NORMALIZED 
DENSITIES 

I r N n ( X )  

I I I I I I I 
-3 -2 -I 0 I 2 3 

NORMALIZED DISTANCE, x, 

Fig. 6 .  Similar to Figs. 4 and 5, but  for a step profile 
with a high-low ratio of 10: 1. 

N*(x)  is  appreciably  different  from no(%). Fig. 5 is 
similar  to  Fig. 4 except  that  here  depletion  is  done  from 
the  high  side.  The  apparent  doping  profile, N*(x )  as 
obtained  from (6) ,  is  not  quite  as good an  approxima- 
tion  to N ( x )  as  i t  was  in  Fig. 4, bu t   i t  is  a  better  ap- 
proximation  to no(%). 

Fig. 6 is like  Figs. 4 and 5 except  that it is drawn  for  a 
step profile  with a high-low ratio of 10: 1. Here  the  two 
functions N*(x)  are  not  quite so much  different  for 
depletion  from  opposite  sides,  but,  within  a  spatial  re- 
solution of several  Debye  lengths,  neither  provides  a 
good approximation  to N ( x ) .  Inasmuch as the differ- 
ential-capacitance  method  provides a correct  measure 

n, , (x)  
----e--- N,*(X),DEPLETION FROM LOW SIDE 
-4- Nf(x), DEPLETION FROM HIGH SIDE 

I J I I I I 
-3 -2 -I 0 I 2 3 4 

NORMALIZED DISTANCE, x, 

Fig. 7. For a linear ramp  with a width  equal  to Xug], connecting 
uniform sections  with a high-low ratio of 100: 1. 

n,,(x) 
----O--- N:(x),DEPLETlON  FROM  LOW  SIDE 
-4- N,*(x),DEPLETlON FROM HIGHSIDE 

NORMALIZED 
DENSITIES 

I 

I I I I I I I 
-I 0 I 2 3 4 5 6  

NORMALIZED DISTANCE, x, 

Fig. 8. For a linear ramp  with a width  equal  to 5hhi4h connecting 
uniform  sections  with a high-low ratio of 100: 1. 

of doping  density  regardless of Debye  length  when  the 
doping  is  uniform,  smaller  discrepancies  are  to  be  ex- 
pected  as  the  step  ratio is diminished. 

Fig. 7 shows  the  results  obtained  for a profile which 
consists of a h e a r  ramp of width  equal to h h i g h  which 
joins  two  uniformly  doped  sections  with  a high-low 
ratio of 100: 1. The  results  are  barely  distinguishable 
from  those of the  step profile  presented in Figs. 4 and 5 .  

In  Fig. 8 the  linear  ramp  has  a  width  equal  to 5hhj&, 
and  the high-low ratio is again 100: 1. Here  the  results 
are  approximately  the  same  for  depletion  from  either 
side.  Over  most of the  ramp  section,  either of the  func- 
tions N*(x)  represents N ( x )  to  within  a  spacial  accuracy 
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(b) 
Fig. 9. Comparison  among N ( x ) ,  &-*(x), and N**(x)  for a step 

profile with  a high-low ratio of 100: 1 and  with  depletion  from 
(a)  low  side, (b) high  side. 

of about 0.5Xhigh. Throughout  the whole range,  both 
functions N*(x )  are  quite close to no(%), in the  manner 
proposed by KMK. 

C. Comparisons  Among N*(x) ,  N**(x) ,  and N ( x )  
KOB showed that ,  if no(%> were  known, ( 5 )  could  be 

used to  determine N ( x ) .  In  the  actual  situation, how- 
ever, we do  not  know no(%), but  from C-V measure- 
ments we can  determine N* (x) by use of (6). Thereupon 
we can use (8) to  compute  the second estimate, N**(x) .  
As we have  seen, N * ( x )  is not  identical  with no(%), and 
so N**(x) will not in general  be  identical  with N ( x ) .  
Figs.  9  through 11 compare  the  two  estimates, N * ( x )  
and N**(x) ,  with N ( x )  for  the  various profiles previ- 
ously examined in Figs. 4 through 8. 

NORMALIZED 
DENslTlES .N I X l  

I I I I I 
-3 -2 -I 0 I 2 3 

NORMALIZED  DISTANCE, X, 

(4 

e- - 
1 I I I I I 

-3 -2 - I  0 I 2 3 
NORMALIZED  DISTANCE,X, 

(b) 
Fig. 10. Similar to Fig. 9, but  drawn for a step profile with a 

side. 
high-low ratio of 10:l. Depletion is from  (a) low side,  (b) high 

Fig.  9(a) is drawn  for  a 1OO:l step  with  depletion 
from the low side  and  corresponds  to  Fig. 4. I t  can  be 
seen in Fig. 4 tha t  N*(x)  has a much  greater  curvature 
than no@) in the  vicinity of xn = 2. Formula (8) requires 
two  derivatives,  and  the  result,  as shown in Fig.  9(a), is 
a  large  overcorrection  in N**(x)  near x,=2. Here  the 
function N**(x) might well be  regarded  as a poorer 
estimate of N ( x )  than  was  provided  by N*(x)  itself. 

Fig.  9(b) is drawn for a 100: 1 step  with  depletion 
from  the high  side.  This  corresponds  to  Fig. 5 where  it 
was  seen that  capacitance  measurements  made  with 
depletion  from  the  high  side  provide  a  function N*(x)  
tha t  is a  somewhat  better  approximation  to no(%) than 
would be  obtained  with  depletion  from  the low side. 
Particularly,  the excessive curvature  near xn = 2 is 
missing. In consequence, N**(x)  in  Fig.  9(b) is a better 



JOHNSON AND PANOUSIS: DEEYE LENGTH AND C-V MEASUREMENT 

NORMALIZED 
DENSITIES 

941 

-3 - 2  -I 0 I 2 3 4 
NORMALIZED  DISTANCE, x, 

( a )  

NORMALIZED 
DENSITIES 

1 k- 

0 . 6  - 

-I 0 I 2 3 4 5 6 
NORMALIZED  DISTANCE, x, 

(b) 
1;ig. 11. Comparison  among N ( x ) ,   N * ( x ) ,  and N**(x)  for  ramps 

of widths  (a) hhigli, (b) 5khigh that join  uniform  sections  with a 
high-low ratio of 100: 1. Depletion is from  the low side, 

estimate of N ( x )  than  was  provided  by N*(x )  itself. The 
differences,  however, will be  clearly  visible if spatial 
resolution  is  attempted  to  better  than  one  or  two  Debye 
lengths. 

Fig. 10 is drawn  for a 10: 1 step.  The  results  are 
similar  to  those for the 100: 1 step.  The  smaller  step 
produces a smaller  overshoot in the low-side N**(x) ,  as 
might  be  expected. 

Fig. 11 (a)  shows  the  results  for  a  linear  ramp of width 
equal to Xhigh which  joins  uniform  sections  with  a high- 
low ratio of 100: 1. Depletion is from  the low side. The 
results  are  very  similar  to  those of Fig.  9(a)  for  a  100: 1 
step. 

Fig.   l l(b) is drawn  for a ramp  with  a  width  equal  to 
5Xhigh .  Depletion is from  the low side. N**(x)  is a  better 
estimate of N ( x )  than is provided  by N*(x) .  The  over- 

Fig. 12. Comparison  among  the  apparent  doping profiles, N * ( x ) ,  
as they would  be  deduced from C-V data, for  three  doping pro- 
files: a step and two  ramps.  The high-low ratio is 1OO:l. Deple- 
tion is from the low side, 

a9 

0.0 - 
- - 

0.6 - 

0.4 - 

0.2 - 

Fig.  13.  Similar to Fig.  12, but  with 
depletion  from  the high  side. 

shoot of N**(x)  to  the  right of the  ramp is inappreciable. 
Spacial  resolution  on  the  order of a  Debye  length is 
feasible. 

D.  Comparison  of the Functions N*(x )  fo r  the  Various 
Doping Profiles 

In  order  to  illustrate  the  practical  difficulties  inherent 
in the  attempted  measurement of doping profiles with 
large  gradients  by  the  differential-capacitance  tech- 
nique,  Figs. 1 2  and  13  show  capacitance-deduced  ap- 
parent  doping profiles N*(x)  for the 100: 1  step  and for 
the  two  ramps  with w = X h i g h  and w= 5 h h i g h .  For ease of 
comparison,  these  curves  are  plotted so that  their 90 
percent  points  coincide.  In  a  practical  situation  these 
curves would  be derived  from  experimental  data,  and 
any  two  curves  that  cannot be  distinguished  from  each 
other  do  not  contain sufficient information  to  distinguish 
between  the  two  doping profiles that  produced  them. 
We  see  that  if we allow  for only  a  little  experimental 
error,  the  graphs of N*(x)  for the  step  and for the  ramp 
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with w = X h i p h  are essentially  indistinguishable. I t  ap- 
pears  that  the  function N * ( x )  is so insensitive  to  the 
details of a change  that occurs  in  one  Debye  length  or 
less that  the  information  regarding  the  exact profile is 
essentially  lost.  The  situation is somewhat  better  for  the 
ramp  that  makes  the  transition from low to high  in  five 
Debye  lengths. 

VI. SUMMARY AND COKCLUSIONS 
We  have  shown  the  results of a  computer  simulation 

of the  differential-capacitance  technique  that  has  been 
carried  through  for  semiconductors  with  one-sided  step 
and  ramp  doping profiles. The  object  has been to  study 
the  accuracy of the  estimates of doping profiles that  can 
be  made  from C- Vdata.  

I t  is  shown that  an  increment in applied  voltage  pro- 
duces  an  increment in  majority-carrier  distribution  that 
is not localized as  is assumed in the  simple  theory  but 
which is distributed  over  several  Debye  lengths. Con- 
sequently,  the  apparent  doping profile obtained  from 
the C-V measurements,  i.e., N*(x) as defined by (6),  is 
somewhat  different  from  the  actual  doping profile N(x) .  
The  discrepancy  can be  phrased in terms of the  spatial 
resolution of the profile  expressed  in Debye  lengths 
corresponding  to  the  doping on the high side of the 
profile. 

For  step profiles, the differences  between N*(x)  and 
N(x) become  evident if spatial  resolution is attempted 
to less than  a few Debye  lengths.  The high-low ratio of 
the  step is not of great significance in the  resolution 
achieved.  The  apparent  doping profile is somewhat 
different if depletion is done  from  a  contact placed on 
the high  side of the profile than if depletion is done  from 
the low side. 

For  a  linear  ramp  that  joins  uniformly  doped high and 
low sections,  the  results  depend on the  width of the 
ramp.  For  a  ramp with a width of one  Debye  length,  the 
results  obtained  from C- V measurements  can  hardly  be 
distinguished  from  those of an  abrupt  step.  With a 
width of five Debye  lengths,  the  spatial  resolution of the 
profile is of the  order of a  Debye  length  and  the  ramp 
can  therefore  be  distinguished  from  a  step. 

The  results of the  computations  also  show  that  the 
apparent  doping profile, N*(x ) ,  is a  somewhat closer 
representation of the  majority-carrier  distribution  with 
contacts  far  away, no(%), than  it is of the  doping profile 
itself, but  the  two  functions  are  not  identical.  The dis- 
crepancy  between N*(x)  and no(x)  becomes  smaller 
with  shallower  ramps,  and  for  a  ramp  with  a  width of 
five Debye  lengths  the  two  functions  are  quite close to 
each  other. 

Also compared  in  this  paper  are  the  results of a  second 
estimate of N ( x ) ,  i.e., N**(x)  as defined by (8), which is 
predicated on a close representation of no(x )  by N * ( x ) .  
Either for a step  or  for  a  ramp  with  a  width of one  Debye 
length,  and for  depletion  from  the low side,  the  function 
N**(x) shows a large  overshoot  on  the  high  side of the 
profile. If depletion is done  from  the  high  side, N**(x) 

provides  a  slightly  improved  estimate of N ( x ) .  For  a 
ramp  with  a  width of five Debye  lengths, N**(x) pro- 
vides  an  improved  estimate of N ( x )  even  with  depletion 
from  the low side,  but  the  spatial  resolution  of  the  profile 
is still of the  order of a  Debye  length.  Depletion  from  the 
high  side  improves  the  accuracy  somewhat,  but  it will be 
recognized that  the  two  derivatives  required in  applying 
(8) will greatly  reduce  the  practical  value of attempting 
the  correction. 

In  brief, the  results of the  present  study of semi- 
conductors  with high-low profiles indicate  that C-V 
data  are  insensitive  to  changes in the  doping profile that  
occur  in a distance  that is smaller  than  the  Debye  length 
corresponding  to  the  doping on the high  side, and  that  
profiles determined  by  the C-V method  should  be ex- 
pected  to  provide a spatial  resolution  only of the  order 
of a  Debye  length. 

APPENDIX 
We  neglect  the  contribution of minority  carriers  to 

space  charge  and  write  Poisson's  equation as 

dE 4 
__ = - [?%(x) - AT(%)] 
d x  e 

where E is the  electric field intensity  defined  with posi- 
tive  direction  opposite  to  positive x, n(x )  is the  density 
of majority  carriers,  and N ( x )  is the  net  density of 
ionized impurity  atoms.  Current in the reverse-biased 
junction is assumed  to  be  essentially  zero,  and so 

dn 
dx 

(10) 

In  solving  these  equations  it is useful to  introduce  the 
potential $, given by 

From  this  and  the  Einstein  relation D / p = k k / q  we can 
reduce (10) to 

where v o  is the  value of n(x) at the position  where $ is 
taken  to  be zero. We  shall place $ = 0 deep  in  the  body of 
the  semiconductor,  and so v o  = N (  CQ ), where N (  w )  is the 
intensity of doping  as x-+ co . 

The  substitution of (11) and (12) with v O = N ( w )  into 
(9) yields the  relation 

d2J .  4 - = - [11'(x) - 1\7(w)e-4*~kT] 
dx2 E 

This is to  be solved  subject  to  the  boundary  conditions 
that  $( ) = 0 and $(O) = V ,  where V is the sum of the 
built-in  and  applied  reverse-bias  voltages. In  solving 
(13)  numerically, i t  is expedient  to  start  the  solution 
with a given  value of V and  an  assumed  value of E(0)  
= - (d$/dx)o and  iterate  through  an  appropriate series 
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of values of E(0)  until  the  boundary  condition $(a) = 0 
is  satisfied to  a  satisfactory  degree  of  accuracy. 

The  capacitance C was  determined  by  solving (13) for 
two  applied  voltages  which  differ  by  a  small  increment 
A V. The  increment of charge is given  by 

AQ = - J o W Y [ ” * ( d  - n1(x) ldx 

= €[E,(O) - E1(0)] 
= eAE(0) 

where  the  subscripts 1 and 2 refer  to  the  values  for  the 
first and second  applied  voltages,  respectively. The  
capacitance  is  given  by 

AQ AE(O) 
AV AV 

c = - =  E - .  (14) 

Equations (6) and (8) were  then used to  obtain  the  ap- 
parent  and  “corrected”  doping  profiles, N * ( x )  and 
N** ( x ) .  

ACKNOWLEDGMENT 

The  authors wish to  thank G. E. Smith  for his con- 
tributions  to  basic  aspects of this  study; D. L. Schar- 
fetter  for  computing  the  independent  check  points of 
Fig. 4;  B. R. Chawla  and W. E. Carter  for  providing 
additional  confirming  computations;  and H. J. Boll, 
H. K. Gummel, W. S. Johnson, W. T. Lynch, B. T. 
Murphy,  and  R. J. Strain  for  their  helpful  discussions of 
the  problem. 

REFERENCES 
[l] J. Hilibrand  and R. D. Gold,  “Determination of the  impurity 

distribution  in  junction  diodes  from  capacitance-voltage mea- 

[2] D. P. Kennedy, P. C.  Murley,  and W. Kleinfelder, “On the 
surements,” RCA  Rev., vol. 21, June 1960, pp. 245-252. 

differential  capacitance  technique,” I B M  J .  Res.  Develop., 
measurement of impurity  atom  distributions  in silicon by  the 

[3] D. P. Kennedy  and R. R. O’Brien,  “On  the  measurement of 
Sept. 1968, pp. 399-409. 

impurity  atom  distributions  by  the differentia1 capacitance  tech- 
nique,” I B M  J .  Res.  Develop., Mar. 1969, pp. 212-214. 

[4] W. E. Carter,  private  communication. 
[5] W. E. Carter,  H.  K.  Gummel,  and B. K. Chawla,  “Interpretation 

of capacitance  vs.  voltage  measurements of p-n  junctions,”  to  be 
published. 

Correspondence 

Thermal  Resistance  Measurement of Avalanche  Diodes Reverse 
Current 

Abstract-A new  method of thermal resistance  measurement is 
presented. The variation of diode  breakdown  voltage  with  input 
power as a function of time is the basis of the  method.  Diode  space- 
charge  resistance  and  series  resistance  together  with  separate com- 
ponents of heat-flow  resistance  are  measured  using  this  method.  The 
technique of the  measurement is straightforward  and  provides  re- 
sults with little ambiguity  and  high  accuracy. 

INTRODUCTION 
The  extreme power  densities of current  avalanche  diodes  require 

careful  consideration of the heat-flow  properties of these  devices  in a 
useful circuit  environment. Of great  importance is the  method of heat- 
flow measurement.  This  measurement  should  portray all of the  intri- 
cacies of heat flow from  the  diode  junction  through  the  diode - package 
interface  into  the  heat  sink. 

A number of techniques  exist  for  the  measurement of heat-flow 
resistance [ l ] ,  [2] .  Of these,  the  most  valuable  are  those which  use 
the  temperature  dependence of the  breakdown  voltage [2]. This  ap- 
proach  not  only  affords a convenient  indication of junction  tempera- 
ture,  but also  allows  heat-flow measurements  in  the  actual  operating 
mode of the diode. 

Fig.  1  shows a reverse  voltage-current  characteristic of an  ava- 
lanche  diode.  The  finite  resistance of the reverse  characteristic  is 
largely due  to  the  temperature dependence of breakdown  voltage. 
An incremental  increase  in  current IB causes an  incremental  power 
increase  with an  attendant increase  in  junction  temperature.  The 
junction  temperature  increase,  in  turn,  causes  an  incremental  rise 
AVB(T)  in  breakdown  voltage.  The  resistance  thus  derived is referred 
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Fig. 1. Reverse  voltage-current  characteristic of an  avalanche diode. 

to  as  the  thermal resistance of the diode [2]. Measurement of the 
thermal  resistance  leads  directly  to  the heat-flow  resistance by  the 
equation [3]  R T H = Y P V B ~ ,  where Y is the heat-flow  resistance1 and p 
the  temperature coefficient of VB, PVB =AVB/AT.  If VB and p are 
known, r may  be  calculated. 

There  are  several  complications  in  the  determination of the  ther- 
mal  resistance. The  incremental slope of the  curve in  Fig.  1  has  resis- 
tive  components  other  than  thermal.  One is the  spreading  resistance 
of the  diode  and  the  other is the space-charge  resistance. In  nearly  all 
cases  for  avalanche  diodes  the  spreading  resistance is negligible. The 
space-charge  resistance  may  or  may  not  be negligible. Its  contribu- 
tion  to  the  total  incremental  resistance  should  be measured.2 

ture. 

this  measurement. 

1 r =(T~-To/VBIB); where Ti =junction  temperature,  To=heat  sink  tempera- 

2 The  test of poorer  diodes  shows  a  contact  resistance which further  complicates 


