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The SIAM series on Software, Environments, and Tools focuses on the practical implementation of  
computational methods and the high performance aspects of scientific computation by emphasizing  
in-demand software, computing environments, and tools for computing. Software technology development 
issues such as current status, applications and algorithms, mathematical software, software tools, languages 
and compilers, computing environments, and visualization are presented.
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Preface

This book is about solving partial differential equations (PDEs) numerically by writing C and
Python codes that call PETSC,1 the Portable, Extensible Toolkit for Scientific computation [10,
11]. Concepts are explained and illustrated through examples, with sufficient context to facilitate
further development. Because demonstrable performance and scalability are the primary goals,
run-time options are explored and compared in both the text and the exercises.

The inside front cover lists the major PDE examples, ordered by ease of introduction of the
algorithms and components from PETSC. The focus of this book is on PDE problems wherein
discretization leads to large, generally nonlinear systems of algebraic equations. Such systems
are either solved once to compute a steady state solution or at each time step in an implicit
time-stepping scheme.

Many of the concepts and algorithms herein have become common knowledge among ex-
perts, but scientific computing moves forward when access to advanced techniques is expanded.
An expert in PDEs and PETSC might say about this book both “I know that,” for most of the
content, and “the book is a fast on-ramp to what I already know.”

So, suppose you have taken courses in differential equations and linear algebra, have written a
few codes in C, and you are interested in numerically solving nonlinear PDE problems in parallel
using advanced algorithms. Then this book is for you.

What is PETSC?
PETSC, pronounced “PET-see,” is an open-source mathematical software library built on top of
the standard software layer for distributed-memory parallel computation, namely the Message
Passing Interface (MPI) [72]. Both are developed by the Mathematics and Computer Science
Division of the Argonne National Laboratory, within the U.S. Department of Energy. They form
a framework capable of solving problems, such as discretized nonlinear PDEs, with millions or
billions of degrees of freedom, on supercomputers with thousands of cores. But PETSc codes
will also run on a standard laptop or workstation, which is where all examples from this book
should be tried first.

PETSC is not particularly new. A well-known monograph [134] from the 1990s used PETSC
2.0 for scalable solutions of linear PDEs, focusing on preconditioned iterative linear solvers and
domain decomposition. However, PETSC is under active development, and it is now at version
3.13. It has evolved into a powerful toolbox with a large API (application program interface).
The PETSC strategy is to combine (“compose”), at run time, grid/mesh distribution tools, time-
stepping schemes for ordinary differential equations (ODEs), nonlinear iterations, iterative linear

1The examples in the text and the source codes at the repository (github.com/bueler/p4pdes, or bookstore.
siam.org/se31/bonus which redirects to the same place) were tested with PETSC version 3.13. The repository codes
will be maintained for future PETSC versions.

ix
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x Preface

solvers, and a rich selection of preconditioners, including multigrid schemes. All of these are
exposed at, and can be controlled from, the command line. Navigating this algorithmic “stack,”
via a plethora of run-time options, requires broader and more mathematical user knowledge than
the tools of previous generations. So a new book, introducing PETSC for PDEs, is appropriate.

Regarding the required user commitment, the PETSC developers2 have said that

. . . developing parallel, nontrivial PDE solvers that deliver high performance is still
difficult and requires months (or even years) of concentrated effort. PETSC is a
toolkit that can ease these difficulties and reduce the development time, but it is not
a black-box PDE solver, nor a silver bullet.

The homepage for PETSC, with download and installation instructions, is

www.mcs.anl.gov/petsc

What does the reader bring?
To make sense of this book, some of the theory and practice of PDEs, and of basic numerical
mathematics, must be familiar. In particular, many ideas from numerical linear algebra appear,
often with only a brief introduction. For example, the definitions of vector and matrix norms, not
to mention the LU decomposition, are reviewed in the briefest way. A textbook like Trefethen
and Bau [143] on numerical linear algebra is, therefore, close to an actual prerequisite.

Presumably all applied mathematicians are wanting when it comes to deep understanding of
nonlinear PDE problems—certainly true of the author—but good introductions exist to the 20th-
century theory of PDEs [51, 111], to methods for solving them exactly [70], and for extracting
meaning from them via asymptotic expansions [119]. On the numerical side there are multiple
discretization approaches, including finite difference (FD) [70, 84, 104, 115], finite element (FE)
[19, 49, 87], and finite volume (FV) [103] methods. All of these approaches are used here, with
an emphasis on FD and FE. Spectral methods [142] are outside of our scope.3 It helps if the
reader has been exposed to at least one discretization paradigm already, but we always recall the
basics at first use. The author keeps references [7, 49, 51, 66, 84, 115, 143, 144] within reach.

What programming skills are assumed?
We assume that the reader has some skills, namely a bit more than those needed for an intro-
ductory numerical methods course. The programming in Chapters 1–12 is standard C [90, 94],
using a modest language subset and only simple data structures. Types used here include the
basic integer and floating-point types, plus pointers, functions, arrays, and structs, along with
the opaque-pointer PETSC objects on which we focus. The examples use ISO C99 features and
were tested with the GNU C compiler (gcc.gnu.org).

Some experience writing and compiling C programs is thus assumed. Concepts of linking,
header files, and passing arguments by value and pointer should all be familiar. (The C language
has no “pass-by-reference” syntax, but that is often the intent when passing a pointer by value.)
Doing the exercises and/or modifying the examples will inevitably expose some language sub-
tleties, but no more than would appear in the exercises in a first university course in computer
programming using a C-like language.

2http://wgropp.cs.illinois.edu/bib/talks/tdata/2001/PETSc.pdf
3The spectral method idea is mentioned in Chapter 13 when we express the limitations of our use of “optimal” for

describing the complexity of solution algorithms.

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Preface xi

Both compile-time and run-time errors will inevitably arise, so the ability to run codes within
a debugger is strongly recommended. Furthermore, use of valgrind (valgrind.org) will help
to resolve certain memory or pointer-related run-time errors.

The Python codes in Chapters 13 and 14 use mathematical concepts and run-time options
explored in the first twelve chapters. Therefore, addressing the C example codes first is recom-
mended even if Python/Firedrake is the preferred environment.

We assume a Bash shell (www.gnu.org/software/bash/bash.html), or one that inter-
prets Bash syntax. In the text a Bash command line starts with “$.” The syntax is supposed to be
transparent, but here is a reminder of loop syntax:

$ for X in useful fun cool; do echo "PETSc is $X"; done
PETSc is useful
PETSc is fun
PETSc is cool

We also use the Unix utilities grep and less in straightforward ways; see Chapter 1.

Scope and coverage
Of the many possible uses of PETSC, this book assumes you want to solve linear and nonlinear
PDEs. With this in mind, our scope is to first discretize PDE problems and then apply the
following class of numerical solvers to the resulting systems of algebraic equations:

preconditioned︸ ︷︷ ︸
Chs. 2 & 6

Newton︸ ︷︷ ︸
Ch. 4

– Krylov︸ ︷︷ ︸
Ch. 2

methods

These terms may be completely new, or buzzwords with a whiff of meaning, but this book aims
to convert them into powerful working vocabulary.

For the reader who has heard these words before, this scope is not confining. For example,
suppose we wish to solve a linear, elliptic PDE by discretizing it into a linear system and then
solving that system by Gaussian elimination (i.e., LU decomposition). Because the first step of a
Newton iteration solves a linear system, and because LU decomposition is one of our many pre-
conditioners, we include this solution method into the “preconditioned Newton–Krylov” class.

On the other hand, when solving linear systems ofm equations inm variables, Trefethen and
Bau [143] identify optimal complexity, namely O(m) work, as the modern goal:

The ideal iterative method in linear algebra reduces the number of steps from m to
O(1) and the work per step from O(m2) to O(m), reducing the total work from
O(m3) to O(m).

This goal, as applied to discretized nonlinear PDE problems, is our central thread. For us, m
is the number of grid points or, more accurately, the number of discrete degrees of freedom.
Starting with Chapter 6, each Chapter includes a demonstration, via a measurement of work
per degree of freedom, of an optimal solution method, almost always by using a multigrid [21,
144] preconditioner. Indeed, PETSC is the first comprehensive answer to the following critical
numerical library design question: How can a user compose an optimal or near-optimal multigrid
solver at the command line for a large variety of nonlinear PDE problems?

On the other hand, the goal is not really to cover the theory of preconditioned Newton–Krylov
methods. Rather it is to illustrate their use in the PETSC environment, with special attention
given to the composition (construction) of solution algorithms through the use of run-time op-
tions. (PETSC could stand for “Portable, Extensible Toolkit for Solver composition” [109].)
Furthermore, while theory is needed to understand the key goals of optimal solver complexity
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xii Preface
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I

Figure 1. Chapters 1–8 form the core of the book: C codes implement finite difference (FD)
methods to solve linear and nonlinear PDEs. Time-dependent ODE and PDE problems in the left branch
(Chapter 5) lead to a finite volume (FV) approach to advection problems (Chapter 11). The right branch
uses the finite element (FE) method (Chapters 9 and 10), including Python codes using the Firedrake library
[126] (Chapters 13 and 14). Chapter 12 considers a variational inequality (VI). Chapters 10, 13, and 14
apply unstructured meshes (the ellipses), but the others use structured grids.

(Chapter 7) and parallel scalability (Chapter 8), demonstrating these properties in practice is as
important as presenting theory for why they should occur.

Nonlinear elliptic PDEs form the largest class of example problems, but substantial material
is outside of this category, including time-dependent parabolic PDEs (Chapter 5), time-dependent
advection (Chapter 11), free-boundary problems via inequality constraints (Chapter 12), and the
Stokes equations (Chapter 14). However, the reader interested in hyperbolic (wave-type) PDEs
will be disappointed. Purely hyperbolic time-dependent problems are treated lightly because
explicit time-stepping schemes [84, 103] are often effective and, in a sense, already have optimal
complexity (Chapter 11), without needing advanced equation solvers.

A chapter progression is shown in Figure 1. Note that only the FD method is used through
Chapter 8, but then the FE method is introduced in Chapters 9, 10, and 13. Applications of the
FV method are confined to Chapter 11. The majority of examples in the book use 1D, 2D, and
3D structured grids, but Chapters 10, 13, and 14 apply 2D unstructured meshes.
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Preface xiii

Level of abstraction and philosophy
The first 12 chapters of this book choose a certain software level of abstraction, namely direct
use of PETSC’s C API. The example codes involve relatively low-level loops and arithmetic
on individual (scalar) array entries when implementing a PDE discretization. The following
criticism is therefore valid [126]:

. . . [key among the drawbacks of coding at a lower level] is a premature loss of
mathematical abstraction: the symbolic structure of differential equations, function
spaces, and integrals is replaced by loops over arrays of coefficient values. . . . This
has many deleterious effects. First, choices are committed to far too early: deciding
to change discretization or the equations to be solved requires the implementation
to be recoded. Second, the [application] developer must deal with the mixture of
equations, discretization, and implementation all at once.

Though Chapters 3–12 choose a concrete PDE discretization and code it at a low level in C,
on the other hand they apply a modern, sophisticated, and flexible view of solver composition
at the command line. Additional software layers can remedy the above “deleterious effects.”
To illustrate, in Chapters 13 and 14 we apply the petsc4py [39] and Firedrake [126] Python
libraries to solve the Poisson and Stokes equations, thereby escaping the low level of abstraction
while retaining command-line control of solver composition.

Our C codes can therefore be easily defended. Understanding the PETSC API, and the
relationship between PETSC options and the underlying mathematical ideas, is necessary for
effective application of higher-level tools like Firedrake. Higher-level tools necessarily expose
solver choices to the user because nonlinear PDE problems are not easy. Indeed, PETSC’s solver-
composition design is motivated by the well-known fact that there is no single Krylov solver that
is best for all nonsymmetric linear problems [68, 117], and the situation is no simpler when the
problems are nonlinear [29]. Effective use of any higher-level software built on PETSC depends
on facility with a large collection of mathematical concepts about solvers, many of which are
covered in this book.

It has been said that a computational environment is unlikely to lead to real progress unless
the software environment is convenient enough to encourage playing around.4 Despite using C,
a compiled language, PETSC is designed to encourage such experimentation through extensive
command-line support for solver composition. A next layer, such as Firedrake with Python, can
encourage problem-level play.

One might describe our example codes by these slogans for the PDE solution process:

1. Every problem is nonlinear,

2. every numerical computation is parallel,

3. solver choices should never be hard-wired, and

4. performance comes from careful preconditioner choice.

Starting with Chapter 4, each example follows this philosophy, including both well-documented
discretizations and guidance on solver options. The examples collectively use a large number of
PETSC run-time options, but nonetheless they only scratch the surface of solver possibilities.

Finally, in this vein, if this book (and PETSC itself) has a single guiding philosophy, then it
might be this fundamental law of computer science5: As machines become more powerful, the
efficiency of algorithms grows more important, not less.

4This is one “maxim” at https://people.maths.ox.ac.uk/trefethen/maxims.html.
5This is another maxim: https://people.maths.ox.ac.uk/trefethen/maxims.html.
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xiv Preface

Some things this book does not do
This book does NOT

• really help you install PETSC;

• replace the PDF PETSc Users Manual [10], or its HTML manual pages, for understanding
the PETSC API;

• even mention most of the packages PETSC links to;

• use the PETSC Fortran API;

• consider spatial dimensions beyond three; or

• prove anything of consequence.

Regarding the last point, theorems are stated precisely when appropriate, and some exercises ask
for proofs. In computational examples, however, evidence for convergence at desired rates is
presented, while a priori proofs of convergence are de-emphasized or left to the references.

The above is an incomplete list of what the book does not do. Indeed, the modern applications
of PETSC go far beyond the PDE problems which are our focus. Solving a PDE is often merely
the “inner loop,” surrounded by an “outer loop” to do data assimilation or inverse modeling,
for example. That is, the entire PDE solution process may be a step inside an optimization or
sensitivity-analysis algorithm. This book omits outer-loop-related, and other, advanced features
of PETSC, including but not limited to

• TAO, the Toolkit for Advanced Optimization, which includes parallel-scalable, constrained
and unconstrained optimization algorithms, including for PDE-constrained problems;

• the TSAdjoint methods of the TS type (Chapter 5), which support the sensitivity analysis
of differential equation solutions with respect to initial conditions and/or parameters;

• the DMForest, DMStag, DMSwarm, and DMNetwork types of DM; these are mesh, parti-
cle, and network management systems which go beyond the structured grids (DMDA; Chap-
ter 3) and unstructured meshes (DMPlex; Chapter 13) which we do cover; and

• support for accelerator and GPU architectures [48].

Furthermore, in Chapters 1–12 we do not use any optional external packages, which PETSC
can easily download and install, such as the Hypre multigrid and preconditioner library [77],
MUMPS and SuperLU sparse direct solvers libraries, or the HDF5 data model and file format.
See

www.mcs.anl.gov/petsc/miscellaneous/external.html

Besides Firedrake, there are many FE method toolkits and libraries which use PETSC for
their underlying parallel numerics, including FEniCS, libMesh, MOOSE, DEAL.II, and others.
We do not use these, and we also do not solve PDE eigenvalue problems using the Scalable
Library for Eigenvalue Problem computations (SLEPc) [78].

It goes without saying that exploration of all these tools is recommended.
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Preface xv

Future releases

PETSc, an open source project with an active and global developer community, will not stand
still. Thus the author commits to maintaining this book’s example programs for future PETSc
(and Firedrake) releases. See the “Releases” feature at the repository

github.com/bueler/p4pdes

Versioned releases of p4pdes will follow the PETSc version number, which is 3.13 at the time
of publication.

Furthermore it is unlikely that everything in this book, or in the example programs, is correct.
The reader is encouraged to report corrections and issues through the “Issues” or "Pull requests"
features at the p4pdes repository. An up-to-date list of errata is in the ERRATA.md file at the
same repository.
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Chapter 1

Getting started
with PETSc

A code that does almost nothing, but in parallel
The purpose of the PETSC library is to help solve scientific and engineering problems, especially
on multiprocessor computers. As PETSC is built on top of the Message Passing Interface (MPI)
library [72], some of the flavor of MPI comes through. We start with an introductory PETSC
code which calls MPI directly for some basic tasks.

Our program e.c, shown in its entirety in Code 1.1, approximates Euler’s constant

e =

∞∑
n=0

1

n!
≈ 2.718281828459045 (1.1)

by summing the series in a distributed manner, one term on each process. Thus we get a better
estimate of e when we run on more MPI processes. This silly use of PETSC and MPI is an
easy-to-understand parallel computation.

#include <petsc .h>

int main( int argc , char ** argv ) {
PetscErrorCode i e r r ;
PetscMPIInt rank ;
PetscInt i ;
PetscReal localval , globalsum ;

Pe tsc In i t i a l i ze (&argc ,&argv ,NULL,
"Compute e in pa ra l l e l with PETSc. \ n \n" ) ;

i e r r = MPI_Comm_rank(PETSC_COMM_WORLD,&rank ) ; CHKERRQ( i e r r ) ;

/ / compute 1/n ! where n = ( rank of process ) + 1
l oca lva l = 1.0;
for ( i = 2; i < rank+1; i ++)

loca lva l /= i ;

/ / sum the contr ibut ions over a l l processes
i e r r = MPI_Allreduce(& localval ,&globalsum ,1 ,MPIU_REAL,MPIU_SUM,

PETSC_COMM_WORLD) ; CHKERRQ( i e r r ) ;

/ / output estimate of e and report on work from each process
i e r r = PetscPrint f (PETSC_COMM_WORLD,

"e is about %17.15 f \n" ,globalsum ) ; CHKERRQ( i e r r ) ;

3
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4 Chapter 1. Getting started with PETSc

i e r r = PetscPrint f (PETSC_COMM_SELF,
" rank %d did %d f lops \n" , rank , ( rank > 0) ? rank−1 : 0) ;
CHKERRQ( i e r r ) ;

return PetscFinalize ( ) ;
}

Code 1.1. c/ch1/e.c. Compute e with PETSC.

What does e.c actually do? First it declares some variables, then it does a computation
on each process, and then it communicates the results between processes to get the final result,
namely an estimate of e. As with most C programs, it starts by including headers, but only
petsc.h is needed because that includes MPI too. Like any C program, e.c has a main()
function which takes inputs argc and argv from the command line; the former is an int holding
the argument count, and the latter is an array of strings. In all of our codes we will simply
pass these arguments into PetscInitialize() so that PETSC can extract the command-line
options; such options are used extensively in this book.

The main() function has an int output which is zero if the program succeeds. If the last
call to PetscFinalize() succeeds then main() will report success. The error-catching macros
“CHKERRQ(ierr),” addressed momentarily, can also return nonzeros from main().

The data types used in the code may catch the reader’s eye. Types PetscErrorCode,
PetscMPIInt, PetscInt, and PetscReal are all aliases of basic arithmetic types in C. For
example, PetscInt=int and PetscReal=double in most cases. However, PETSc’s configu-
ration system (below) allows these aliases to be assigned to other types such as 64-bit integers
for PetscInt and quadruple-precision (128-bit) floating-point numbers for PetscReal. The
former capability is essential for problems with billions of degrees of freedom because the max-
imum int is 231, approximately two billion. While these extended capabilities are not pursued
in this book, good style requires using PETSc types for portability. In fact, PETSc can also use
complex scalars, i.e., the type PetscScalar can be either real or complex, but here our PDE
problems are always real.

Compiling and running the first code
Before you can compile and run e.c, PETSC must be installed. If it is not already installed on
your machine, follow the instructions at

www.mcs.anl.gov/petsc/documentation/installation.html

to download, configure, and compile PETSC. You will do steps in the PETSC directory that
look like the following:

$ export PETSC_DIR=/home/bueler/petsc # the PETSc directory path
$ export PETSC_ARCH=linux-c-dbg # you choose the name
$ ./configure --download-mpich --with-debugging=1 # typical basic configuration
$ make all
$ make check

You may also want to run make streams at this point to get a sense of the memory bandwidth
of your machine; see Chapter 8 for more information.

The specific configure options may be different in your environment, but the ones above are
recommended in the absence of other advice. They download the MPICH (www.mpich.org)
package, which is at least appropriate on any machine lacking an existing MPI installation. We
also configure a version of PETSC with debugging symbols to enhance the trace-back mecha-
nism (below) for catching run-time errors.
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Compiling and running the first code 5

The PETSC developer team can help with failed installation attempts. Send configure and
installation questions, including the configure.log and make.log files generated during the
failed attempt, to petsc-maint@ mcs.anl.gov.

Once PETSc is correctly installed, the environment variables PETSC_DIR and PETSC_ARCH
will point to a valid PETSC installation. These variables need to be set every time you compile
PETSC programs, so it makes sense to set them in your .bashrc file, for example. Note that the
MPI command mpiexec, used below, must be from the same MPI installation as the one used in
configuring PETSC. Type “which mpiexec” to find which one you are running. You may need
to modify your PATH environment variable to ensure the correct mpiexec, for example:

$ export PATH=$PETSC_DIR/$PETSC_ARCH/bin:$PATH

Now we can compile and run the first example e.c from this book. Use Git (git-scm.com)
to get the example codes:

$ git clone https://github.com/bueler/p4pdes.git

This will generate directory p4pdes/, and codes from subdirectory p4pdes/c/chN/ are de-
scribed in Chapter N of this book.

$ cd p4pdes/c/ch1/
$ make e

This uses the makefile in the c/ch1/ subdirectory; an extract is shown in Code 1.2. All
makefiles in this book have this PETSC-recommended form; we also add to CFLAGS to en-
force compliance with the C99 standard [90, 94].

include ${PETSC_DIR}/lib/petsc/conf/variables
include ${PETSC_DIR}/lib/petsc/conf/rules
CFLAGS += -pedantic -std=c99

e: e.o
-${CLINKER} -o e e.o ${PETSC_LIB}
${RM} e.o

Code 1.2. c/ch1/makefile. PETSC C codes are built using a makefile like this.

Run the code in serial like this:

$ ./e
e is about 1.000000000000000
rank 0 did 1 flops

Here “rank” refers to the index of an MPI process, and “flops” stands for floating-point oper-
ations, a count of arithmetic operations. Of course, the value 1.0 is a very poor estimate of e, but
the code does better with more MPI processes:

$ mpiexec -n 5 ./e
e is about 2.708333333333333
rank 0 did 0 flops
rank 4 did 3 flops
rank 2 did 1 flops
rank 3 did 2 flops
rank 1 did 0 flops

With N = 20 processes, and thus N = 20 terms in series (1.1), we get a good estimate, accurate
to all digits shown:
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6 Chapter 1. Getting started with PETSc

$ mpiexec -n 20 ./e
e is about 2.718281828459045
...

Note we are using a 64-bit floating-point representation of real numbers, with about 16 decimal
digits of accuracy [143]; in this default PETSc configuration, the type PetscReal is the same as
double in C.

Based on the above run, perhaps the reader is worried that examples will only work on a
cluster with at least 20 physical processors. In fact, these runs work just fine on the author’s
4-core laptop. MPI processes are created as needed using an old feature of operating systems,
namely multitasking. However, achieving actual speedup from parallelism is another matter
entirely; it requires multiple physical processors and adequate memory bandwidth (see Chapter
8).

Any MPI computation is a collection of processes, each with a separate address space, com-
municating by messages. PETSC_COMM_WORLD in Code 1.1, the MPI communicator [72] for our
computation, consists of the set of ranks generated by using “mpiexec” at the command line.
Each MPI process in the communicator computes a term 1/n! in the sum, where n is the value
returned by MPI_Comm_rank(). When run with N processes, the call to MPI_Allreduce()
computes theN th partial sum of the series in (1.1) and then sends the result back to each process.

Because PETSC generally avoids duplicating MPI functionality, such direct uses of the
MPI API, including calls to MPI_Comm_rank() and MPI_Allreduce() here, are occasionally
needed. On the other hand, the vast majority of library calls in the rest of this book are to PETSc
functions.

In Code 1.1 we print the computed estimate of e only once, but each process also prints its
rank and the flops it used. The formatted print command PetscPrintf(), similar to fprintf()
from the C standard library, is thus used twice: first with MPI communicator PETSC_COMM_WORLD
and then with PETSC_COMM_SELF. The first only prints on rank zero, so only one line of output
is produced, but the second print is individual to each rank. However, the PETSC_COMM_SELF
outputs appear in an unpredictable order because printing occurs as soon as that rank reaches
the print command. Orderly output of these lines would use PetscSynchronizedPrintf(),
requiring additional interprocess communication.

Every PETSC program
The main() function should always start and end with the commands PetscInitialize() and
PetscFinalize():

PetscInitialize(&argc,&args,NULL,help);
< everything else >
return PetscFinalize();

PetscInitialize() calls MPI_Init() to create the PETSC_COMM_WORLD communicator, and
it sets up the options database and debugging/logging facilities.

In the last argument to PetscInitialize() we supply a help string. To see it at run time,
plus PETSC version information, do

$ ./program -help intro

A potentially very long list of allowed PETSC options—thus often piped into a pager like
less—is generated by the simpler option -help:

$ ./program -help | less
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Exploring the example codes 7

By piping the output of -help through a regular-expression search like grep, every PETSC
program has a run-time option documentation system that is both lightweight and surprisingly
effective. For example, to see options related to logging performance, do

$ ./program -help | grep log_

See Exercise 1.1 for an example of how to add a new option to our example code e.c.
Unfortunately, with respect to aesthetics, all PETSC codes in C also have error-checking

clutter. We are stuck with ugly lines like

ierr = PetscCommand(...); CHKERRQ(ierr);

This is because PETSC functions return a code, for error checking, of type PetscErrorCode,
with value zero if the function was successful. Here it is passed into the CHKERRQ() macro which
does nothing when it is zero. If ierr is nonzero, then the program is stopped with a “trace-back”:
a list of function calls, line numbers, and source file names, thereby identifying where the error
occurred. Trace-back, which is a first line of defense when debugging run-time errors, is most
effective if PETSC is configured with debugging symbols (thus --with-debugging=1 above).
In later chapters we will remove the error-checking clutter from the displayed version of codes,
but it is always present.

The PDF PETSc Users Manual [10] is the best introduction to the PETSc API itself, and
searching in the HTML manual pages is also essential when resolving errors in a new code. See

www.mcs.anl.gov/petsc/documentation/index.html

Exploring the example codes
This book is based on a substantial collection of C codes6 in the directory p4pdes/c/, a good
place from which to explore. For example, to find usages of PetscPrintf() in the examples
one might run one of these commands:

$ git grep -i petscprintf
$ grep -iR petscprintf

The option -i ignores case when matching, so no (human) memory is wasted on the capitaliza-
tion patterns in PETSC API names. The git grep command searches the whole repository
tree, but only in Git repositories, while grep needs -R to search recursively.

This book’s testing system for example codes is also based at p4pdes/c/. The following
commands clear out old executables (if present) from each chapter subdirectory (i.e., chN/),
and then compile and run regression tests on all of the example codes:

$ make distclean # note PETSc takes over the usual "clean" target
$ make test

You can always ask a PETSC code for copious performance information by using -log_view.
For example,

$ cd ch6/
$ make fish
$ mpiexec -n 4 ./fish -da_refine 6 -log_view

reports information on the performance, including timing, flops, and load balance, from a solu-
tion of the Poisson equation (see Chapter 6). However, the recommended way to time a PETSC

6The Python codes in Chapters 13 and 14 use PETSC through the Firedrake library.
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8 Chapter 1. Getting started with PETSc

code, whether in serial or parallel, requires a configuration without debugging symbols. Each
configuration has a different name, the value of PETSC_ARCH, and you can just add a new one:

$ cd $PETSC_DIR
$ export PETSC_ARCH=linux-c-opt
$ ./configure --download-mpich --with-debugging=0
$ make all

Then rebuild your code and grep for the timing information from -log_view:

$ cd ~/p4pdes/c/ch6/
$ make fish
$ mpiexec -n 4 ./fish -da_refine 6 -log_view | grep "Time (sec):"
Time (sec): 4.517e-02 1.005 4.507e-02

The first number is the maximum time for the processes, the second is the load imbalance
(max/min), and the third is the average time over all processes. Performance measurements
and parallel scaling are the topics of Chapter 8.

Exercises
1.1. Modify e.c to create a new code expx.c which, for a real number x, approximates ex

by its N -term Maclaurin series. Read x at the command line using the PETSC options
mechanism:

PetscOptionsBegin(PETSC_COMM_WORLD,"","options for expx","");
PetscOptionsReal("-x","input to exp(x) function",NULL,x,&x,NULL);
PetscOptionsEnd();

Find N so that the run
$ mpiexec -n N ./expx -x -20.0

gives an approximation of e−20 accurate to six digits. You will also need to add lines to
the makefile, to compile expx.c.

Most readers will now want to move on to linear algebra and solving PDEs in Chapters
2 and 3. Readers interested in understanding more about MPI might try the following
exercises.

1.2. Program e.c does redundant work and a terrible job of load balancing: the rank n process
does n− 1 flops. Modify e.c to a new code balanced.c which balances the load almost
perfectly, namely one divide operation on each process. Use blocking send and receive
operations (MPI_Send(),MPI_Recv()) to pass the result of the last factorial to the next
rank. (Now the code does a great deal of unnecessary communication and waiting!)

1.3. One does not need PETSC to do a sum in parallel. Convert e.c into an MPI-only code
cpi.c which approximates π via the simplest rectangular approximation of the integral∫ 1

0

1

1 + x2
dx = arctan(1) =

π

4
.

Explicitly include mpi.h, use MPI_Bcast() and MPI_Reduce() to put the sum on the
rank 0 process, and print the result there. Now you have written the introductory example
in the MPI book [72].
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Chapter 2

Finite-dimensional
linear systems

At the core of numerical methods for elliptic PDEs is the solution of finite-dimensional linear
systems. As a grid is refined, these systems become increasingly accurate representations of the
PDE, and typically one wants to solve the largest linear systems which the computer can handle.
Therefore, methods from linear algebra that have the potential to scale to large sizes—so large
that the vector solution of the linear system must be distributed across compute nodes to even fit
in memory—form the core technology in PETSC.

This chapter starts by reviewing the basic ideas of numerical linear algebra. We move fast and
finish the review by page 23; compare textbook-length treatments in [64, 66, 143]. Our goal, be-
sides recalling definitions, is to identify the constraints which make solving large linear systems
challenging. Main threads of numerical linear algebra are recalled, including iteration to reduce
the residual, the connection between Krylov spaces and polynomial approximation, and precon-
ditioning to improve the convergence of Krylov-type iterations. We then introduce PETSC types
for vectors, matrices, and linear systems, including sparse storage of matrices and parallel distri-
bution of vectors and matrices. Then we use examples, including linear systems extracted from
later chapters, to compare run-time options for Krylov iterations and preconditioners. At that
point we are well prepared to solve the Poisson equation in Chapter 3.

Vectors, matrices, and norms
Vectors, matrices, and norms are assumed to be familiar to the reader, but we set notation and
recall the basics.

The unqualified word “vector” will mean a real7 column vector of finite length. The space
of real vectors of length N is written RN . (In later chapters we also regard functions, defined
on domains in Rd, as vectors in infinite-dimensional function spaces, but these are generally
called “functions” or “solutions” and there will be no confusion.) We will use bold for vectors
and square brackets for indexed entries; thus v ∈ RN has entries v[j] ∈ R, a convention which
frees the subscript to be used for sequences of vectors, e.g., in iteration. Note also that we break
tradition, but facilitate C programming, by numbering vector entries starting from zero.

A matrix is a linear map between finite-dimensional vector spaces. In polite company it is
more accurate to say that a matrix is the representation of a linear map from one vector space
to another, given a choice of basis in each space. We write RM×N for the space of all M -row
and N -column matrices that map from RN to RM , and we denote the entries of A ∈ RM×N as
aij . (This use of subscripts causes no conflicts because we do not consider sequences of matrices
other than powers of matrices.)

7PETSC can be configured to handle complex numbers, but we use only reals.

9
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10 Chapter 2. Finite-dimensional linear systems

Given A ∈ RM×N , there are two related matrices which map in the other direction. If the
matrix is square and invertible, then the inverse A−1 ∈ RN×N is the unique matrix satisfying
A−1A = AA−1 = I . Even if A is nonsquare, one may always construct the transpose A> ∈
RN×M with entries (A>)ij = aji.

A vector norm is a function ‖ · ‖ : RN → [0,∞) which assigns a finite length to a vector.
Axioms including the triangle inequality must be satisfied [143]. For 1 ≤ p < ∞ the following
formula defines a norm:

‖v‖p =

(
N−1∑
i=0

|v[i]|p
)1/p

. (2.1)

The p→∞ limit of (2.1), the maximum absolute value, also defines a norm:

‖v‖∞ = max
i=0,...,N−1

|v[i]|. (2.2)

All of these vector norms can be computed with O(N) work, but the p = 1, 2,∞ cases are espe-
cially common in practical use. As properly introduced later in this chapter, PETSC computes
these vector norms by applying VecNorm() to a Vec object.

Choosing vector norms on the input and output vector spaces induces a matrix norm on
A ∈ RM×N as follows:

‖A‖ = sup
v 6=0

‖Av‖
‖v‖

= sup
‖v‖=1

‖Av‖. (2.3)

It follows from (2.3) that
‖Av‖ ≤ ‖A‖‖v‖. (2.4)

Induced matrix norms are generally expensive to compute because (2.3) is an optimization
problem whose solution may take much more work than the O(MN) operations needed to in-
spect all the entries ofA. However, the matrix norms ‖A‖1 and ‖A‖∞, induced by the p = 1 and
p = ∞ vector norms, respectively, are computable by O(MN) formulas [143]. The Frobenius
matrix norm, which satisfies (2.4) even though it is not induced, is also widely used. It can be
computed by the O(MN) formula ‖A‖2Fro =

∑
i,j a

2
ij . Note PETSC can compute ‖A‖1, ‖A‖∞,

or ‖A‖Fro by applying MatNorm() to a Mat object.
We will use vector norms routinely in both linear and nonlinear solver algorithms, and in

measuring numerical errors in solving PDEs, but what good are matrix norms? In this book we
use them mostly when measuring the conditioning of linear systems [143]. By definition, if ‖ · ‖
denotes a matrix norm and A ∈ RN×N is a square and invertible matrix, then

κ(A) = ‖A‖‖A−1‖ (2.5)

is the condition number of A. By definition κ(A) = +∞ if A is not invertible. The condition
number measures how sensitive the (exact) solution of a linear systemAv = b is to perturbations
of either A or b [143].

Linear systems, and some facts of (numerical) life
Suppose b ∈ RN is a column vector and A ∈ RN×N is a square matrix. When A is invertible,
the linear system

Au = b (2.6)

has a unique solution
u = A−1b ∈ RN . (2.7)

This is simple in theory.
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Linear systems, and some facts of (numerical) life 11

It is not so simple in practice, however, to solve large linear systems on a computer. Here are
three facts to keep in mind while numerically solving linear systems:

Fact 1. On a digital computer there are unavoidable limitations to numerical accuracy. If real
numbers are represented in floating point with machine precision ε, then the solution of Au = b
can only be computed within an error O(κ(A)ε), where κ(A) is the condition number.

Fact 2. Dense direct linear algebra has a high cost. For a dense matrix A ∈ RN×N , computation
of the solution to Au = b, by a direct method such as Gauss elimination (LU decomposition),
whether forming A−1 or not, requires O(N3) operations.8

Fact 3. You should not assemble the inverse. The matrices A arising from discretized PDEs are
often sparse, but their inverses A−1 are usually dense and may not even fit in memory.

Numerical facts of life like these appear in several places in this book, and they are collected
in the appendix.

Fact 1 is about conditioning and not about methods. There are matrices A and Ã that are
the same9 to within machine precision ε but for which the corresponding exact solutions to (2.6)
differ by an amount κ(A)ε. Rounding errors effectively perturb A by O(ε) with each operation,
and thus O(κ(A)ε)-size errors will appear in the solution of the linear system. Backward stable
methods [143], for example the QR direct method, can be shown to achieve this minimal level of
inaccuracy.

The machine precision of the C double type, the default 64-bit representation of real num-
bers, is ε = 2.2 × 10−16. (The double type is aliased to PetscReal in most PETSC config-
urations.) Thus by Fact 1 a linear system with κ(A) ≈ 1010, for example, can only be solved
to five or six decimal digits of precision. Though such a matrix would be regarded as “poorly
conditioned,” it is possible for a condition number of that size to arise from discretizing a PDE.
While it would be wise to inquire whether a different discretization generates a matrix with a
smaller condition number, expectations about solution accuracy should, at least, be informed by
estimates of condition numbers.

By Fact 2, a generic linear system with N = 106 equations requires 1018 or so operations
for a solution by Gauss elimination. This is impractical; even modern supercomputers take a
while to do a quintillion operations. Furthermore, direct methods generally solve linear systems
via the construction of matrix factors which are closely related to the inverse of A. These matrix
factors are often dense and may take up as much memory as the inverse (see Fact 3). Thus naive
application of direct methods—treating direct solvers for (2.6) as black boxes—will break down.

Though direct methods may be impractical for generic, dense N = 106 systems, we will
successfully solve PDE-generated linear systems of that size and larger on a single processor in
a few seconds, and in O(N) operations, using iterative methods. A key idea is that discretized
PDEs generate linear systems with exploitable structure, especially sparsity, which means that
there are only a few nonzero entries in each matrix row and column.

A simple example illustrating Fact 3 is the N -dimensional tridiagonal matrix A assembled
later in this section that uses 24N bytes of memory. (There are three nonzeros per row, and
each allocated real entry uses 8 bytes in double precision.) The inverse A−1, however, is dense.
For this matrix in dimension N = 107, storing the inverse in the obvious way would occupy
8N2 = 8× 1014 bytes (800 terabytes), but we will solve (2.6) for a matrix of this size using less
than a gigabyte (109 bytes) of memory in the entire solution process.10

8See Lecture 32 in [143] for some caveats with respect to “O(N3).”
9That is, ‖A− Ã‖/‖A‖ < ε.

10See tri.c later in this chapter: ./tri -tri_m 10000000 -ksp_type cg
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12 Chapter 2. Finite-dimensional linear systems

Residuals and errors
By definition, the residual of a given vector v in linear system (2.6) is the vector

r = b−Av. (2.8)

Typically v is an approximation of the solution u of (2.6). If r = 0, then v is a solution, but if r is
nonzero, then its entries and norm encode information about how far v is from being a solution.
Evaluating the residual for a known vector v requires applying A to it, an O(N2) operation at
worst. Because most discretization schemes for PDEs generate matrices A that are sparse, with
the nonzeros per row typically small and independent of N , the residual can often be computed
in O(N) operations.

The idea that the residual norm ‖r‖ = ‖b − Av‖ measures the “wrongness” of v as an ap-
proximation to the solution of (2.6) is reasonable, but it needs exploration. We prefer to measure
the error

e = v − u, (2.9)

and/or its norm ‖e‖, but exact knowledge of e is equivalent to exact knowledge of the solution u
itself, so only bounds on ‖e‖ can be expected.

The residual and error are, however, related by a version of system (2.6):

Ae = −r. (2.10)

By (2.4), this equation immediately gives a bound ‖e‖ ≤ ‖A−1‖ ‖r‖. We can say more by
noting that error norms are most meaningful if they are relative. (For instance, “‖e‖ ≤ 10−6”
does not tell us that v is an accurate solution to the system Au = b in a case where ‖A−1‖ = 1
and ‖b‖ = 10−7. We would know that ‖u‖ ≤ 10−7 anyway, and thus any v with small norm
will yield ‖e‖ ≤ 10−6.) Furthermore, relative error norms relate to the conditioning of A. In
fact, the relative quantity we can compute, namely ‖r‖/‖b‖, and the ratio we want to control,
namely ‖e‖/‖u‖, are related as follows (Exercise 2.2):

1

κ(A)

‖r‖
‖b‖

≤ ‖e‖
‖u‖

≤ κ(A)
‖r‖
‖b‖

. (2.11)

Looking ahead to the process of solving PDEs, we caution the reader about the phrase “nu-
merical error.” The error e = v−u of an approximation v to a linear system (2.6) is not the error
we care about if we want the total numerical error be small in some PDE solution process. That
total error is the difference between the computed finite-dimensional approximation v and the
usually unknown (exact) continuum solution of the PDE problem, which lives in some function
space, not in RN .

Fact 4. The linear system solver error is not the numerical error of the PDE method. Though
solving a linear system Au = b may be part of your method, making ‖e‖ = ‖v − u‖ small for
this system does not control the discretization error or the total numerical error.

Richardson iteration
It is an old idea that equations can be solved by starting with a guess and improving it. For
example, Newton had this idea; see Chapter 4. For linear system (2.6), the Richardson iteration
[128] is the simplest such idea. At each iteration it adds a multiple α > 0 of the last residual:

uk+1 = uk + α(b−Auk). (2.12)
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Richardson iteration 13

If, for example, the matrix-vector product Av costs O(N) operations and if significantly fewer
than O(N2) steps are needed to make uk an adequate approximation of the solution u of (2.6)
then such an iteration could improve on O(N3) Gauss elimination.

Is it reasonable to just add the residual as a correction? Can we even hope that (2.12) con-
verges? In the context of optimization, at least, the answer is “yes” to both questions. If A is
symmetric and positive-definite (SPD) [143] then system (2.6) describes the minimum of the
quadratic function

g(v) =
1

2
v>Av − b>v. (2.13)

Note the gradient is∇g(v) = Av−b, so linear system (2.6) is just∇g(u) = 0, the critical-point
condition from calculus. A natural idea in optimization is to start with a guess and go directly
downhill (steepest descent) toward the minimum. Steepest descent takes steps down the gradient,

uk+1 = uk − α∇g(uk),

where α can be chosen by (approximately) solving one-dimensional optimization problems; see
“line search” in Chapter 4. Observing that ∇g(v) = −r = −(b− Av), we see that Richardson
iteration (2.12) is just the steepest-descent algorithm in this context. Steepest descent will con-
verge, though often slowly, when appropriate step sizes α are used [118]. However, for some α
the Richardson iteration may not converge even when A is SPD.

Example 2.1. Consider the SPD linear system

Au =

[
10 −1
−1 1

] [
u1

u2

]
=

[
8
1

]
= b (2.14)

with solution u = [1 2]>. If we start with estimate u0 = [0 0]> then the α = 1 Richardson
iteration (2.12) gives a sequence

u0 =

[
0
0

]
, u1 =

[
8
1

]
, u2 =

[
−63

9

]
, u3 =

[
584
−62

]
, . . . . (2.15)

This sequence is not heading toward the solution u.

Such examples motivate analysis. If we rewrite (2.12) as

uk+1 = (I − αA)uk + αb, (2.16)

then it is easy to believe that the “size” of the matrix I − αA determines whether limk→∞ uk
exists. Specifically, uk = (I − αA)ku0 if b = 0, so convergence relates to the behavior of
powers of the matrix I − αA. We pursue this idea via well-known definitions as follows.

A complex number λ ∈ C is an eigenvalue of a square matrix B ∈ RN×N if there is a
nonzero vector v ∈ CN , an eigenvector, so that Bv = λv. (Recall that λ and v may be complex
even ifB is real.) The set of all eigenvalues ofB is the spectrum σ(B) ofB. The spectral radius
ρ(B) is the maximum magnitude of the eigenvalues of B. The matrix B>B is symmetric and
positive-semidefinite [64] for any real B, and thus it has nonnegative eigenvalues. The singular
values of B are the square roots of the eigenvalues of B>B. They are defined geometrically as
the lengths of semi-axes of the hyperellipsoid in RN that results from applying B to all vectors
in the unit sphere [143].

Matrix properties described in terms of eigenvalues or singular values are generically called
“spectral properties.” For example, if ‖ · ‖2 denotes the (induced) matrix 2-norm then ‖B‖2 is
the largest singular value of B, and ‖B−1‖2 is the inverse of the smallest singular value of B, so
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14 Chapter 2. Finite-dimensional linear systems

these norms are spectral properties of B. The 2-norm condition number κ(B) = ‖B‖2‖B−1‖2
is thus also a spectral property. (It is the eccentricity of the above-mentioned hyperellipsoid.)

Returning to (2.12), we can write all such iterations in the form

uk+1 = Buk + c (2.17)

for B ∈ RN×N and c ∈ RN . Exercise 2.3 asks you to show that (2.17) will converge for all c
and all initial iterates u0 if and only if the spectrum of B is inside the unit circle:

(2.17) converges for all data if and only if ρ(B) < 1. (2.18)

Richardson iteration (2.12) therefore converges for all u0 if and only if ρ(I − αA) < 1. Be-
cause one can also show that ρ(B) ≤ ‖B‖ in any induced matrix norm, (2.12) converges if
‖I − αA‖ < 1.

A first look at preconditioning
There are many linear systems which are equivalent to (2.6). In particular, if M ∈ RN×N is an
invertible matrix then the systems

(M−1A)u = M−1b (2.19)

and
(AM−1)(Mu) = b (2.20)

each has the same solution(s) as (2.6). These systems are the left- and right-preconditioned
versions of Au = b, respectively.

The preconditioned matricesM−1A andAM−1 generally have different spectral properties—
different eigenvalues, condition numbers, and so on—from A. In fact, though matrices M−1A
and AM−1 are similar to each other, they are generally not similar to A. (Recall that matrices B
and C are similar to each other if there is an invertible matrix S so that C = S−1BS. Further-
more, recall that similar matrices have the same eigenvalues.) See Exercise 2.4.

Algorithms may take advantage of superior spectral properties of the preconditioned matrices,
should they possess such, to approximately solve Au = b in fewer iterations. However, a pre-
conditioning approach to solving (2.6) is only effective if

(i) M−1 is easy to apply, and

(ii) the action of M−1 approximately inverts A.

The meaning of (i) is that solving Mv = c must require far fewer operations than solving (2.6).
As we will see soon, the initial meaning of (ii) is that the preconditioned matrix spectrum is
sufficiently close to the spectrum of the identity matrix so that the iteration using M−1A or
AM−1 converges rapidly.

Evidently, these specifications for effective preconditioners M are only loosely defined.
Choosing a good preconditioner is not easy, but PETSC is designed to facilitate rapid explo-
ration of a space of powerful preconditioners.

In practice one does not form M−1 when using (2.19) or (2.20). Instead the system Mv = c
is solved. For example, when applying M−1A to a vector v one does the matrix-vector product
with A first, and then one solves Mw = Av to find w = M−1Av. These steps are reversed
when applying AM−1 to v.

The next example, where the diagonal of A is used as M , shows how such Jacobi precondi-
tioning can make the Richardson iteration converge.
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A first look at preconditioning 15

Example 2.2. (Continued from 2.1.) Suppose we extract the diagonal of A from (2.14):

M =

[
10 0
0 1

]
. (2.21)

Being diagonal, M is easy to invert and apply. With u0 = [0 0]>, the left-preconditioned α = 1
Richardson iteration using M , namely uk+1 = uk +M−1b−M−1Auk, generates a sequence

u0 =

[
0
0

]
, u1 =

[
0.8
1.0

]
, u2 =

[
0.9
1.8

]
, u3 =

[
0.98
1.90

]
, . . . . (2.22)

This sequence converges to the solution u = [1 2]>. A justification of convergence is via (2.16)
and (2.18); compare ρ(I −A) = 9.1 and ρ(I −M−1A) = 0.32.

The “extreme” preconditioning cases are M = I and M = A. Using M = I , equations
(2.19) and (2.20) revert to the original system Au = b, while using M = A in (2.19) gives
u = A−1b, so “preconditioning” means solving the original system. In fact, in PETSC a direct
solution method like Gaussian elimination is regarded as a preconditioner application.

The most powerful preconditioning methods fall between these extremes, providing rapid but
imperfect inversion of A. Stating this general idea in terms of the entries of A is impossible, but
for the Richardson iteration the idea that M−1 should approximately invert A can be interpreted
as choosing M so that the spectrum of M−1A is clustered around 1 ∈ C, the single eigenvalue
of the identity matrix. Because of the properties of Krylov methods (next section), the practical
preconditioning goal becomes that the spectrum of M−1A is clustered into a few small areas of
the complex plane away from the origin.

Even if bothA andM are symmetric,M−1A andAM−1 may not be symmetric. This would
be a significant issue because certain iterations (next section) only work for symmetric matrices,
but it turns out not to be an impediment. Exercises 2.7 and 2.9 explore symmetric preconditioning
in the case whereM is SPD. Iterations which expect a symmetricA can be implemented for SPD
M without losing the benefits of symmetry; see the next section.

Preconditioner possibilities are listed in Table 2.1. Each one has a PETSC name used with
the option -pc_type at run time. The table attempts to describe the M used in (2.19) or (2.20),
but these are slogans not formulas.

Factorization types cholesky, lu, and svd, which have M = A in the table, are “di-
rect methods” [64]. They would exactly solve a linear system in exact arithmetic. They
may be used without an iteration, i.e., with -ksp_type preonly; see the next section. The
cholesky and lu types allow variable reorderings (row and column permutations); the option
-pc_factor_mat_ordering_type is illustrated in Chapter 3. However, the global exchanges
of information needed by these methods imply that these PETSC-native implementations are not
available in parallel.11

Incomplete versions of the LU and Cholesky direct methods, namely the icc and ilu types,
generate factors which approximate the true factors but which maintain sparsity of the original
matrix. Thus these methods, which are now traditional choices for preconditioners, reduce fill-
in in sparse matrix calculations [66, 112]. Their effectiveness as preconditioners depends in
nontrivial ways on the spectrum and sparsity of the original matrix and on the ordering of the
variables.

Now, for any invertible M and scalar α > 0, we call

uk+1 = uk + αM−1(b−Auk) (2.23)

11Parallel sparse direct solver are available in PETSC via external packages including MUMPS, mumps.enseeiht.
fr, and SuperLU [105]. See [10] and www.mcs.anl.gov/petsc/miscellaneous/external.html.
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16 Chapter 2. Finite-dimensional linear systems

Table 2.1. Commonly used preconditioning methods from PETSC. For jacobi and sor note
A = D + L + U , where D is diagonal and L,U are triangular. See Chapters 6 and 7 for more on
asm,fieldsplit,mg and Chapter 10 for gamg.

PC type Operator M
additive Schwarz asm overlapping diagonal blocks of A

block Jacobi bjacobi diagonal blocks of A

Cholesky decomposition cholesky A = L>L (SPD)

vector-component split fieldsplit component blocks of A

algebraic multigrid gamg ≈ A

incomplete Cholesky icc L̃>L̃ (SPD)

incomplete LU ilu L̃Ũ

Jacobi jacobi D

Gauss elimination
(LU decomposition) lu A = LU

geometric multigrid mg ≈ A

none none I

successive over-relaxation
(SOR) and Gauss-Seidel sor ω−1D + L

singular-value decomposition svd A = U>ΣV

simple iteration [66]. That is, simple iteration is Richardson iteration applied to the left-precon-
ditioned system (2.19).

Classical Jacobi (jacobi), successive over-relaxation (sor), and Gauss-Seidel (also sor)
iterations are cases of simple iteration which extract parts of A to give M [66]; see Exercise 2.1.
These well-known methods split A into diagonal, lower-triangular, and upper-triangular parts:
A = D + L+ U .

To understand the literature about these methods one must observe that a so-called matrix
splitting A = M −N gives a matrix iteration

Muk+1 = Nuk + b, (2.24)

which is actually equivalent to simple iteration (2.23) when α = 1. To see this replace N =
M −A on the right side of (2.24) and then multiply both sides by M−1:

uk+1 = uk +M−1(b−Auk)
A=M−N
⇐⇒ Muk+1 = Nuk + b. (2.25)

Looking forward, Chapter 6 describes how the classical matrix-splitting iterations are used
as “smoothers” in multigrid methods [26, 144] and in block decompositions. These classical
iterations do not, however, yield effective solver methods for PDE problems when used on their
own in simple iteration.

The two multigrid preconditioning methods described as “≈ A” in the table are critically
important for efficient solution of PDE problems. Algebraic (gamg) and geometric (mg) multigrid
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Krylov space methods 17

have complicated details which we begin to address in Chapter 6. Geometric multigrid is a focus
of Chapter 6, the algebraic form of multigrid is introduced in Chapter 10, and multigrid methods
are used extensively in Chapters 7–14.

The block approximations of A implied by the additive Schwarz method (asm) [134] and
block Jacobi (bjacobi) preconditioners are also covered in Chapter 6. Such block structure
arises naturally from a parallel decomposition of a PDE problem into subgrids or submeshes.

The fieldsplit preconditioning framework [27], first demonstrated in Chapter 7, gets its
block decomposition from a vector-valued PDE problem. That is, fieldsplit applies to sys-
tems of PDEs, the best-known case being Schur decomposition preconditioning of the Stokes
equations; this is demonstrated in Chapter 14.

Finally, two preconditioner types are not listed in the table because they do not correspond
to an operator M . The redundant (Chapter 7) and telescope (Chapter 8) PC types are
metapreconditioners which determine on which MPI processes the preconditioning action oc-
curs. That is, they determine the parallel layout of the data which defines the preconditioner.

For further information on preconditioning see references [16, 64, 66, 152].

Krylov space methods
Iterative methods are well suited to the linear systems which arise from discretizing PDEs. Such
methods approximate the solution by linear combinations of vectors v, Av, A2v, . . . , Ak−1v,
where v is an initial residual (e.g., v = b − Au0 or v = b). The matrix A may be the original
one in system (2.6) or a preconditioned version. The effectiveness of such Krylov space methods
in solving a particular linear system depends on the spectral properties of the matrix. Because
there is no single Krylov method which is best for all cases, many such methods are supported
in PETSC.

The following overview of Krylov methods is brief, and references [66, 131, 143] are recom-
mended for algorithms and convergence theory. By definition, for a square matrix A ∈ RN×N ,
a vector v ∈ RN , and an integer n ≥ 0, the Krylov (sub)space [99] is

Kn(A,v) = span{v, Av, A2v, . . . , An−1v} ⊆ RN . (2.26)

This subspace is of dimension at most min{n,N}, but it can be of lower dimension. (For exam-
ple, suppose v is an eigenvector of A.)

Suppose w ∈ Kn(A,v). Then

w = c0v + c1Av + c2A
2v + · · ·+ cn−1A

n−1v

for some coefficients cj or, equivalently,

w = p(A)v,

where p(x) = c0 + c1x+ · · ·+ cn−1x
n−1 is a polynomial of degree at most n−1. This essential

observation allows us to use the properties of polynomials to analyze the approximation abilities
of vectors in Kn(A,v).

To approximate u = A−1b solving (2.6) we may seek a polynomial pn−1 so that

pn−1(A) ≈ A−1, (2.27)

so w = pn−1(A)b ∈ Kn(A,b) approximates u = A−1b. Note w is formed using only n − 1
applications of A to vectors, plus operations to form the linear combination.

One can prove that if a scalar polynomial pn−1(z) is close to the function 1/z on the finite
set of eigenvalues of A, i.e., on the spectrum σ(A) in the complex plane C, then (2.27) holds in
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18 Chapter 2. Finite-dimensional linear systems
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Figure 2.1. The Richardson iteration (2.12) approximates u = A−1b by uk = qk(A)b for
polynomials qk(x) which approximate 1/x on the interval (0, 2).

a norm sense (Exercise 2.10). Specifically, the size of the error ‖w − u‖ is determined by the
maximum of |pn−1(z) − z−1| for z ∈ σ(A) and by the conditioning of the eigenvalue problem
forA. Thus, whether pn−1 is a “good” for approximately invertingA is a spectral question about
A. While pn−1(z) ≈ 1/z is impossible on the whole of C, it can be achieved on finite and/or
compact subsets of C which exclude zero, and the spectrum σ(A) of an invertible matrix A is
such a set.

The construction of a polynomial pn−1 satisfying (2.27) is a thus a question of approximation
theory on the finite subset σ(A) ⊂ C. While precise knowledge of the spectrum σ(A) is asking
too much, and accurately computing σ(A) is as difficult as solving (2.6), the context in which A
was generated might supply bounds on the eigenvalues or condition number of A. For example,
A might come from discretizing a differential operator with known spectral properties.

Consider the Richardson iteration (2.12) with α = 1. A straightforward calculation (Exercise
2.11) starting with u0 = b generates uk = qk(A)b where q0(x) = 1,

qk+1(x) = 1 + (1− x)qk(x), (2.28)

and one can show that qk(z) → 1/z for z in a disk D of radius one around z0 = 1. Figure
2.1 shows these polynomials qk. On the other hand, (2.18) says uk = qk(A)b converges if
ρ(I − A) < 1, that is, if all eigenvalues of A are within distance one of 1 ∈ C. In summary, the
(α = 1) Richardson iteration generates iterates uk which are from the Krylov spaceKk+1(A,b).
It converges if the matrices qk(A) approximate A−1, which can only happen if σ(A) is inside D.

The polynomials generated by the Richardson iteration are not, however, the closest polyno-
mials of the given degree to the function 1/z. Furthermore the Richardson iteration only con-
verges when σ(A) lies inside a fixed disk in the complex plane, a rather rigid requirement on A.
Other Krylov methods are more flexible. We now summarize three well-known methods. Each
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Krylov space methods 19

generates polynomial approximations which are best in specific senses; the errors or residuals
are as small as possible among the vectors in certain Krylov spaces.

To proceed we define a norm and certain affine subspaces. First observe that ifA is SPD then
it can be used to define an A-inner product v>Aw and A-norm

‖v‖A =
√
v>Av. (2.29)

Next let P1
n be the set of all real polynomials p of degree at most n such that p(0) = 1. For any

real square matrix A ∈ RN×N , and a vector v ∈ RN , we also define affine Krylov spaces

K1
n(A,v) = v + span{Av, A2v, . . . , An−1v} ⊂ Kn(A,v). (2.30)

The affine subspaces are closely related to the polynomials:

w ∈ K1
n(A,v) ⇐⇒ there exists p(z) ∈ P1

n−1 so that w = p(A)v.

The conjugate gradient (CG) algorithm [79] generates iterates which minimize the A-norm
of the error over all vectors in the Krylov space Kk(A,b) [143]. That is, if u0 = 0 then the
iterate uk ∈ Kk(A,b) satisfies

‖uk − u‖A ≤ ‖w − u‖A for all w ∈ Kk(A,b), (2.31)

where u = A−1b. Equivalently the errors ek = uk − u solve a minimization problem:

ek minimizes ‖v‖A over v ∈ K1
k(A, e0).

Thus the error reduction ‖ek‖A/‖e0‖A achieved by CG arises from the spectral properties of A,
namely

‖ek‖A
‖e0‖A

is small if there exists p ∈ P1
k−1 which is small on σ(A) ⊂ (0,∞).

The availability of polynomials with small magnitude on the spectrum of A determines how
small is the error in the CG iterates.

If A is SPD it follows that σ(A) ⊂ (0,∞) and that the condition number is the ratio of
eigenvalues: κ2(A) = λmax/λmin. The well-known construction of Chebyshev polynomials, in
this case shifted and scaled so as to have small magnitude on the interval [λmin, λmax] ⊂ R, gives
an estimate of the error reduction in terms of the condition number ofA [66, 143]. We will return
to these ideas, and their consequences for numerical solutions of PDEs, in Chapter 3.

One way of deriving the CG algorithm—and also the manner of its discovery—is to regard it
as an improvement of steepest descent for minimizing the objective function g(x) = 1

2x
>Ax−

b>x. (Recall that if A is SPD then the unique minimum is u = A−1b.) If one maintains
orthogonality of the search directions in the A-inner product (i.e., conjugacy) then one gets the
CG algorithm [118].

The CG algorithm is a system of simple recurrence formulas (Exercise 2.8). It uses only
one application of A per iteration, and the additional operations require O(N) work per iteration
with a small constant. Only three stored vectors are needed. Thus work-per-iteration and storage
are O(N), and each application of A is O(N). Also, because each iterate minimizes the A-norm
of the error on a larger space than the last, the error norms are monotonic nonincreasing. For
these reasons, CG is often the preferred Krylov iteration when it is available, namely when the
matrix is SPD. Note that Krylov iterations are sometimes effective even outside the cases where
they provably work, and so CG may also work for certain “nearly” SPD matrices. While CG is
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20 Chapter 2. Finite-dimensional linear systems

routinely used in parallel, its implementation includes two inner products per iteration. These
global reduction operations require parallel communication (Chapter 8).

If A is not SPD then there is a different norm to consider. For square matrices A, recall that
A>A is SPD ifA is invertible [143]. We may thus define a norm ‖v‖A>A =

√
v>A>Av. Using

this norm on the error e is useful, but it goes by a different name: it is a residual norm. In fact, if
u solves Au = b then

‖b−Av‖22 = (b−Av)>(b−Av) = (Au−Av)>(Au−Av)

= (u− v)A>A(u− v) = ‖u− v‖2A>A.

That is, for given v the residual r = b−Av and the error e = v − u satisfy

‖r‖2 = ‖e‖A>A. (2.32)

Changing the goal from minimizing the A-norm of the error to minimizing the 2-norm of
the residual yields effective Krylov methods for many matrices A. For example, the minimum
residuals (MINRES) [49, 122] method is designed for indefinite but symmetric matrices, i.e.,
symmetric matrices with both positive and negative eigenvalues. In exact arithmetic MINRES
generates uk which minimize ‖rk‖2 over the Krylov space. It exploits the symmetry of A to
retain the short recurrence and O(N) storage of CG. While the convergence rate is again con-
nected to the spectral properties of A, convergence bounds are not as simple as for CG. That is,
a reduction in norm is tied to the existence of polynomials p satisfying p(0) = 1 which are small
on σ(A), so the polynomial must be small on a set which straddles the origin [152].

For nonsymmetric matrices, Krylov methods face a choice of either keeping a short recur-
rence and small memory usage or keeping a strong norm-minimizing property [66]. Both types
of methods are implemented in PETSC. In the former short-recurrence category a partial list of
KSP types is cgne, bcgs, cgs, tfqmr, and bicg [66, 10]. About these we say nothing more in
this short introduction, but bcgs is applied to an advection-diffusion problem in Chapter 11.

The generalized minimum residuals (GMRES) [132] method gmres is in the latter category.
The iterates minimize residual norms, but the memory usage and work-per-iteration are no longer
O(N). It is a “brute force” approach which stores a representation of the growing Krylov space.
While this is slower than the short recurrences in CG and MINRES, the computations at each
step of GMRES tend to be quite stable [143]. However, for practical software it would be un-
acceptable to swamp the computer’s memory with the Krylov space storage from GMRES. In
fact, the number of iterations, and thus the size of the storage, depends in a hard-to-predict way
on the entries of A. Instead the method is implemented with restarts, namely iterations at which
the current Krylov space representation is thrown away and the iteration is reinitialized using the
current iterate as u0. This algorithm, often written as “GMRES(R)” where R is the number of
steps between restarts, is critical to making GMRES an effective tool, but the details [131] are
beyond our scope.

Though pseudocodes for the CG and preconditioned-CG algorithms appear in the exercises,
only the references supply the details of other algorithms. In particular, see [49] for MINRES
and [64, 66, 131] for GMRES.

It is worth noting that no Krylov method is “best.” Nachtigal and others [117] showed that
for each nonsymmetric method one can design an example matrix A for which that method is
distinctly superior to all others. In a similar spirit, [68] proves that examples can be constructed
so that GMRES exhibits any desired convergence rate.

The classical Jacobi and Gauss-Seidel iterations are not pure Krylov space methods because
they involve extracting parts of (entries of) the matrix A. They are, however, simple iterations
(2.23) combining a particular Krylov method (Richardson) with left preconditioning (2.19) based
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Chebyshev iteration 21

on matrix splitting. Though these classical iterations are slow to converge, their smoothing prop-
erties are used in multigrid methods (Chapter 6).

Krylov methods in PETSC live in KSP objects, and the particular method used in a solver
can be chosen at the command line using -ksp_type. We will demonstrate their usage, and how
they are combined with PC preconditioner objects, later in this chapter. The default KSP type in
PETSC is GMRES(30), i.e., -ksp_type gmres -ksp_gmres_restart 30.

Recall that direct linear algebra methods, such as the LU, Cholesky, or SVD decompositions,
represent “extreme preconditioning” with M = A. On the other hand, if M−1 = A−1 then
simple iteration (2.23) solves (2.6) in one iteration,

u1 = u0 +A−1(b−Au0) = A−1b,

and the same is true of any Krylov method if computed in exact arithmetic. In PETSC these
direct methods may be combined, as preconditioners, with any Krylov method, but if only the
action of the direct method X is desired then the solver combination is -ksp_type preonly
-pc_type X.

Note that the residual norm after one application of the direct method will generally not be
exactly zero because of rounding error. A Krylov iteration may then play an “iterative refine-
ment” role, “mopping up” accumulated rounding error from preconditioner arithmetic. Using a
Krylov solver with a convergence test, which is normal PETSC usage, means not having to worry
as much about rounding errors because additional iterations are automatically added if rounding
error has built up. On the other hand, actual usage of a direct method as the preconditioner is
normally limited to small problems because of poor algorithmic scaling withN , which isO(N3)
in worst cases.

For any nontrivial linear system, experimentation with Krylov methods is appropriate, and
with preconditioners even more so. PETSC is designed to facilitate such experimentation. For
example, we will see that the CG method with an incomplete factorization preconditioner seems
acceptable for the Poisson problem in Chapter 3. However, multigrid preconditioners (Chapter
6) actually yield a profound improvement. Our recurring focus on preconditioning is another
numerical fact of life:

Fact 5. The rate of residual reduction in a Krylov iteration is at the mercy of the spectrum of your
preconditioned matrix. Whatever Krylov iteration you choose, whether norm-minimizing or not,
good performance depends on the spectral properties of your matrix. A fast solver for a PDE
problem must somehow make the spectral properties of the preconditioned matrix so good that
the Krylov choice becomes almost unimportant.

Table 2.2 is a short list of five Krylov methods which we will use repeatedly in this book.
These KSP types are chosen by option -ksp_type; also recall ek = uk − u and rk = b−Auk.
Note we introduce the Chebyshev iterative method in the next section.

Chebyshev iteration
The Chebyshev iterative method [3, 64] is not norm-minimizing in the same sense as CG,
MINRES, and GMRES. Unlike those Krylov methods it requires explicit bounds on the spectrum
of A, thus it is sometimes called a semi-iterative method [64]. The iteration itself—not just its
analysis—is based on the construction of small polynomials on the spectrum of A.

The method may be regarded as a simple iteration (2.23) wherein M−1 is a polynomial in A:

uk+1 = uk + p(A)(b−Auk). (2.33)

It is easy to show (Exercise 2.12) that the errors ek = uk − u then satisfy

ek+1 = q(A)ek, (2.34)
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22 Chapter 2. Finite-dimensional linear systems

Table 2.2. Some common Krylov methods in PETSC for a linear system Au = b.

KSP type Symmetry Norm-minimizing? Good if

cg SPD
ek minimizes ‖v‖A
over v∈K1

k(A, e0)
exists p∈P1

n small on
σ(A)⊂(0,∞)

chebyshev SPD no known bounds for σ(A)

gmres any
rk minimizes ‖v‖2
over v∈Kk(A,b)

exists p∈P1
n small on

σ(A)⊂C \ {0}

minres symmetric
rk minimizes ‖v‖2
over v∈Kk(A,b)

exists p∈P1
n small on

σ(A)⊂R \ {0}

richardson any no ρ(I − αA)� 1

where q(x) = 1 − p(x)x is a new polynomial satisfying q(0) = 1. It follows that for diagonal-
izable matrices A we have

‖ek+1‖ ≤ ‖q(A)‖‖ek‖ ≤ C max
λ∈σ(A)

|q(λ)|‖ek‖, (2.35)

where C > 0 depends only on A. (The proof of (2.35) follows the same idea as in Exercise
2.10. The constant, which depends on the conditioning of the eigenvalue problem for A, is one
when the matrix is symmetric.) The error norms are thus rapidly reduced when polynomial q(x)
is small on σ(A).

On the other hand, the Chebyshev polynomials {Tn(x)} are a particular orthogonal family in
a certain inner product [66, 142]. Their well-known properties include that they are constructed
by a short (second-order) recurrence formula and that they grow exponentially large (with n)
outside of the interval [−1,+1], while being bounded by one on that interval (i.e., |Tn(x)| ≤ 1
if x ∈ [−1,+1]). The idea of the Chebyshev iteration is that by shifting and scaling Chebyshev
polynomials one can build q(x) with very small magnitudes on σ(A) (Figure 2.2), and thus
estimate (2.35) implies rapid reduction in error.

However, implementing this idea requires knowing an interval (or ellipse in C [142]) con-
taining σ(A). For simplicity assume A is SPD so σ(A) ⊂ [λmin, λmax] ⊂ (0,+∞). (There exist
inexpensive iterations, used in the PETSC implementation of the Chebyshev iteration, which can
approximate λmin and λmax.) The polynomials p(z) and q(z) are built as the iteration proceeds,
using the spectral bounds λmin, λmax and a recurrence derived from the recurrence for Chebyshev
polynomials [64]. Because of the rapid growth of Chebyshev polynomials outside of [−1,+1],
Chebyshev iteration is most effective if the interval [λmin, λmax] is both far from the origin and
not too long.

However, we should reveal the reason to include the Chebyshev iteration as an important KSP
type (Table 2.2). If the goal of the iteration is changed from reducing the full norm ‖ek‖ of the
kth-iterate error to instead reducing the high frequencies in ek then the lower bound λmin can be
increased so that the rate of reduction for the high frequencies gets better. An iteration which
reduces the high-frequency portion of the error is a smoother, and, as addressed in Chapter 6,
a multigrid preconditioner uses such a smoother. The primary role of the Chebyshev iteration
in our PDE solution methods will be as a component of multigrid methods. The Chebyshev
iteration shares the smoother role with the classical Jacobi and Gauss-Seidel iterations, but it is
more suitable in parallel [3].
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PETSC objects 23

q(x)

q(0) = 1

min

max

Figure 2.2. The Chebyshev iterative method builds polynomials q(x), such that q(0) = 1, which
are small on an identified interval [λmin, λmax].

Our brief introduction to iterative linear algebra is complete. We turn now to PETSC objects,
linear system examples, and example programs.

PETSC objects
Our first program to solve a linear system will use PETSC’s Vec and Mat data types which
represent vectors and matrices, respectively. These data types are, essentially, objects. Although
written in C, not an officially object-oriented language like C++, PETSC is a relentlessly object-
oriented library. Consider the operations which create and configure a variable of type Mat which
represents a matrix A ∈ RN×N :

Mat A;
MatCreate(COMM,&A);
MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N);
MatSetFromOptions(A);
MatSetUp(A);
... fill entries of (i.e. assemble) A ...
... solve system with A ...
MatDestroy(&A);

These calls, essentially methods of the Mat object A, control its hidden internal representa-
tion. Often such Mat methods manipulate the entries of the matrix, but in fact a Mat need
not even have entries. It might instead contain code that applies a linear operator to a vector.
Furthermore the data structure inside a Mat depends on run-time choices through the call to
MatSetFromOptions(). For example, option -mat_type sbaij chooses a symmetric block
sparse representation—often a good idea if the matrix is symmetric.

Once Mat A is created and configured, then additional methods become valid. For example,
the MatSetValues() function sets entries in A—see below for examples. Also, setting option
-mat_view or calling the function MatView() will print out the entries of A.

The Mat type is just one example of the principle that certain operations apply to all PETSC
types (“Object” is a placeholder for an actual PETSC type name):
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24 Chapter 2. Finite-dimensional linear systems

Object X;
ObjectCreate(COMM,&X);
... code which sets properties of X ...
ObjectSetFromOptions(X); // allow run-time resetting of properties
... code which uses X ...
ObjectDestroy(&X);

Because PETSC types are generally distributed across, and accessible from, multiple MPI pro-
cesses, the first argument of an ObjectCreate() method is an MPI communicator (“COMM”). We
will usually use PETSC_COMM_WORLD, the communicator generated from all P processes when
we run with “mpiexec -n P.” Operations like ObjectCreate(), ObjectSetFromOptions(),
and ObjectDestroy() are collective [72]; they must be called by all processes in COMM.

Parallel layout of Vec and Mat objects
A Vec object stores its entries in parallel across the processes in the MPI communicator used to
create it. For example, the create-set-assemble sequence of a Vec with four entries might look
like this:

Vec x;
PetscInt i[4] = {0, 1, 2, 3};
PetscReal v[4] = {11.0, 7.0, 5.0, 3.0};

VecCreate(PETSC_COMM_WORLD,&x);
VecSetSizes(x,PETSC_DECIDE,4);
VecSetFromOptions(x);
VecSetValues(x,4,i,v,INSERT_VALUES);
VecAssemblyBegin(x);
VecAssemblyEnd(x);

The four entries of x are set by the call to VecSetValues(), putting values from array v at the
indices given by i.

One is allowed to think of a PETSC Vec as a one-dimensional C array with its contents split
across the processes in the MPI communicator. For example, if the above code is run sequentially
as

$ ./mycode

then, at the end of the above sequence, the storage of x looks like Figure 2.3 (left). However, if
run as

$ mpiexec -n 2 ./mycode

then the layout looks like Figure 2.3 (right). The argument PETSC_DECIDE in VecSetSizes()
allows PETSC to split the entries as evenly as possible between the processes.

Setting values in a Vec may require communication between processes because entries which
are to be stored on one process could be set by another process. Such communication can oc-
cur between the VecAssemblyBegin() and VecAssemblyEnd() commands. However, in the
above code each process has a copy of all data and simply ignores data in rows it does not own.

PETSC Mat objects generally require additional choices regarding storage and parallel dis-
tribution. A common storage format is compressed sparse row storage, the MATAIJ type. In
this format only the specifically allocated entries are stored (sparse). These nonzero entries are
stored contiguously in memory using an additional index array (compressed). (Allocated entries
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Assemble and view a Mat 25

i = 0 11.0

i = 1 7.0

i = 2 5.0

i = 3 3.0

rank = 0

i = 0 11.0

i = 1 7.0

i = 2 5.0

i = 3 3.0

rank = 0

rank = 1

Figure 2.3. A sequential Vec layout (left) and a parallel layout (right) on two processes.

are often referred to as “nonzeros” in sparse representations even though they may be zeros!) In
parallel a range of rows is owned by each process (type MATMPIAIJ).

Because Mat objects are linear operators, their purpose is to multiply Vecs. The result Vec
from a Mat-Vec product is a linear combination of the columns of the Mat. For a Mat of type
MATMPIAIJ the rows are usually distributed the same way as the entries of the intended output
(i.e., column) Vec. Specifically, this is the outcome when PETSC_DECIDE is used in setting both
the Vec and Mat local sizes (see below for a Mat case) and when the output Vec global size
is the same as the number of rows of the Mat. As PETSC computes the Mat-Vec product, it
communicates (“scatters” using MPI calls) the input Vec to the processes. After the scatter the
Mat-Vec product is a local operation, requiring no further communication.

Assemble and view a Mat
Assembling a Mat one row at a time is a common usage. In PDE-type applications a matrix
row generally represents the discrete version of the PDE at some location in the part of the grid
or mesh owned by the processor. (We present much more on this in later chapters.) In such
applications there are usually only a few nonzero entries per row.

However, one doesn’t need to know how a Mat is stored in order to assemble it. For an
example of assembling a small Mat, consider the 4× 4 matrix

A =


1 2 3 0
2 1 −2 −3
−1 1 1 0
0 1 1 −1

 .
The following code stores A in a Mat, one row at a time:

Mat A;
PetscInt i, j[4] = {0, 1, 2, 3};
PetscReal aA[4][4] = {{ 1.0, 2.0, 3.0, 0.0},

{ 2.0, 1.0, -2.0, -3.0},
{-1.0, 1.0, 1.0, 0.0},
{ 0.0, 1.0, 1.0, -1.0}};

MatCreate(PETSC_COMM_WORLD,&A);
MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,4,4);
MatSetFromOptions(A);
MatSetUp(A);
for (i=0; i<4; i++) {
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26 Chapter 2. Finite-dimensional linear systems

MatSetValues(A,1,&i,4,j,aA[i],INSERT_VALUES);
}
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

The function MatSetValues() can set multiple entries as long as they form a block, namely
a product of lists of row indices and column indices. In the above code a row is a 1 × 4 block.
The “1,&i” arguments set one row with index i while the “4,j” arguments indicate the integer
array j with four column indices. Note that “aA[i]” is a pointer to the ith row of A.

The approach above treats the matrix as dense—every entry is allocated including those with
value 0.0. However, in the usual usage for a sparse matrix one inserts only the nonzero entries.
As a demonstration we assemble the same matrix by breaking it up into three blocks of nonzeros:
a 3× 3 block, a 1× 3 block, and a single entry. The for loop is gone, along with any elegance:

PetscInt i1[3] = {0, 1, 2},
j1[3] = {0, 1, 2},
i2 = 3,
j2[3] = {1, 2, 3},
i3 = 1,
j3 = 3;

PetscReal aA1[9] = { 1.0, 2.0, 3.0,
2.0, 1.0, -2.0,
-1.0, 1.0, 1.0},

aA2[3] = { 1.0, 1.0, -1.0},
aA3 = -3.0;

...
MatSetValues(A,3,i1,3,j1,aA1,INSERT_VALUES);
MatSetValues(A,1,&i2,3,j2,aA2,INSERT_VALUES);
MatSetValue(A,i3,j3,aA3,INSERT_VALUES);
...

Once a Mat is assembled its entries can be viewed at run time in various formats. For instance,
the Mat was assembled using the second method above in a code called sparsemat.c (not
shown). After building it, we see the following outputs in serial:

$ cd c/ch2/
$ make sparsemat
...
$ ./sparsemat -mat_view
Mat Object: 1 MPI processes
type: seqaij

row 0: (0, 1.) (1, 2.) (2, 3.)
row 1: (0, 2.) (1, 1.) (2, -2.) (3, -3.)
row 2: (0, -1.) (1, 1.) (2, 1.)
row 3: (1, 1.) (2, 1.) (3, -1.)
$ ./sparsemat -mat_view ::ascii_dense
Mat Object: 1 MPI processes
type: seqaij

1.00000e+00 2.00000e+00 3.00000e+00 0.00000e+00
2.00000e+00 1.00000e+00 -2.00000e+00 -3.00000e+00
-1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00
0.00000e+00 1.00000e+00 1.00000e+00 -1.00000e+00

The first view shows the sparse storage format, with values as pairs with column index and value.
The second view is “dense”: all values are shown, whether they occupy memory or not. Note
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A small linear system 27

i = 0

i = 1

i = 2

i = 3

321j = 0

1.0 2.0 3.0

2.0 1.0 −2.0 −3.0

−1.0 1.0 1.0

1.0 1.0 −1.0

rank = 0

rank = 1

Figure 2.4. A parallel Mat layout, on two processes, of a 4× 4 matrix with 13 nonzero entries.

that the output from option -mat_view occurs at completion of the MatAssemblyBegin() and
MatAssemblyEnd() calls. In a one-process run, by default the Mat is in serial compressed sparse
row storage, namely the MATSEQAIJ type, and thus “type: seqaij” is reported as above. If the
run is parallel then -mat_view reports “type: mpiaij” corresponding to MATMPIAIJ. For two
processes the layout is as shown in Figure 2.4.

Here are some additional possibilities for viewing a Mat:

(i) show the sparsity pattern graphically using the X window system

-mat_view draw -draw_pause 1

(ii) save the matrix to file mat.dat in PETSC’s binary format

-mat_view binary:mat.dat

(iii) save to text file mat.m in a MATLAB text format

-mat_view ascii:mat.m:ascii_matlab

The file format specification is

-mat_view TYPE:FILENAME:FORMAT

One may omit TYPE when ascii is desired and FILENAME when destination stdout is desired.

A small linear system
We now know how to create, fill, assemble, view, and destroy Vec and Mat objects. Code 2.1
shows vecmatksp.c which does these steps for a small linear system:

1 2 3 0
2 1 −2 −3
−1 1 1 0
0 1 1 −1



x0

x1

x2

x3

 =


7
1
1
3

 . (2.36)

In this code a KSP (Krylov space method) object solves the linear system, but the particular
solution algorithm can be chosen at run time. Note that the KSP also has the expected create-set-
use-destroy sequence.
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28 Chapter 2. Finite-dimensional linear systems

static char help [ ] = "Solve a 4x4 l inear system using KSP. \ n" ;

#include <petsc .h>

int main( int argc , char ** args ) {
Vec x , b ;
Mat A;
KSP ksp ;
PetscInt i , j [ 4 ] = {0 , 1 , 2 , 3 } ; / / j = column index
PetscReal ab [4 ] = {7.0 , 1.0 , 1.0 , 3.0} , / / vector entr ies

aA[ 4 ] [ 4 ] = { { 1.0 , 2.0 , 3.0 , 0.0} , / / matrix entr ies
{ 2.0 , 1.0 , −2.0 , −3.0} ,
{ −1.0 , 1.0 , 1.0 , 0.0} ,
{ 0.0 , 1.0 , 1.0 , −1.0}} ;

Pe tsc In i t i a l i ze (&argc ,&args ,NULL, help ) ;

VecCreate (PETSC_COMM_WORLD,&b) ;
VecSetSizes (b ,PETSC_DECIDE,4) ;
VecSetFromOptions (b) ;
VecSetValues (b,4 , j , ab ,INSERT_VALUES) ;
VecAssemblyBegin(b) ;
VecAssemblyEnd(b) ;

MatCreate (PETSC_COMM_WORLD,&A) ;
MatSetSizes (A,PETSC_DECIDE,PETSC_DECIDE,4 ,4) ;
MatSetFromOptions (A) ;
MatSetUp(A) ;
for ( i =0; i <4; i ++) { / / set entr ies one row at a time

MatSetValues (A,1 ,& i ,4 , j ,aA[ i ] ,INSERT_VALUES) ;
}
MatAssemblyBegin (A,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY) ;

KSPCreate(PETSC_COMM_WORLD,&ksp ) ;
KSPSetOperators (ksp ,A,A) ;
KSPSetFromOptions(ksp ) ;
VecDuplicate (b,&x ) ;
KSPSolve(ksp ,b , x ) ;
VecView(x ,PETSC_VIEWER_STDOUT_WORLD) ;

KSPDestroy(&ksp ) ; MatDestroy(&A) ;
VecDestroy(&x ) ; VecDestroy(&b) ;
return PetscFinalize ( ) ;

}

Code 2.1. c/ch2/vecmatksp.c. Solve a small linear system.

At the setup stage we tell the KSP about the matrix A via the command

KSPSetOperators(ksp,A,A);

But why list A twice? The first A defines the linear operator. An iterative method uses this Mat
when applying the matrix to a vector.

However, recalling left- and right-preconditioning equations (2.19) and (2.20), the rea-
son for the second argument A is that at run time we may choose a preconditioning method
which builds M−1 from A, or from an approximation of A. The second matrix argument to
KSPSetOperators() is the Mat from which M−1 is built. We do not supply M itself because
doing so would obstruct easy choice among preconditioners at run time. (The user might need to
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Revealing solvers at run time 29

write extra code for different preconditioners.) Instead we supply “material” from which M−1

is built.
The most common preconditioner material is A itself. In Jacobi preconditioning, for exam-

ple, PETSC forms M by extracting the diagonal from this material. In the LU decomposition
the matrix entries are copied from the material and then reordered (e.g., with partial pivoting)
and completely transformed into the factors L and U . In later chapters we will give examples in
which only an approximation of A is supplied as the material.

To actually solve the system we call

KSPSolve(ksp,b,x);

This supplies the right-hand side of the system, an allocated and assembled Vec b, and space for
the solution, namely a Vec x which is often allocated by duplicating the storage layout of b; here
we use VecDuplicate().

The rest of Code 2.1 is self-explanatory, so we give it a try:

$ make vecmatksp
...
$ ./vecmatksp
Vec Object: 1 MPI processes
type: seq

1.
0.
2.
-1.

The reader should, of course, check the correctness of this solution to (2.36).

Revealing solvers at run time
To see more of what happens when we run vecmatksp.c, we could start by viewing the Vec
and Mat objects. However, the result of

$ ./vecmatksp -vec_view -mat_view

is as expected (and not shown). In fact, output of a Vec or a Mat tells us nothing about the
solution process, nor does it give any hints of alternative ways of solving the equations. On the
other hand, the following idea cannot be overemphasized.

Fact 6. Learning PETSC requires viewing solver objects at run time. If you did not view the
solver with -ksp_view, -snes_view, or -ts_view then you probably do not know what it did,
even if it succeeded. Viewing solvers is the first step to understanding their composition.

We will consider the SNES and TS solver types in Chapters 4 and 5, respectively. For now we
use -ksp_view, with output (slightly) clipped for clarity:

$ ./vecmatksp -ksp_view
KSP Object: 1 MPI processes
type: gmres
restart=30, using Classical (unmodified) Gram-Schmidt ...
happy breakdown tolerance 1e-30

maximum iterations=10000, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
left preconditioning
using PRECONDITIONED norm type for convergence test
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30 Chapter 2. Finite-dimensional linear systems

PC Object: 1 MPI processes
type: ilu
out-of-place factorization
0 levels of fill
tolerance for zero pivot 2.22045e-14
matrix ordering: natural
factor fill ratio given 1., needed 1.

Factored matrix follows:
Mat Object: 1 MPI processes
type: seqaij
rows=4, cols=4
package used to perform factorization: petsc
total: nonzeros=16, allocated nonzeros=16
...

linear system matrix = precond matrix:
Mat Object: 1 MPI processes
type: seqaij
rows=4, cols=4
total: nonzeros=16, allocated nonzeros=16
...

Vec Object: 1 MPI processes
type: seq

1.
0.
2.
-1.

Here is some of what we learn:

• The default KSP solver is GMRES(30) or -ksp_gmres_restart 30, that is, it restarts
after 30 iterations so as to limit memory usage.

• The default convergence tolerances are -ksp_rtol 1.0e-5 and -ksp_atol 1.0e-50.
(Here the iterations stop when the residual norm has been reduced by 105, which happens
on the first iteration; see below.)

• Inside every KSP is a PC preconditioner object. (We did not need to ask for one!)

• The PC object has a matrix A (“Mat Object:”), supplied as the second argument to
KSPSetOperators().

• We see “linear system matrix = precond matrix” because we supplied the same
Mat as both arguments to KSPSetOperators().

• The serial default PC is left preconditioning using incomplete LU factorization [64, 112],
and “0 levels of fill”, thus it is ILU(0).

While option -ksp_view tells us what the solver is, option -ksp_monitor tracks what it
does. In this case, the iteration is short:

$ ./vecmatksp -ksp_monitor
0 KSP Residual norm 2.449489742783e+00
1 KSP Residual norm 1.520235486122e-15

The residual drops by 15 orders of magnitude in one iteration because GMRES sees a precondi-
tioned system (2.19) with M−1A = I . That is, the ILU operation on this particular A is actually
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A tridiagonal linear system 31

a full LU factorization: M = LU = A. Every entry is allocated so the exact LU factorization
requires no further “fill-in.” (By definition, “fill-in” occurs in a sparse matrix operation if previ-
ously un-allocated zeros are replaced by nonzeros, thus using more memory.) Examples below,
and in later chapters, are more representative because they involve actually sparse matrices.

Now, a direct solver can be chosen more deliberately. First do

$ ./vecmatksp -help | grep ksp_type
-ksp_type <gmres>: Krylov method (one of) cg ... preonly ... (KSPSetType)

and

$ ./vecmatksp -help | grep pc_type
-pc_type <ilu>: Preconditioner (one of) none jacobi ... lu ... (PCSetType)

For direct solvers we typically do not want iterations, and one of the KSP options is “preonly.”
Of the many available PC types, one preconditioner is “lu,” a full LU decomposition. Thus a
direct solver combination is

$ ./vecmatksp -ksp_type preonly -pc_type lu

One could also use -pc_type svd.
When solving on multiple MPI processes, using ILU as the default preconditioner makes

no sense. Even when fill-in is avoided, a LU factorization algorithm could involve a great deal
of interprocess communication.12 However, the ILU method can be applied to diagonal blocks
of A, i.e., the block of entries corresponding to Vec indices owned by a process, and the result
treated as an approximation M−1 ≈ A−1, a block-diagonal or block Jacobi preconditioner. This
defines the default parallel KSP/PC composition:

-ksp_type gmres -pc_type bjacobi -sub_pc_type ilu

Note that inside the bjacobi PC is a sub_ PC object, which defaults to ILU(0) applied to each
diagonal block without interprocess communication. (There is also a sub_ KSP object inside
bjacobi, and it is preonly by default.) The reader can confirm this situation by running, for
example,

$ mpiexec -n 2 ./vecmatksp -ksp_view

A tridiagonal linear system
The next example tri.c (Code 2.2) introduces the following concepts:

• Creating an integer option, using PetscOptionsInt(), to determine the size of the linear
system.

• Assembling a Mat of arbitrary size across an arbitrary number of processes, using
MatGetOwnershipRange() to only fill locally owned rows.

• Setting up a known exact solution to the linear system, and then computing and displaying
the numerical error.

12Advanced sparse direct solvers like MUMPS and SuperLU are available through external packages. See [10] and
www.mcs.anl.gov/petsc/miscellaneous/external.html.
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32 Chapter 2. Finite-dimensional linear systems

static char help [ ] = "Solve a t r id iagona l system of a rb i t ra ry size . \ n"
" Option pre f i x = t r i _ . \ n" ;

#include <petsc .h>

int main( int argc , char ** args ) {
Vec x , b , xexact ;
Mat A;
KSP ksp ;
PetscInt m = 4, i , I s t a r t , Iend , j [ 3 ] ;
PetscReal v [3 ] , xval , errnorm ;

Pe tsc In i t i a l i ze (&argc ,&args ,NULL, help ) ;

PetscOptionsBegin (PETSC_COMM_WORLD, " t r i _ " , " options for t r i " , " " ) ;
PetscOptionsInt ( "−m" , "dimension of l inear system" , " t r i . c " ,m,&m,NULL) ;
PetscOptionsEnd ( ) ;

VecCreate (PETSC_COMM_WORLD,&x ) ;
VecSetSizes (x ,PETSC_DECIDE,m) ;
VecSetFromOptions (x ) ;
VecDuplicate (x,&b) ;
VecDuplicate (x,&xexact ) ;

MatCreate (PETSC_COMM_WORLD,&A) ;
MatSetSizes (A,PETSC_DECIDE,PETSC_DECIDE,m,m) ;
MatSetOptionsPrefix (A, "a_" ) ;
MatSetFromOptions (A) ;
MatSetUp(A) ;
MatGetOwnershipRange(A,& Is ta r t ,&Iend ) ;
for ( i = I s t a r t ; i <Iend ; i ++) {

i f ( i == 0) {
v [0 ] = 3.0; v [1 ] = −1.0;
j [ 0 ] = 0; j [ 1 ] = 1;
MatSetValues (A,1 ,& i ,2 , j , v ,INSERT_VALUES) ;

} else {
v [0 ] = −1.0; v [1 ] = 3.0; v [2 ] = −1.0;
j [ 0 ] = i −1; j [ 1 ] = i ; j [ 2 ] = i +1;
i f ( i == m−1) {

MatSetValues (A,1 ,& i ,2 , j , v ,INSERT_VALUES) ;
} else {

MatSetValues (A,1 ,& i ,3 , j , v ,INSERT_VALUES) ;
}

}
xval = PetscExpReal (PetscCosReal ( i ) ) ;
VecSetValues ( xexact ,1 ,& i ,&xval ,INSERT_VALUES) ;

}
MatAssemblyBegin (A,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY) ;
VecAssemblyBegin( xexact ) ;
VecAssemblyEnd( xexact ) ;
MatMult (A, xexact ,b) ;

KSPCreate(PETSC_COMM_WORLD,&ksp ) ;
KSPSetOperators (ksp ,A,A) ;
KSPSetFromOptions(ksp ) ;
KSPSolve(ksp ,b , x ) ;

VecAXPY(x , −1.0 , xexact ) ;
VecNorm(x ,NORM_2,&errnorm ) ;
PetscPrint f (PETSC_COMM_WORLD,
" error fo r m = %d system is | x−xexact | _2 = %.1e \n" ,m, errnorm ) ;
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A tridiagonal linear system 33

KSPDestroy(&ksp ) ; MatDestroy(&A) ;
VecDestroy(&x ) ; VecDestroy(&b) ; VecDestroy(&xexact ) ;
return PetscFinalize ( ) ;

}

Code 2.2. c/ch2/tri.c. Solve a tridiagonal linear system.

The first new tool used in Code 2.2, bracketed by PetscOptionsBegin() and
PetscOptionsEnd(), is PetscOptionsInt(). The new option -tri_m sets the number of
equations m in the linear system. The Begin method takes a prefix to distinguish our option
from the built-in PETSC options which start with prefixes -ksp_, -vec_, etc., and the default
value m = 4. Knowing the prefix allows us to find the option and its default value in -help
output by using grep:

$ make tri
$ ./tri -help | grep tri_
Option prefix = tri_.
-tri_m <now 4 : formerly 4>: dimension of linear system (tri.c)

$ ./tri -tri_m 7 -help | grep tri_
Option prefix = tri_.
-tri_m <now 7 : formerly 4>: dimension of linear system (tri.c)

$ ./tri -ksp_monitor -a_mat_view ::ascii_dense
Mat Object: (a_) 1 MPI processes
type: seqaij
3.00000e+00 -1.00000e+00 0.00000e+00 0.00000e+00

-1.00000e+00 3.00000e+00 -1.00000e+00 0.00000e+00
0.00000e+00 -1.00000e+00 3.00000e+00 -1.00000e+00
0.00000e+00 0.00000e+00 -1.00000e+00 3.00000e+00
0 KSP Residual norm 3.302822756884e+00
1 KSP Residual norm 5.519370044893e-16

error for m = 4 system is |x-xexact|_2 = 5.1e-16

In Code 2.2 the numerical solution Vec x is created and configured just as we did in
vecmatksp.c (Code 2.1). We also allocate Vecs b and xexact just like x by calling
VecDuplicate(). Note there is a different method for copying the contents of Vecs, namely
VecCopy(), which requires that the source and destination Vecs are already allocated and have
the same layout.

Next we assemble the matrix A. It is a boring tridiagonal matrix with 3 on the diagonal and
−1 in the super- and subdiagonals, but it is assembled in parallel. Entries are set by the process
on which they will be stored using MatGetOwnershipRange() which tells our program, running
on a particular process (rank), which rows it owns. That is,

MatGetOwnershipRange(A,&Istart,&Iend)

obtains the starting and ending row indices for the local process, to be used as limits in a for loop.
We then use MatSetValues() to actually set the entries of A, and MatAssemblyBegin/End()
to complete the assembly.

We also need to define the right-hand side b and the exact solution xexact. The easiest way,
at least for demonstration purposes here, is to choose xexact and then compute b by multiplica-
tion: b = Axexact. Thus, we set some values for xexact—the details are not important—and
call VecAssemblyBegin/End() on it. Then we compute b by MatMult(A,xexact,b). As in
vecmatksp.c we then set up a KSP and call KSPSolve() to approximately solve Ax = b.
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34 Chapter 2. Finite-dimensional linear systems

Though option -ksp_monitor prints the residual norm ‖rk‖2 = ‖b−Axk‖2, we also want
to see that the error ‖x−xexact‖2 is small when the solver finishes. So, after getting x back from
KSPSolve() we compute the error:

VecAXPY(x,-1.0,xexact)
∣∣ x ← −1xexact + x

VecNorm(x,NORM_2,&errnorm)
∣∣ errnorm ← ‖x‖2.

Then we print errnorm with PetscPrintf().
The linear system assembled by tri.c is easy to solve. It is tridiagonal, symmetric positive-

definite (SPD), and diagonally dominant—see Exercises 2.16 and 2.17—so almost any Krylov
method will be acceptable.

We start by timing a serial solution with the KSP and PC defaults -ksp_type gmres
-pc_type ilu:

$ time ./tri -tri_m 10000
error for m = 10000 system is |x-xexact|_2 = 1.6e-13
real 0.03
user 0.10
sys 0.10

(The time command used above should be present in any Unix system, and from now on we
only list the “real” time when assessing performance.13) A time of 0.03 seconds means that the
m = 104 system here is too small for the comparisons which follow. A time between one and 10
seconds is more useful, and a bit of experimentation with powers of 10 finds that size m = 107

takes a few seconds on a laptop, which is about right for our purposes.
We can try a direct solve with Gauss elimination (-ksp_type preonly -pc_type lu) or

the default parallel solver (-ksp_type gmres -pc_type bjacobi -sub_pc_type ilu). We
can turn off preconditioning (-pc_type none) or switch to Jacobi preconditioning (-pc_type
jacobi). Furthermore, because our matrix is SPD, we can try the CG iteration (-ksp_type
cg), the Cholesky direct method [143] (-ksp_type preonly -pc_type cholesky), or com-
bine these using the incomplete form of Cholesky [112] as a preconditioner (-ksp_type cg
-pc_type icc).

Thus Table 2.3 was built from 16 runs, all with m = 2× 107:

$ timer mpiexec -n P ./tri -tri_m 20000000 -ksp_rtol 1.0e-10 \
-ksp_type X -pc_type Y

There are P = 1 or P = 4 processes, and several KSP/PC choices; compare Tables 2.1 and
2.2. Fair comparison of iterative and direct methods requires a tight tolerance (-ksp_rtol
1.0e-10) on the former methods. PC notation “bjacobi+ilu” corresponds, of course, to op-
tions -pc_type bjacobi -sub_pc_type ilu.

Looking at Table 2.3, note that this problem is very well behaved for direct methods. No fill-
in or pivoting occurs when LU or Cholesky are applied to such a tridiagonal and (strongly)
diagonally dominant matrix, so these methods need only O(m) operations (Exercise 2.16).
These results are not representative for direct solvers applied to generic systems with m = 107

rows. The iterative methods all succeed, and CG is somewhat faster than the general (nonsym-
metric) method GMRES.

There is some speedup from P = 1 to P = 4 processes on this desktop, and perhaps a rough
factor-of-two speedup applies across methods. Using four cores does not guarantee anywhere
near four times speedup; see Chapter 8 for more discussion.

13The author uses an alias called timer which prints only the real time.
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Saving and loading linear systems from files 35

Table 2.3. Solution times for a tridiagonal SPD system, from program tri.c, of dimension m = 2× 107.

KSP PC P=1 time (s) P=4 time (s)
preonly lu 13.75

cholesky 14.89
richardson jacobi 17.58 8.87
gmres none 15.50 6.66

jacobi 15.78 7.13
ilu 7.28
bjacobi+ilu 3.44

cg none 10.15 4.55
jacobi 10.48 4.84
icc 6.95
bjacobi+icc 3.04

Saving and loading linear systems from files
The matrix from tri.c is too easy as a test case, and so, to get more realistic and relevant
problems, we extract linear systems from examples later in the book.

Any KSP-based code can save its final Mat and right-hand-side Vec with options
-ksp_view_(mat|rhs). We apply this technique to generate two additional test matrices from
Chapters 7 and 10. A simple code c/ch2/loadsolve.c then loads a linear system Ax = b
from a file and solves it with KSP. More precisely, it creates PetscViewer objects and does
MatLoad() for A from one file and then VecLoad() for b from another. Then it creates a KSP
and calls KSPSolve(). The key parts of the code look like this:

Vec x, b;
Mat A;
KSP ksp;
PetscViewer fileA, fileb;

MatCreate(PETSC_COMM_WORLD,&A);
MatSetFromOptions(A);
PetscViewerBinaryOpen(PETSC_COMM_WORLD,nameA,FILE_MODE_READ,&fileA);
MatLoad(A,fileA);

VecCreate(PETSC_COMM_WORLD,&b);
VecSetFromOptions(b);
PetscViewerBinaryOpen(PETSC_COMM_WORLD,nameb,FILE_MODE_READ,&fileb);
VecLoad(b,fileb);

KSPCreate(PETSC_COMM_WORLD,&ksp);
KSPSetOperators(ksp,A,A);
KSPSetFromOptions(ksp);

VecDuplicate(b,&x);
VecSet(x,0.0);
KSPSolve(ksp,b,x);

Our first example matrix comes from a structured-grid nonlinear PDE problem, the minimal
surface equation solver minimal.c in Chapter 7. For a realistic but convenient size we use a
257 × 257 grid, thus the linear system has dimension N = 2572 = 66049. To generate this
matrix yourself do
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36 Chapter 2. Finite-dimensional linear systems

Figure 2.5. Sparsity patterns of matrices from tri.c in this Chapter (left), minimal.c in Chap-
ter 7 (middle), and unfem.c in Chapter 10 (right).

Table 2.4. KSP iterations for a nonsymmetric banded system of dimension N = 66049 from
minimal.c (Chapter 7).

KSP PC Iterations
preonly lu 1
richardson jacobi DIVERGED_ITS
gmres none 8321

jacobi 4240
ilu 265

$ cd ../ch7/
$ make minimal
$ ./minimal -snes_fd_color -snes_grid_sequence 7 \

-ksp_view_mat binary:A.dat -ksp_view_rhs binary:b.dat
$ cp A.dat b.dat ../ch2/
$ cd ../ch2/

(The -snes_ options are explained in Chapters 4 and 7.) Files A.dat and b.dat now contain a
linear system in PETSC binary format.

This matrixA is banded and contains at most nine nonzeros in each row. Though structurally
symmetric (aij 6= 0 ⇐⇒ aji 6= 0) it is not symmetric. The bandwidth is roughly twice the
grid size, namely 2(257) + 3 = 517 in this case. The sparsity structure of a small version of the
matrix (a 6× 6 grid giving N = 36) is shown in the middle of Figure 2.5.

For each KSP/PC combination, in Table 2.4 we show the number of KSP iterations needed to
achieve 10−10 reduction in residual norm:

$ make loadsolve
$ ./loadsolve -fA A.dat -fb b.dat -ksp_rtol 1.0e-10 \

-ksp_converged_reason -ksp_type X -pc_type Y

Table 2.4 is interesting because of the DIVERGED_ITS failure and the large number of it-
erations for other combinations. Though the default maximum KSP iterations (-ksp_max_it
10000) is exceeded in the failure case, all of the iterative cases other than gmres+ilu reflect
very slow convergence. (Exercise 2.20 shows how to visualize slowly progressing iterations.)
The table suggests that the iterative KSP/PC combinations are all disappointing, but these re-
sults are realistic motivation for the introduction of more-advanced preconditioners in Chapter 6,
especially multigrid. (We will indeed find a highly efficient solver for this problem!)
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Saving and loading linear systems from files 37

Table 2.5. Solution times for an unstructured SPD system of dimension N = 41409 from Chapter 10.

KSP PC P=1 time (s) P=4 time (s)
preonly lu 0.27

cholesky 0.32
richardson jacobi DIVERGED_ITS DIVERGED_ITS
gmres none 7.29 3.47

jacobi 5.51 2.53
ilu 1.35
bjacobi+ilu 2.03

cg none 0.49 0.36
jacobi 0.51 0.35
icc 0.32
bjacobi+icc 0.37

Our second example matrix comes from a Chapter 10 Poisson problem discretized by the
finite element method on an unstructured mesh. Generating the matrix is a bit more involved
than the last example, and so we do not document it here, but it results in a matrix of dimension
N = 41409. The Mat for a lower-dimensional (N = 33) version, on the same domain but using
a much coarser mesh, is shown in Figure 2.5. Typical of matrices from unstructured meshes, the
matrix is not banded, but it is SPD so we may apply CG and Cholesky methods. We build timing
Table 2.5 using loadsolve.c, as in the last example, running a �with-debugging=0 PETSC
configuration on a 4-core laptop.

Convergence occurs, for the same methods used in Table 2.3, except for the Richardson
iteration. Now there is clear evidence that iterative methods exploiting symmetry are faster—
compare the CG and GMRES results—but the iterations for these methods are large (not shown).

Tables 2.3–2.5 suggest some basic conclusions about solving linear systems:

(i) In the absence of good preconditioning, norm-minimizing Krylov iterations like CG and
GMRES may not generate fast convergence.

(ii) Serial direct solvers (LU and Cholesky), used with matrix ordering so as to eliminate fill-
in, are competitive on problems of the type and size tested.

(iii) ILU-preconditioning may or may not be fast—the evidence is mixed—but GMRES/ILU
seems to be a robust combination, and we can understand why it is the PETSC default
combination.

The P = 4 runs are not four times faster than the serial runs, and it is not even auto-
matic that they are faster. However, the problems under consideration are small. Furthermore,
solving sparse linear systems on a 4-core processor is limited by memory bandwidth and con-
tention issues, not just floating-point performance. We will need larger problems, and machines
of a different architecture, i.e., cluster-type architectures, to see significant speedup in parallel
(Chapter 8).

Furthermore, we have not yet introduced the performance metrics that really matter. We
actually want to know how iterations, floating-point operations, and run times scale as the size
N of the discrete linear systems, arising from a given PDE problem, increases. It will turn out
that preconditioners which exploit the PDE origin of problems (Chapter 6) can generate major
improvements.
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38 Chapter 2. Finite-dimensional linear systems

Parallel preconditioning
Another numerical “fact of life” relates to preconditioning and iterative methods in parallel. We
demonstrate it using tri.c runs:

$ mpiexec -n P ./tri -tri_m 100 -ksp_type cg -pc_type bjacobi \
-sub_pc_type icc -ksp_converged_reason

Comparing P = 2 and P = 20, we see convergence to the default tolerance in 3 and 5 iterations,
respectively.

Fact 7. Parallel preconditioning generally depends on processor count. When the number of MPI
processes changes, a block-matrix or domain-decomposition preconditioner also changes.

The bjacobi and asm methods (Table 2.1 and Chapter 6) are examples of preconditioners
which act differently depending on the number of MPI processes. The dependence arises because
the preconditioning matrices M−1 applied at each Krylov iteration are actually different. For
example, on P processes the block Jacobi matrix from -pc_type bjacobi -sub_pc_type
icc is

M−1 =


M−1

0

M−1
1

. . .
M−1
P−1

 , (2.37)

where each block Mi is the product of the icc factors acting on those rows which are owned by
the rank i process.

By contrast, one example of a preconditioner which does not depend on P is -pc_type
jacobi, but it is a weaker preconditioner. As the reader may check using -ksp_monitor, runs
like the above, but using -pc_type jacobi instead of -pc_type bjacobi -sub_pc_type
icc, converge in 12 iterations and have residual norm and numerical error results which are
independent of P .

Good preconditioners, which must both act quickly and significantly improve the spectrum,
tend to depend on parallel decomposition because they avoid interprocess communication. That
is, high-quality spectral effect requires using multirow information, but speed suggests avoiding
communicating information between rows on different processors. Looking ahead, this trade-
off especially applies to domain-decomposition (asm) preconditioners, but it also applies to the
smoother components in PETSC’s geometric multigrid implementation (mg; see Chapter 6).

Exercises
2.1. Suppose a square matrix A with nonzero diagonal entries is decomposed into diagonal

and lower/upper triangular parts as A = D + L + U . Show that the Jacobi iteration
uk+1 = D−1 (b− (L+ U)uk) is the same as the α = 1 Richardson iteration (2.12)
applied to the left-preconditioned system (2.19) with M = D. Make a corresponding
statement about the Gauss-Seidel iteration uk+1 = (D + L)−1 (b− Uuk).

2.2. Show (2.11).
2.3. As stated, (2.18) is more of a slogan than a theorem. Let B ∈ RN×N , and prove the

following more precise statements:

(i) If (2.17) converges for all u0, c ∈ RN then ρ(B) < 1.

(ii) Fix u0, c ∈ RN . If ρ(B) < 1 then (2.17) converges.
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Exercises 39

(The proof in part (i) can be done with elementary eigenvalue facts. For part (ii) one
may replace (2.17) with a simpler equation for the error ek = uk − u, where u solves
u = Bu + c, and then use (a) ρ(B) < 1 if and only if limk→∞ ‖Bk‖ = 0 in any norm
[131], or (b) if ρ(B) < 1 then there is a matrix norm ‖ · ‖′ such that ‖B‖′ < 1 [66].)

2.4. Suppose A and M are square matrices of the same size and that M is invertible. Show
that M−1A and AM−1 are similar. (Thus they have the same eigenvalues.) Show that if
M = M1M2, where Mi are invertible, then M−1

1 AM−1
2 is similar to M−1A.

2.5. (i) Show that the error ek = uk − u in simple iteration (2.23) satisfies

ek+1 = (I −M−1A)ek. (2.38)

It follows that simple iteration converges for all e0 if and only if ρ(I−M−1A) < 1.

(ii) By observing that A(I − BA) = (I − AB)A, show that the residuals from simple
iteration satisfy

rk+1 = (I −AM−1)rk. (2.39)

Exercise 2.4 then shows the equivalence of convergence of errors and residuals.
2.6. Give examples of matrices A and M which are symmetric but for which M−1A and

AM−1 are not symmetric. (Hint. Choose wildly.)
2.7. SupposeM = LL> for some square, invertible matrix L. (This impliesM is SPD.) Show

that
(L−1AL−>)w = L−1b, L>u = w (2.40)

is equivalent to the original system (2.6). (Here L−> denotes the matrix (L−1)> =
(L>)−1. Note that L−1AL−> is symmetric if A is symmetric. One might apply (2.40)
with a computed Cholesky factorization M = LL>, but actually factoring M is not
needed to apply such symmetric preconditioning; see Exercise 2.9 below.)

2.8. The following pseudocode gives the CG algorithm:

function CG(A,b,u0)
r0 = b−Au0

p0 = r0

for k = 1, 2, . . .
αk−1 = (r>k−1rk−1)/(p>k−1Apk−1)
uk = uk−1 + αk−1pk−1

rk = rk−1 − αk−1Apk−1

if ‖rk‖ is small enough
return uk

βk−1 = (r>k rk)/(r>k−1rk−1)
pk = rk + βk−1pk−1

This algorithm actually requires one matrix-vector multiply, two inner products, and three
axpy (i.e., w = αx + y) operations per iteration of the inner loop. Define temporary
variables and rewrite the above pseudocode so that this is clear. (Note that parallel CG
needs two reductions per iteration, namely the inner products.)

2.9. Suppose M = LL> is SPD. Consider the symmetrically preconditioned system (2.40)
as Âw = b̂ where Â = L−1AL−> and b̂ = L−1b. In these terms we define the
symmetrically preconditioned conjugate gradient (PCG) algorithm as

uk = L−>CG(Â, b̂, L>u0). (2.41)
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40 Chapter 2. Finite-dimensional linear systems

Show that (2.41) can be computed by the following algorithm which does not actually use
the factor L:

function PCG(M,A,b,u0)
r0 = b−Au0

solve Mz0 = r0

p0 = z0

for k = 1, 2, . . .
αk−1 = (r>k−1zk−1)/(p>k−1Apk−1)
uk = uk−1 + αk−1pk−1

rk = rk−1 − αk−1Apk−1

if ‖rk‖ is small enough
return uk

solve Mzk = rk
βk−1 = (r>k zk)/(r>k−1zk−1)
pk = zk + βk−1pk−1

2.10. On page 17 we noted that an approximation pn−1(A)b to the solution u = A−1b of
(2.6) is accurate if pn−1(z) is close to 1/z on the spectrum of A. Prove this for invertible
diagonalizable matrices A = SΛS−1:

‖pn−1(A)−A−1‖ ≤ κ(S) max
λ∈σ(A)

|pn−1(λ)− λ−1|.

(Here ‖ · ‖ is any induced matrix norm. Note that if A is normal then S can be chosen to
be unitary, in which case κ(S) = 1 in the 2-norm.)

2.11. Consider polynomials qk given by (2.28). Show that if limk→∞ qk = q∞ exists then
q∞(x) = 1/x. On the other hand, by setting y = 1− x and defining Qk(y) = qk(1− y),
show Qk(y) is the partial sum of a series with a well-known radius of convergence.

2.12. Show that (2.34) follows from (2.33).
2.13. In the text describing vecmatksp.c we assert that communication might occur during the

VecAssemblyBegin/End() calls. However, as vecmatksp.c is written, each process
has all the values it needs. To demonstrate a case where communication occurs, modify
vecmatksp.c to a new program vmkrankzero.c by adding

MPI_Comm_rank(PETSC_COMM_WORLD,&rank)

(Chapter 1). Then surround the VecSetValues() and MatSetValues() lines in
vecmatksp.c with the conditional

if (rank == 0) { ... }

so that values are only set on a single process, even in parallel. Check that this version of
the code gives the same serial and parallel results for the solution of the linear system.

2.14. In the following example Richardson iteration seems to converge in one iteration:
$ ./tri -tri_m 100 -ksp_monitor -ksp_type richardson

Recall, however, that the PETSC default preconditioner is -pc_type ilu. Using ILU is
actually a complete LU factorization on this tridiagonal and diagonally dominant A, and
we are really seeing a direct solve. Confirm that, as with the example on page 15, Richard-
son iteration succeeds with -pc_type jacobi but diverges with -pc_type none.

2.15. The accuracy of direct solves (e.g., -ksp_type preonly -pc_type cholesky) in
tri.c, as measured by the reported error norm ‖x − xexact‖2, decreases with increas-
ing dimension. Confirm and explain.
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Exercises 41

2.16. There is a well-knownO(N) algorithm for solving SPD tridiagonal linear systems, namely
Gauss elimination without pivoting. Write a pseudocode for this algorithm. Find con-
stants a, b in the work estimate (flops) = aN + b. (Pivoting is not needed for stability in
the SPD case [80].)

2.17. GMRES without preconditioning solves the linear system in tri.c reasonably efficiently;
confirm this. We can explain this by asking PETSC to compute the eigenvalues of the
unpreconditioned matrix A:14

-ksp_view_eigenvalues -pc_type none

Try dimensions m = 10, 100, 1000. Why does the m = 1000 run only show 11 eigenval-
ues? How do these eigenvalues explain the good behavior of unpreconditioned GMRES?

2.18. Table 2.3 includes a number of blanks. For each one, explain why it is blank, experiment-
ing if needed.

2.19. Table 2.3 gives run times not KSP iteration counts. Generate the corresponding iteration
table by adding option -ksp_converged_reason to the run commands. Explain the
“coincidences” in iteration count. Which preconditioners have a strong or weak effect?

2.20. PETSC can generate X Window line graphics showing KSP convergence:
$ ./tri -tri_m 1000000 -ksp_rtol 1.0e-10 -pc_type jacobi \

-ksp_monitor_lg_true_residualnorm -draw_pause 1

This shows both the preconditioned and true residual norm logarithms versus the iteration
number. Use this visualization to see that the DIVERGED_ITS case in Table 2.4 is actually
making slow progress.

2.21. One convergence test in KSPSolve() requires that ‖r‖ < DTOL‖b‖, with tolerance set by
-ksp_divtol DTOL and default value 104. Oddly, this means that KSP fails on the trivial
linear system Iu = 0 if the initial guess is nonzero. Confirm this.

2.22. As the reader will undoubtedly experience, segmentation faults and memory leaks occur
when developing PETSC codes. A recommended tool for detection and diagnosis is
valgrind; see valgrind.org. Run
$ valgrind ./tri

to see what valgrind shows for a leak-free program. Then comment out a VecDestroy()
call in tri.c to see a common type of memory leak.

14As stated in [10], option -ksp_view_eigenvalues is “intended only for assistance in understanding the conver-
gence of iterative methods, not for eigenanalysis. For accurate computation of eigenvalues we recommend using the
excellent package SLEPc.” See slepc.upv.es.
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Chapter 3

Poisson equation
on a structured grid

In this chapter we solve the Poisson equation on a square, a straightforward PDE problem on
which to learn key parts of PETSC. We will also return to this problem—it is a cliché—in later
chapters. The code here introduces DM objects, specifically a DMDA type, to build a structured
grid. Then it uses a finite difference (FD) discretization to assemble a linear system based on
this grid, and it solves the linear system using a KSP solver object. Both the assembly and the
solution processes are in parallel, with each process responsible for its portion of the grid.

Poisson problem on a square domain
Let S be the open unit square (0, 1)× (0, 1) with boundary ∂S. The following Poisson equation
problem is shown in Figure 3.1:

−∇2u = f on S, (3.1)
u = 0 on ∂S. (3.2)

So that we may use its pointwise values, we assume that f(x, y) is continuous and bounded on
S.

A few words on the context of this problem are appropriate before we dive into numerical
solutions. Equation (3.1) is a problem of inverting the Laplacian operator

∇2u = ∇ · (∇u) =
∂2u

∂x2
+
∂2u

∂y2
(3.3)

for u. This operator appears in mathematical models through an assumption that a flux is propor-
tional to the gradient [119], and because a divergence connects a boundary integral of the flux
with an interior integral. (Recall the divergence or Gauss-Green theorem, e.g., as presented in
[51, Appendix C].)

The Poisson equation (3.1) may model the electrostatic potential, the equilibrium distribution
from random walks, or other physical phenomena. For a thermodynamical example, Fourier’s
law for heat conduction in solids says that the heat flux is q = −k∇u, where k is the conductivity.
On the other hand, given an additional heat source f within the domain, conservation of energy
[119] implies cρ ∂u/∂t = −∇ · q + f . (The product of the heat capacity c and the density ρ
parameterizes the ability of the material to hold heat by a gain in temperature.) If k is constant
then, in steady state when ∂u/∂t = 0, these equations combine to give Poisson’s equation
0 = k∇2u+ f .

43
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44 Chapter 3. Poisson equation on a structured grid

x

y

−∇2u = f

u = 0

u = 0

u = 0 u = 0

Figure 3.1. Poisson equation on a square with homogeneous Dirichlet boundary conditions.

Equation (3.2) states homogeneous Dirichlet boundary conditions. If f were zero and the
value of u along ∂S were given by some nonzero g then one would call this the Dirichlet problem.
However, we call all forms of the same basic problem “Poisson” for simplicity. Various boundary
conditions appear later (e.g., Chapter 10), but we always allow nonzero right-hand sides f . For
Dirichlet boundary conditions, standard theory says that a unique solution u(x, y) exists and is
continuous on the closed square S̄ [51, Theorem 6 in section 5.6].

Instead of u itself, the normal component of the heat flux−k∇u could be set to known values
along the boundary, so-called Neumann boundary conditions. In that case the Poisson problem
is not well posed because if u is a solution then v = u + c is also a solution for any constant
c. Finally, in the absence of any boundary conditions there is an infinite-dimensional space of
solutions, i.e., to the unconstrained PDE ∇2w = 0 on S, namely the space of all harmonic
functions [51] on S.

Creating structured grids
We apply a finite difference (FD) method as a way to generate a linear system from the problem
consisting of (3.1) and (3.2). Our method is based on a 2D grid of mx ×my points on the unit
square. The grid points have spacing hx = 1/(mx − 1) and hy = 1/(my − 1) and coordinates
xi = i hx and yj = j hy , for i = 0, 1, . . . ,mx−1 and j = 0, 1, . . . ,my−1, respectively (Figure
3.2).

A new PETSC object is used to construct this grid. Consider the following code extract:

DM da;
DMDACreate2d(PETSC_COMM_WORLD,

DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DMDA_STENCIL_STAR,
9,9,PETSC_DECIDE,PETSC_DECIDE,1,1,NULL,NULL,&da);

In general, DM types describe the topology (connectedness) of grids and meshes and the man-
ner in which data on these grids is distributed across MPI processes. This specific case is a DMDA
type, a structured-grid subclass of DM. The name “DM” variously stands for data management
[10], distribution manager [109], or distributed mesh. “DA” is for distributed array.

If we do

$ cd c/ch3/
$ make poisson
$ ./poisson -da_grid_x 5 -da_grid_y 7
on 5 x 7 grid: error |u-uexact|_inf = 0.00217606
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Creating structured grids 45

x

y

i = 0 i = mx − 1
j = 0

j = my − 1

Figure 3.2. A grid on the unit square S, here with mx = 5 and my = 7.

x

y

0 1

2 3

x

y

Figure 3.3. The same grid as in Figure 3.2, distributed across four MPI processes with rank
= 0, 1, 2, 3 (left). If the number of MPI processes is prime then the process-owned domains are far from
square (right).

then the grid in Figure 3.2 is created and the Poisson equation is approximately solved using this
grid. In this case all nodes are “owned” by a single MPI process. One may instead use multiple
MPI processes:

$ mpiexec -n P ./poisson -da_grid_x MX -da_grid_y MY

PETSC then does its best to balance MX×MY grid points across P processes, with the restriction
that each process owns a rectangular subgrid. For example, values P = 4, MX = 5, and MY
= 7 lead to the distribution in Figure 3.3 (left). Neither 5 nor 7 is divisible by 2, but PETSC
distributes the four ranks across the 35 grid points so that the load is somewhat balanced, and
on larger grids better balance is expected. However, notice that if the number of processes P is
prime then we get far-from-square domains. For instance, if P = 5 and MX, MY are the same then
the distribution is as in Figure 3.3 (right). Each process’s domain has large perimeter-to-area
ratio and so interprocess communication will be substantial.
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46 Chapter 3. Poisson equation on a structured grid

To explain DMDACreate2d() further we paraphrase from the manual [10]:

DMDACreate2d(MPI_Comm comm, DMBoundaryType bx, DMBoundaryType by,
DMDAStencilType stype, PetscInt M, PetscInt N, PetscInt m, PetscInt n,
PetscInt dof, PetscInt s, const PetscInt lx[], const PetscInt ly[],
DM *da)

comm MPI communicator

bx,by type of ghost nodes at boundary: DM_BOUNDARY_NONE|GHOSTED|PERIODIC

stype stencil type: DMDA_STENCIL_BOX|STAR

M,N global dimension in each direction of the array; this can be set at the command line with a combina-
tion of -da_grid_x M, -da_grid_y N, and -da_refine

m,n number of processes in each dimension (or PETSC_DECIDE)

dof number of degrees of freedom per node

s stencil width: the number of grid points away from the center of the stencil

lx,ly arrays containing the number of nodes in each process’ portion of the grid, or NULL; if non-null, these
must be of length m and n, respectively, and the sums of lx[] and ly[] must be M and N, respectively

da the resulting DMDA object

In the extract shown earlier (page 44), the second and third arguments are DM_BOUNDARY_NONE
because Dirichlet boundary conditions do not need extra neighbors or periodic wrapping. In our
particular FD method, discussed below, the nodes along the boundary will be unknowns, but no
storage is needed beyond the boundary points, as might be needed in some schemes. In the fourth
argument we choose DMDA_STENCIL_STAR because only cardinal neighbors of a grid point are
used in our FD scheme (below).

The fifth and sixth arguments used in the extract set a 9× 9 default grid. These defaults can
be overridden by options -da_grid_x|y and/or by refining by factors of two. More precisely,
option -da_refine specifies how many times the number of grid subintervals in each dimension
will be increased by factors of two. Thus the following option replaces our default grid by a
17× 17 grid:

$ ./poisson -da_refine 1
on 17 x 17 grid: error |u-uexact|_inf = 0.000196764

The next two PETSC_DECIDE arguments in the extract (page 44) tell PETSC to use its internal
logic to distribute the grid over processes according to the size of the MPI communicator. The
two arguments after that identify the PDE as scalar (dof = 1) and say that the FD scheme only
needs one neighbor in each direction (s = 1); see more below on stencils. The next two NULL
arguments indicate that we are not telling PETSC any details about how to distribute processes
over the grid; it decides for itself.15 Finally, the DMDA object is returned via a reference (pointer
argument).

15For integer arguments one generally uses PETSC_DECIDE to have PETSC select the value, but for array/pointer
arguments one uses NULL when not specifying a value.
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A finite difference method 47

Figure 3.4. Parallel decomposition of a structured grid (left) and an unstructured mesh (right),
using some type of DM object. One distinguishes between the mesh nodes owned by the process (solid) and
those which are allocated locally but have values duplicated from other processes (“ghost nodes”; gray).
(Figure modified from [10].)

The standard views of parallel DMs are in Figure 3.4. Our DMDA code in this chapter cor-
responds to the left part, except that a DMDA_STENCIL_BOX stencil is shown in the figure and
we use DMDA_STENCIL_STAR. On the right is an unstructured mesh, for which one may use type
DMPlex; see Chapter 13. The figure shows the nodes owned by a given process, sometimes called
“local” nodes in PETSC documentation, and the other nodes that are allocated in the memory
space of a process but which need to contain duplicated values from the neighboring processes.
These “ghost” nodes allow a process to set up the equation for each owned node.

A finite difference method
If F (x) is sufficiently smooth then, by a Taylor’s theorem argument [115],

F ′′(x) =
F (x− h)− 2F (x) + F (x+ h)

h2
+O(h2) (3.4)

as h → 0. This formula, applied to partial derivatives, approximates the Laplacian in (3.1). In
fact, if ui,j is the gridded approximation to the exact value u(xi, yj), and if fi,j = f(xi, yj),
then from (3.4) we have this FD approximation to equation (3.1):

− ui−1,j − 2ui,j + ui+1,j

h2
x

− ui,j−1 − 2ui,j + ui,j+1

h2
y

= fi,j . (3.5)

While we compute the values ui,j from such finite difference equations, in typical PDE problems
we will not know the exact values u(xi, yj). The numerical error at each point is the difference
ei,j = ui,j − u(xi, yj).

Equation (3.5) applies at all interior points, i.e., for 1 ≤ i ≤ mx − 2 and 1 ≤ j ≤ my − 2.
The boundary conditions (3.2) become

u0,j = 0, umx−1,j = 0, ui,0 = 0, ui,my−1 = 0 (3.6)

for all i, j. We regard all values ui,j as unknowns, whether on the boundary or in the interior.
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48 Chapter 3. Poisson equation on a structured grid

x

y

i

j

Figure 3.5. The 5-point star stencil for FD scheme (3.5).

At interior grid locations (xi, yj), equation (3.5) relates ui,j to its four cardinal neighbors
ui+1,j , ui−1,j , ui,j+1, and ui,j−1, in a star stencil (Figure 3.5). By contrast, a box stencil also
includes the four diagonal neighbors, thus nine points.

Equations (3.5) and (3.6) form a linear system Au = b of N = mxmy equations in N
unknowns. To identify entries of the matrix A and the right-hand side b in the linear system we
must order the unknowns, and the ordering is implemented by the DMDA. Our code (poisson.c
below) will only use the gridwise coordinates (i, j). The ability to assemble Mats and Vecs using
only grid indexing is one reason that structured-grid codes using DMDA can be quite short. The
ordering in this case is shown in Figure 3.6, and the global index is k = j mx + i for the kth
unknown in the system, but such a formula appears nowhere in poisson.c; it is internal to DMDA.

Example 3.1. In the mx = 4 and my = 3 case (Figure 3.6) we have grid spacing hx = 1/3 and
hy = 1/2. Only the k = 5, 6 equations are not boundary conditions (3.6). Using (3.5) as stated,
the linear system (3.8) is

1
1

1
1

1
c b a b c

c b a b c
1

1
1

1
1





u0,0

u1,0

u2,0

u3,0

u0,1

u1,1

u2,1

u3,1

u0,2

u1,2

u2,2

u3,2



=



0
0
0
0
0
f1,1

f2,1

0
0
0
0
0



,

where a = 2/h2
x + 2/h2

y = 26, b = −1/h2
x = −9, and c = −1/h2

y = −4. The matrix is not
symmetric, and its 2-norm condition number is κ(A) = 43.16.

Now, before writing code, we make two observations which lead to an equivalent linear
system which can be solved faster and more accurately. First, equations (3.5) have very different
scaling from equations (3.6). For example, if mx = my = 1001, so hx = hy = 0.001, then the
coefficient of ui,j in (3.5) is 4/(.001)2 = 4 × 106, while the coefficients from (3.6) are equal
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x
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4 5 6 7

8 9 10 11

Figure 3.6. Ordering of unknowns on a mx ×my = 4× 3 grid.

to 1. To make the equations better scaled, we multiply (3.5) by the grid cell area hxhy to obtain

2(a+ b)ui,j − a (ui−1,j + ui+1,j)− b (ui,j−1 + ui,j+1) = hxhyfi,j , (3.7)

where a = hy/hx and b = hx/hy . Using (3.7), all the equations in the system will have
coefficients of comparable size, at least so long as the cell aspect ratio hy/hx is neither large nor
small. For instance, if hx = hy then diagonal entries are 4 and off-diagonal entries are −1.

Second, the FD equations can be reinterpreted as giving a symmetric matrix. For example, at
a grid point adjacent to the left-hand boundary, the boundary value u0,j appears in the equation.
The matrix will be symmetric if we move such values to the right-hand side. This converts the
off-diagonal entries of A to zeros in the columns corresponding to boundary values. This way
of generating a symmetric matrix, which can be done even if the boundary values are nonzero,
opens up a larger range of methods for solving the system efficiently. For instance, we can
use the CG iteration (-ksp_type cg) and Cholesky preconditioners (-pc_type cholesky or
-pc_type icc).

With these two modifications the linear system associated to our FD scheme is an N × N
symmetric, positive-definite (SPD) linear system with O(1) magnitude entries:

Ahu = b. (3.8)

Example 3.2. For the grid in Figure 3.6, linear system (3.8) is

1
1

1
1

1
α β
β α

1
1

1
1

1





u0,0

u1,0

u2,0

u3,0

u0,1

u1,1

u2,1

u3,1

u0,2

u1,2

u2,2

u3,2



=



0
0
0
0
0

(1/6)f1,1

(1/6)f2,1

0
0
0
0
0



,

where α = 2(hy/hx) + 2(hx/hy) = 13/3 and β = −hy/hx = −3/2. The matrix is SPD and
better scaled than before: κ(Ah) = 5.83.
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50 Chapter 3. Poisson equation on a structured grid

Structured-grid matrix assembly
Our FD solver poisson.c is now presented in three parts. First, function formMatrix() in
Code 3.1 assembles Ah in (3.8) from the rescaled FD equations (3.7) on a grid described by an
input DMDA object. The other argument to formMatrix() is the returned (modified) Mat.

PetscErrorCode formMatrix (DM da , Mat A) {
DMDALocalInfo i n fo ;
MatStencil row , col [ 5 ] ;
PetscReal hx , hy , v [ 5 ] ;
PetscInt i , j , ncols ;

DMDAGetLocalInfo (da,& in fo ) ;
hx = 1 .0 / ( in fo .mx−1) ; hy = 1 .0 / ( in fo .my−1) ;
for ( j = in fo . ys ; j < in fo . ys+in fo .ym; j ++) {

for ( i = in fo . xs ; i < in fo . xs+in fo .xm; i ++) {
row . j = j ; / / row of A corresponding to ( x_i , y_j )
row . i = i ;
col [ 0 ] . j = j ; / / diagonal entry
col [ 0 ] . i = i ;
ncols = 1;
i f ( i ==0 | | i ==in fo .mx−1 | | j ==0 | | j ==in fo .my−1) {

v [0 ] = 1.0; / / on boundary : t r i v i a l equation
} else {

v [0 ] = 2*(hy / hx + hx / hy ) ; / / i n t e r i o r : bui ld a row
i f ( i −1 > 0) {

col [ ncols ] . j = j ; col [ ncols ] . i = i −1;
v [ ncols++] = −hy / hx ;

}
i f ( i +1 < in fo .mx−1) {

col [ ncols ] . j = j ; col [ ncols ] . i = i +1;
v [ ncols++] = −hy / hx ;

}
i f ( j −1 > 0) {

col [ ncols ] . j = j −1; col [ ncols ] . i = i ;
v [ ncols++] = −hx / hy ;

}
i f ( j +1 < in fo .my−1) {

col [ ncols ] . j = j +1; col [ ncols ] . i = i ;
v [ ncols++] = −hx / hy ;

}
}
MatSetValuesStencil (A,1 ,&row , ncols , col , v ,INSERT_VALUES) ;

}
}
MatAssemblyBegin (A,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY) ;
return 0;

}

Code 3.1. c/ch3/poisson.c, part I. Formulas (3.6) and (3.7) fill matrix Ah.

The DMDALocalInfo object in formMatrix() is a PETSC type, a C structure, which de-
scribes both the global grid and locally owned portion (Figure 3.7). The global grid extent is
in members info.mx,info.my. The local process owns a info.xm × info.ym rectangular
subgrid:

info.xs ≤ i ≤ info.xs + info.xm− 1,

info.ys ≤ j ≤ info.ys + info.ym− 1.
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Structured-grid matrix assembly 51
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Figure 3.7. A DMDALocalInfo struct describes both the global grid sizes and the “local” indices
for a given process’s portion (large dots) of a 2D grid.

These ranges appear in for loops when operating on the grid:

for (j=info.ys; j<info.ys+info.ym; j++) {
for (i=info.xs; i<info.xs+info.xm; i++) {

DO SOMETHING AT GRID POINT (i,j)
}

}

For example, regarding x-axis indices, the left side of Figure 3.3 shows a grid with
info.mx = 5 where the rank 0 and 2 processes both have info.xs = 0 and info.xm = 3,
and the rank 1 and 3 processes both have info.xs = 3 and info.xm = 2.

Considering Code 3.1, note that each rank owns certain ranges of rows of the Mat object
A. However, the DMDA allows us to work with the locally-owned subgrid using (i, j) indices,
ignoring the actual ordering of the equations and unknowns. We need only loop over the por-
tion of the grid owned by the process, and grid indices (i, j) suffice when inserting entries into
Mat A.

We call MatSetValuesStencil() for each locally owned grid point, that is, for each equa-
tion in the linear system, to insert coefficients into the matrix. There are five values to insert at
interior points, but fewer at the boundary. The key data structure is type MatStencil, a simple
struct:

typedef struct {
PetscInt k,j,i,c;

} MatStencil;
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52 Chapter 3. Poisson equation on a structured grid

In our 2D case we use only the i,j members of MatStencil, and the matrix entries come from
equation (3.7).

Regarding further uses of MatStencil, in 3D we would also use index k, and an example
is in Chapter 6. While Poisson equation (3.1) is a scalar PDE, with only one unknown at a grid
point, for a system of PDEs we would set the dof argument in DMDACreateXd() to a value
larger than one, and then the “c” member of MatStencil would identify a component of the
solution vector field. Such examples, with dof > 1, appear in Chapters 5 and 7.

A particular problem
We need a convenient Poisson problem for our example. For this we choose a solution, that is,
we manufacture a solution [153], taking care that it satisfies homogeneous Dirichlet boundary
conditions u = 0 along ∂S:

u(x, y) = (x2 − x4)(y4 − y2). (3.9)

Then we merely differentiate to get f = −∇2u:

f(x, y) = 2(1− 6x2)y2(1− y2) + 2(1− 6y2)x2(1− x2). (3.10)

Code 3.2 shows (3.9) implemented as formExact(), and (3.10) implemented as formRHS(),
using only local grid coordinates (i, j).

PetscErrorCode formExact (DM da , Vec uexact ) {
PetscInt i , j ;
PetscReal hx , hy , x , y , ** auexact ;
DMDALocalInfo i n fo ;

DMDAGetLocalInfo (da,& in fo ) ;
hx = 1 .0 / ( in fo .mx−1) ; hy = 1 .0 / ( in fo .my−1) ;
DMDAVecGetArray(da , uexact , &auexact ) ;
for ( j = in fo . ys ; j < in fo . ys+in fo .ym; j ++) {

y = j * hy ;
for ( i = in fo . xs ; i < in fo . xs+in fo .xm; i ++) {

x = i * hx ;
auexact [ j ] [ i ] = x*x * (1.0 − x*x ) * y*y * ( y*y − 1.0) ;

}
}
DMDAVecRestoreArray(da , uexact , &auexact ) ;
return 0;

}

PetscErrorCode formRHS(DM da , Vec b) {
PetscInt i , j ;
PetscReal hx , hy , x , y , f , **ab ;
DMDALocalInfo i n fo ;

DMDAGetLocalInfo (da,& in fo ) ;
hx = 1 .0 / ( in fo .mx−1) ; hy = 1 .0 / ( in fo .my−1) ;
DMDAVecGetArray(da , b , &ab) ;
for ( j = in fo . ys ; j < in fo . ys+in fo .ym; j ++) {

y = j * hy ;
for ( i = in fo . xs ; i < in fo . xs+in fo .xm; i ++) {

x = i * hx ;
i f ( i ==0 | | i ==in fo .mx−1 | | j ==0 | | j ==in fo .my−1) {

ab [ j ] [ i ] = 0.0; / / on boundary : 1*u = 0
} else {
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Solving the PDE 53

f = 2.0 * ( (1.0 − 6.0*x*x ) * y*y * (1.0 − y*y )
+ (1.0 − 6.0*y*y ) * x*x * (1.0 − x*x ) ) ;

ab [ j ] [ i ] = hx * hy * f ;
}

}
}
DMDAVecRestoreArray(da , b , &ab) ;
return 0;

}

Code 3.2. c/ch3/poisson.c, part II. Implementations of formulas (3.9) and (3.10).

The error term O(h2) in equation (3.4) has a coefficient proportional to fourth derivatives
[115], and thus our FD method will not be exact on this problem. This is good for measuring con-
vergence. For example, we would not want to use the simpler form u(x, y) = (x− x2)(y2 − y),
which has zero fourth derivatives, because then the scheme would be exact and so the generic
correct rate of decay of the numerical error, as h → 0, would not be apparent; compare Exer-
cise 3.2.

Solving the PDE
Code 3.3 shows the main() function of poisson.c. Here we create the various objects
needed to solve the Poisson problem, namely one DMDA, one Mat, three Vecs, and one KSP.
Note that the DMDA computes matrix and vector sizes from the grid dimensions when we call
DMCreateMatrix() and DMCreateGlobalVector(), respectively, so we do not do this our-
selves. (Compare examples in Chapter 2.) We call the functions defined in Codes 3.1 and 3.2,
shown earlier, to assemble the matrix and vectors.

int main( int argc , char ** args ) {
DM da ;
Mat A;
Vec b ,u , uexact ;
KSP ksp ;
PetscReal errnorm ;
DMDALocalInfo i n fo ;

Pe tsc In i t i a l i ze (&argc ,&args , ( char * ) 0 ,help ) ;

/ / change defaul t 9x9 size using −da_grid_x M −da_grid_y N
DMDACreate2d(PETSC_COMM_WORLD,

DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DMDA_STENCIL_STAR,
9 ,9 ,PETSC_DECIDE,PETSC_DECIDE,1 ,1 ,NULL,NULL,&da) ;

/ / create l inear system matrix A
DMSetFromOptions(da) ;
DMSetUp(da) ;
DMCreateMatrix (da,&A) ;
MatSetFromOptions (A) ;

/ / create RHS b, approx solut ion u , exact solut ion uexact
DMCreateGlobalVector (da,&b) ;
VecDuplicate (b,&u) ;
VecDuplicate (b,&uexact ) ;

/ / f i l l vectors and assemble l inear system
formExact (da , uexact ) ;
formRHS(da ,b) ;
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54 Chapter 3. Poisson equation on a structured grid

formMatrix (da ,A) ;

/ / create and solve the l inear system
KSPCreate(PETSC_COMM_WORLD,&ksp ) ;
KSPSetOperators (ksp ,A,A) ;
KSPSetFromOptions(ksp ) ;
KSPSolve(ksp ,b ,u) ;

/ / report on gr id and numerical error
VecAXPY(u, −1.0 ,uexact ) ; / / u <− u + ( −1.0) uxact
VecNorm(u ,NORM_INFINITY,&errnorm ) ;
DMDAGetLocalInfo (da,& in fo ) ;
PetscPrint f (PETSC_COMM_WORLD,

"on %d x %d gr id : error | u−uexact | _ in f = %g\n" ,
in fo .mx, in fo .my, errnorm ) ;

VecDestroy(&u) ; VecDestroy(&uexact ) ; VecDestroy(&b) ;
MatDestroy(&A) ; KSPDestroy(&ksp ) ; DMDestroy(&da) ;
return PetscFinalize ( ) ;

}

Code 3.3. c/ch3/poisson.c, part III. Function main().

As in Chapter 2, the linear system is solved by using a KSP linear solver object. Code 3.3
shows how we create the KSP and tell it about Mat A through a call to KSPSetOperators().
Recall that there are two ways A can be used, namely as the system matrix and as the “material”
from which the preconditioner is built, thus A appears as two arguments of KSPSetOperators()
(Chapter 2). We then call KSPSetFromOptions() so that we may, as illustrated below, change
the KSP type at run time. After calling KSPSolve() we compute and report the numerical error
‖u− uexact‖∞. Finally we destroy objects and call PetscFinalize().

A first goal might be to see the residual norms decrease:

$ ./poisson -ksp_monitor
0 KSP Residual norm 1.020952970432e-01
1 KSP Residual norm 2.656923348626e-02
2 KSP Residual norm 8.679141000397e-03
3 KSP Residual norm 1.557150861763e-03
4 KSP Residual norm 2.239919982542e-04
5 KSP Residual norm 2.519822315367e-05
6 KSP Residual norm 2.152764600588e-06
7 KSP Residual norm 2.650467236964e-07

on 9 x 9 grid: error |u-uexact|_inf = 0.000763959

This run sets up a linear system of N = 81 equations and solves it using the default KSP method,
namely GMRES+ILU (Chapter 2). This yields a small residual norm after seven iterations, and
an apparently small numerical error, so it is reasonable to hope that we have solved the problem.
However, further inspection and experimentation are definitely in order.

Run-time visualization
At run time one may visualize the grid, the assembled Mat, or the solution. For the grid, if the X
window system is correctly configured with your PETSC installation then

$ ./poisson -da_grid_x 5 -da_grid_y 7 -dm_view draw -draw_pause 3

gives Figure 3.8 (left), the same grid as Figure 3.2, along with the global index.
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Convergence in practice and theory 55

Figure 3.8. PETSC can graphically display a grid (DMDA object; left) or the matrix structure
(right) at run time.

As a first check on our matrix assembly, the following view matches the matrix on page 49:

$ ./poisson -da_grid_x 4 -da_grid_y 3 -ksp_view_mat

The matrix structure can also be viewed graphically, for example

$ ./poisson -da_grid_x 5 -da_grid_y 7 -ksp_view_mat draw -draw_pause 3

See Figure 3.8 (right); note that positive entries, negative entries, and allocated zeros are shown
with different colors. As expected, the matrix structure for this Poisson problem is a symmetric
sparse matrix with tridiagonal blocks along the diagonal and a banded structure.

To generate a “movie” of the KSP iterates uk do

$ ./poisson -da_refine 4 -ksp_monitor -ksp_monitor_solution draw \
-draw_pause 0.1

The last frame is shown as a contour map in Figure 3.9. (The figure was actually generated offline
using option -ksp_view_solution binary:u.dat and a Python script to process u.dat.)

We can also visualize KSP convergence. For example, a line graph of the preconditioned
and true residual norms comes from -ksp_monitor_lg_true_residualnorm (not shown; see
Exercise 2.20).

Convergence in practice and theory
Questions of convergence and performance have been delayed until now, that is, until we can run
the code and see. We want to know

• is the numerical method correctly implemented? (convergence)

• what is going on inside the solver? (exposure)

• how do we get the solution quickly? (performance)
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56 Chapter 3. Poisson equation on a structured grid
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Figure 3.9. Contours of the computed solution u(x, y) on a 129× 129 grid.

While the next sections address these questions, our exploration of performance will be quite
preliminary; only in Chapters 6, 7, and 8 is this question seriously addressed.

For convergence we want to see that the numerical error, namely a norm of the difference
between the computed and exact solutions, decreases as we refine the grid. Such decrease is
expected because the finite differences become better approximations of the corresponding de-
rivatives (consistency [104]). However, now we want to measure the error to get evidence that
our actual implementation is correct. The code is correctly implemented if the error reduction
rate matches what we expect from theory.

Recall that poisson.c prints the maximum-norm error; see Code 3.3. Here is a refinement
study in a one-line Bash loop:

$ for K in 0 1 2 3 4 5 6; do ./poisson -da_refine $K; done
on 9 x 9 grid: error |u-uexact|_inf = 0.000763959
on 17 x 17 grid: error |u-uexact|_inf = 0.000196764
on 33 x 33 grid: error |u-uexact|_inf = 4.91557e-05
on 65 x 65 grid: error |u-uexact|_inf = 1.29719e-05
on 129 x 129 grid: error |u-uexact|_inf = 3.76924e-06
on 257 x 257 grid: error |u-uexact|_inf = 1.73086e-06
on 513 x 513 grid: error |u-uexact|_inf = 1.23567e-06

This data is shown in Figure 3.10 by stars. For the first four grids, refinement by a factor of
two in each dimension reduces the error by a factor of about four, as expected from a O(h2) FD
scheme.

Unfortunately, the error stops falling for the three finest grids, stagnating around 10−6. This
is not from an implementation error, but rather from a default KSP tolerance. We simply need
to ask for more accuracy. Rerunning the above loop with a tighter value -ksp_rtol 1.0e-12,
instead of the default value 1.0e-5, yields clear convergence at rate O(h2) (Figure 3.10).
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Figure 3.10. To show convergence we refine the DM grid by factors of two (stars), but the errors
stagnate. With a stronger linear solver tolerance (-ksp_rtol 1.0e-12) the errors (dots) decrease at the
expected rate.

Backing up slightly, why should we expect O(h2) numerical errors from a scheme using FD
approximation (3.4), which neglects an O(h2) term in the Taylor expansion? The local errors,
made when replacing derivatives in the PDE by finite difference quotients, must build up in some
manner to yield the global numerical error; why is this still O(h2)?

The well-known theory for FD schemes [104], as follows, directs us to look at quantities
which are computable at run time using PETSC, namely eigenvalues and norms of the matrices
Ah. Note that for the rest of this discussion we assume square grid cells h = hx = hy , but the
general case is a straightforward extension.

Let u(x, y) be the exact solution to Poisson problem (3.1), (3.2); the well-posedness of the
problem says this function exists and is unique. Let ûij = u(xi, yj) denote the gridded values of
the exact solution.

By definition, scheme (3.5) has local truncation error τ satisfying

− ûi−1,j − 2ûi,j + ûi+1,j

h2
− ûi,j−1 − 2ûi,j + ûi,j+1

h2
= fi,j + τij . (3.11)

That is, the local truncation error is the residual from applying the scheme to the exact solution
[104, 115]. From (3.4) we know that τij is O(h2) as h→ 0.

Now define
eij = uij − ûij , (3.12)

the numerical error [104]; note that on the boundary, eij = 0. Our scheme is convergent if these
numerical errors eij vanish in the limit h→ 0.

Subtracting (3.11) from scheme (3.5) gives an equation for the numerical errors,

− ei−1,j − 2ei,j + ei+1,j

h2
− ei,j−1 − 2ei,j + ei,j+1

h2
= −τij . (3.13)
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58 Chapter 3. Poisson equation on a structured grid

This equation says that values eij behave as the solution of a discrete Poisson equation wherein
the source term is the truncation error. We may write the error equation (3.13) as a linear system,

Mhe = −τ , (3.14)

where Mh = h−2Ah. (Recall that we have earlier rescaled Ah to have O(1) entries.)
We have arrived at the core reason why FD schemes are effective. If we imagine solving

(3.14) for e, and take norms, then we see what is needed to prove convergence, and it becomes a
definition. By definition, an FD scheme for a linear boundary value problem is stable in a given
norm if Mh is invertible and if there is a constant C > 0, independent of h, so that

‖(Mh)−1‖ ≤ C. (3.15)

Note Mh ≈ −∇2 so (3.15) is a uniform-invertibility statement for the approximate Laplacian.
Given stability, convergence will occur at the expected rate:

‖e‖ = ‖(Mh)−1τ‖ ≤ ‖(Mh)−1‖‖τ‖ ≤ C‖τ‖ = O(h2). (3.16)

This proves the sufficiency of stability in the Lax-Richtmyer equivalence theorem [102].

Theorem 3.3. A consistent FD scheme for a linear differential equation is convergent if and only
if it is stable.

A major point now is that the stability of a scheme relates to computable and visualizable
quantities. First observe that the 2-norm is a convenient choice because Mh and (Mh)−1 are
symmetric and the 2-norm of a symmetric matrix equals its largest-magnitude eigenvalue [143].
Suppose λh denotes an eigenvalue of Mh. The smallest-magnitude eigenvalue of Mh, nonzero
if and only if Mh is invertible, supplies the norm in (3.15):

‖(Mh)−1‖2 =
1

min |λh|
. (3.17)

The stability of scheme (3.8) in the 2-norm comes down to whether the smallest-magnitude
eigenvalue is bounded below:

Is there δ > 0 so that min |λh| ≥ δ for all small h > 0? (3.18)

Because the matrices Mh are positive definite, the answer to this question is visualizable
by generating matrices and plotting the smaller positive eigenvalues. Figure 3.11 shows the
eigenvalues of Mh for grids with mx = my = 5, 9, 17, 33, 65, 129; see Exercise 3.7. The
stability of the scheme is reflected by the consistent gap from zero, as h→ 0, with minλh ≈ 19.7
for fine grids. In fact, we see convergence of all small eigenvalues. However, because Mh

approximates the unbounded Laplacian operator [127], the largest eigenvalues diverge to infinity.
Historically, the theory of stability of FD schemes took time to develop [115], reflecting

another numerical fact of life.

Fact 8. Understanding the theory of convergence and stability for FD schemes requires thinking
globally, beyond the local truncation error. One must consider either the norms or eigenval-
ues of the family of matrices which are generated as the mesh is refined, and these are global
considerations.
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Figure 3.11. An FD scheme, like that in poisson.c, is stable in 2-norm if the smallest eigenvalue
is bounded away from zero. In fact, all small eigenvalues converge to their continuum values as h→ 0.

A first look at performance
The finer-grid calculations above are slow. Why? Are we using the right Krylov method and
preconditioner combinations? What will change in parallel?

A first step toward answering these questions, which are fully addressed only in Chapters
6–8, might be to find possible solver options by piping the output from -help into a pager like
less or by greping for a solver-object prefix:

$ ./poisson -help | less
$ ./poisson -help | grep ksp_

If the grep result is too long one may pipe it again into less.
The latter -help usage shows the default values for KSP parameters, such as that the

-ksp_rtol default is 1e-05, which explains why convergence “leveled out” on fine grids. One
can also grep for prefix pc_ and thereby list PC types and their options. Also, as in Chapter
2, we may use -ksp_view to expose the KSP and PC objects. (Recall that the serial defaults
are KSP = GMRES and PC = ILU, while in parallel they are GMRES and block Jacobi with
each diagonal block preconditioned by ILU.) However, merely listing KSP and/or PC types, and
associated options, or even inspecting a given solver in detail, does not clarify the relationship
between solver choices and performance.

Consider the following run using the serial PETSC defaults:

$ ./poisson -da_refine 5 -ksp_converged_reason
Linear solve converged due to CONVERGED_RTOL iterations 506
on 257 x 257 grid: error |u-uexact|_inf = 1.73086e-06

The run time, extracted using -log_view (Chapter 1), is about 3 seconds. It is not clear if this
timing is fast or slow, though we see a concerning number of iterations.
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60 Chapter 3. Poisson equation on a structured grid

Table 3.1. Times and KSP iterations for serial runs of poisson.c on a 257× 257 grid.

KSP PC time (s) iterations
gmres none 8.44 4705

ilu 1.35 506
ilu (+ restart=200) 1.46 174

cg none 0.52 606
jacobi 0.57 606
icc 0.33 177
icc (+ rtol=10−14) 0.52 314

preonly cholesky 0.46 1
minres none 0.76 579

Experimentation should illuminate better solver choices. Table 3.1 was generated by running

$ ./poisson -da_refine 5 -ksp_converged_reason -ksp_rtol 1.0e-10 \
-log_view -ksp_type KSP -pc_type PC

For GMRES we see from the table that having a preconditioner is essential. ILU substantially
reduces both iteration count and time compared to having no preconditioner. The number of iter-
ations suggests that GMRES(30) went through many restarts, by default every 30 iterations. As
memory overflow is no issue in the current problem, we may try to avoid restarts for the PC= ILU
case by using option -ksp_gmres_restart 200, and the table shows that this reduces the iter-
ation count but not the execution time. (Avoiding restarts this way is not recommended for larger
problems, because of memory overflow.)

In this problem the system matrix Ah is SPD so CG and the Cholesky and ICC (incomplete-
Cholesky) preconditioners can be applied (Chapter 2). However, because -ksp_type preonly
-pc_type cholesky is a direct solver, fair comparison suggests we should solve the equations
accurately, which is why we have added a tighter tolerance to all the iterative cases in Table
3.1. We see that Jacobi preconditioning has no benefit over un-preconditioned CG, because the
diagonal is nearly constant—see Exercise 3.4—while ICC preconditioning for CG is the best so
far. The direct Cholesky solver is also fast for this 2D problem.

Serial and parallel runs with CG+ICC yield the following results on a grid with N ≈ 106

points:

$ ./poisson -da_refine 7 -ksp_type cg -pc_type icc -ksp_converged_reason
Linear solve converged due to CONVERGED_RTOL iterations 721
on 1025 x 1025 grid: error |u-uexact|_inf = 5.29691e-08
$ mpiexec -n 4 ./poisson -da_refine 7 -ksp_type cg -pc_type bjacobi \

-sub_pc_type icc -ksp_converged_reason
Linear solve converged due to CONVERGED_RTOL iterations 821
on 1025 x 1025 grid: error |u-uexact|_inf = 5.41698e-08

As expected, the number of KSP iterations depends on the number of processes. However, are
these KSP iteration counts too high anyway? Can we do better?

Scaling of preconditioned CG iterations
Accepting our best KSP and PC combination so far, namely cg+icc, would be premature. In
fact, one can demonstrate that all the preconditioned CG solvers in Table 3.1 have the same basic
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Figure 3.12. As the grid is refined (h→ 0), CG iterations increase on our Poisson problem, even
with ICC preconditioning.

flaw. Namely, their iteration counts grow with refinement, so that the number of CG iterations
required to meet a fixed tolerance approximately doubles with each refinement h → h/2 [49,
p. 77].

For example, consider the following Bash loop with unpreconditioned CG:

$ for N in 1 2 3 4 5; do ./poisson -da_refine $N -ksp_converged_reason \
-ksp_type cg -pc_type none; done

This generates iteration counts 36, 73, 148, 299, and 606, approximate doubling with each re-
finement. While -pc_type jacobi does no better (Exercise 3.4), Figure 3.12 shows that our
favorite method also has the same scaling as the grid is refined and the size of the problem in-
creases. That is, though ICC gives faster solves and lower iteration counts than none, the rate at
which these counts increase is the same.

A theoretical bound on CG iterations helps us understand. Suppose that A is SPD so its
eigenvalues are positive and equal to its singular values, thus that the 2-norm condition number
is the ratio of extreme eigenvalues: κ2(A) = λmax/λmin. Recall also that in Chapter 2 we
defined the A-norm (2.29), namely ‖v‖A = (v>Av)1/2. Finally, recall that ek = uk − u
denotes the error and rk = b − Auk the residual of iterate uk as a solution to Au = b. The
following theorem recalls the sense in which CG is norm-minimizing (compare with Table 2.2),
and then it supplies an error bound in terms of the condition number.

Theorem 3.4. Suppose uj are the iterates from CG, and let P1
j be the space of all real polyno-

mials p(x) of degree at most j such that p(0) = 1. Then

‖ej‖A = min
p∈P1

j

‖p(A)e0‖A.
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62 Chapter 3. Poisson equation on a structured grid

It follows that

(i) The A-norm of the error at the jth iteration is bounded by a function of the 2-norm condi-
tion number κ = κ2(A), namely

‖ej‖A
‖e0‖A

≤ 2

(√
κ− 1√
κ+ 1

)j
.

(ii) The 2-norm of the residual is likewise bounded:

‖rj‖2
‖r0‖2

≤ 2
√
κ

(√
κ− 1√
κ+ 1

)j
.

The first formula is proved by [66, p. 50]. Part (i) follows by using Chebyshev polynomials
to construct a polynomial which is small on the interval [λmin, λmax] [66, p. 51], and part (ii)
follows from (i) by rewriting ‖ · ‖A in terms of the 2-norm and the matrix

√
A (Exercise 3.6). We

state part (ii) because ‖rk‖2 is always computable while generally ‖ek‖A is not. Parts (i) and (ii)
are not optimal bounds, though such can also be found [66, p. 51].

From the theorem, the number of iterations j sufficient to reduce ‖ej‖A by a factor of ε > 0
from its initial value ‖e0‖A is given by

2

(√
κ− 1√
κ+ 1

)j
≤ ε

or, equivalently,

j ≥ ln(ε/2)

ln
(

1− 2√
κ+1

) ≈ −1

2
ln
( ε

2

)
(
√
κ+ 1)

for large κ. (Note (x− 1)/(x+ 1) = 1− 2/(x+ 1) and that ln(1− x) ≈ −x for small x.) This
gives a possibly memorable bound:

‖ej‖A
‖e0‖A

≤ ε if j = O
(

(ln ε)
√
κ2(A)

)
. (3.19)

The same conclusion applies to reducing ‖rj‖2 by a factor of ε (Exercise 3.6).
Theorem 3.4 connects condition number and iteration count. We may ask PETSC to approx-

imate κ2(Ah) as the Krylov iteration proceeds using option -ksp_view_singularvalues, for
example as in this un-preconditioned case:

$ ./poisson -ksp_type cg -pc_type none -ksp_view_singularvalues
Iteratively computed extreme singular values:

max 7.69543 min 0.304482 max/min 25.2738
on 9 x 9 grid: error |u-uexact|_inf = 0.00076388

Thus, on a 9 × 9 grid with spacing h = 1/8, κ2(A1/8) ≈ 25.3. Rerunning with option
-da_refine 1,2 we obtain κ2(A1/16) ≈ 103.1 and κ2(A1/32) ≈ 414.3. We now see the
issue: apparently κ2(Ah) = O(h2) for our FD scheme. Then (3.19) says that, for fixed accuracy
goal ε, we should expect a doubling in iteration count.

The 2-norm condition number of the (un-preconditioned) discrete Poisson matrix Ah on a
uniform rectangular grid with spacing h is also known in theory to be κ2(Ah) = O(h−2), as
we have just seen experimentally. This can be shown using the eigenvectors of the discrete
Poisson problem in the uniform rectangular case [26] or by a finite element method analysis
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Krylov is not enough: Better preconditioning is needed! 63

Table 3.2. Condition numbers κ2, of the symmetrically preconditioned matrix, and iteration
counts j, for poisson.c solutions using a CG+ICC solver.

h κ2 Ratio j Ratio
2−3 2.982 7
2−4 9.573 3.211 12 1.714
2−5 36.35 3.797 23 1.917
2−6 147.0 4.045 44 1.913
2−7 587.4 3.995 88 2.000
2−8 2348 3.998 177 2.011
2−9 9391 3.999 357 2.017
2−10 37563 4.000 721 2.020

which applies to unstructured grids [49]. Combined with (3.19) this shows that we expect j =
O(h−1) iterations to solve our discrete Poisson problem to a given relative tolerance using un-
preconditioned CG.

Now, it is true that ICC preconditioning reduces the time and iteration count relative to no
preconditioning. However, while detailed analysis is beyond our scope, the asymptotic behavior
of the condition number is unchanged: κ2(M−1Ah) = O(h−2) [49, p. 84]. This explains
theoretically why ICC does not improve on O(h−1) scaling. On the empirical side, Table 3.2
shows the results of runs

$ ./poisson -da_refine X -ksp_type cg -pc_type icc \
-ksp_view_singularvalues -ksp_converged_reason

These results confirm that κ2 = O(h−2) and j = O(h−1); see Figure 3.12.

Krylov is not enough: Better preconditioning is needed!
When solving sparse linear systems arising from discretized PDEs, we can hope that precondi-
tioned-Krylov iterations such as CG+ICC are effective solvers. The primary difficulty with such
methods has now become clear: the number of iterations can grow as the grid is refined.

However, a second reason to be skeptical of these methods is that on this Poisson problem
certain direct linear algebra techniques can also beat CG+ICC. Suppose we compare runs of
poisson with option -da_refine 7, giving a 1025 × 1025 grid and N ≈ 106 degrees of
freedom, a reasonably high resolution 2D solution. Compare the ICC-preconditioned CG method
with two direct methods using these runs:

$ ./poisson -da_refine 7 -ksp_type cg -pc_type icc \
-ksp_converged_reason -ksp_rtol 1.0e-10

$ ./poisson -da_refine 7 -ksp_type preonly -pc_type cholesky \
-pc_factor_mat_ordering_type nd

$ ./poisson -da_refine 7 -ksp_type preonly -pc_type lu \
-pc_factor_mat_ordering_type nd

We obtain the first three rows of Table 3.3.
Option -pc_factor_mat_ordering_type nd, which is actually the default for these direct

solvers, generates LU and Cholesky factors using the nested dissection ordering [58]. While we
give no details, the unknowns and equations are reordered so as to reduce the cost of “fill-in” of
additional nonzero values in the sparse matrix structure. The two direct solvers in Table 3.3 are
faster than ICC-preconditioned CG at this resolution.
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64 Chapter 3. Poisson equation on a structured grid

Table 3.3. Time and iteration count on a 1025× 1025 grid on a single MPI process on a laptop.
The fish code is from Chapter 6.

Code KSP PC Time (s) Iterations
poisson cg icc 29.72 1056

preonly cholesky + nd 23.82 1
lu + nd 17.60 1

fish cg mg 3.52 8

user code

KSP
linear solver

PC
preconditioner

DMDA
structured grid

Mat
A

Vecs
solution, other fields

Figure 3.13. An overview of poisson.c. Arrows should be read as “user code acts directly on.”

Nonetheless the reader should not give up on Krylov methods yet, though we do need to find
better preconditioners if we are going to have scalable solutions of PDE problems. In particular,
a geometric multigrid method (Chapter 6), acting as a preconditioner on CG, provides optimal
scaling for a structured-grid Poisson problem. Thus we add one more run to Table 3.3:

$ cd c/ch6/
$ make fish
$ ./fish -da_refine 9 -pc_type mg -ksp_converged_reason -ksp_rtol 1.0e-10

Here fish.c is a Chapter 6 program for solving the same Poisson problem, and -da_refine 9
gives the same 1025× 1025 grid.

Switching to multigrid preconditioning yields significant speedup over both the ICC-precon-
ditioned CG and nested-dissection direct methods. The speedup is even larger for further-refined
grids because the scaling is greatly improved. (The multigrid method is an order of magnitude
faster for 2049× 2049 and finer 2D grids, and the benefit is even greater for high-resolution 3D
grids.) As the reader may check, the condition number of the preconditioned operator, and thus
the CG iteration count, is independent of the grid spacing h.

To exploit the power of geometric multigrid preconditioning (Chapter 6), however, our future
codes must do a better job of using PETSC’s tools for assembling the discrete equations. We
will use techniques which we want to use anyway, which allow nonlinearity in our PDEs. Thus,
as introduced in the next chapter, both nonlinear and linear problems will be solved using a
nonlinear solver object.

For now, Figure 3.13 shows an overview of our first PDE-solving PETSC code poisson.c.
User code directly acts on KSP and DMDA objects and on the Vec and Mat objects which define the
linear system. As we develop facility with new PETSC types, this diagram should be compared
to similar diagrams in later chapters; compare Figures 4.4, 5.5, and 9.5 in particular.
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Exercises 65

Exercises
3.1. Use DMDACreate1d(), and other appropriate modifications of poisson.c, to write a

code poisson1D.c for the 1D Poisson problem

−u′′ = f, u(0) = u(1) = 0.

For simplicity, choose the exact solution u(x) = x2(1− x2) to determine f(x). Because
indexing is easy in 1D, you can either useMatSetValues()orMatSetValuesStencil().
Show that your results converge at the expectedO(h2) rate on a sequence of refining grids;
compare with Figure 3.10. Find a grid refinement level permitting 11-digit accuracy at
every grid point. (It will never again be this easy to solve an elliptic problem!)

3.2. Modify poisson.c to use exact solution u(x, y) = (x−x2)(y2−y) and the correspond-
ing right-hand side function f(x, y). Compute numerical errors as you refine the grid.
What rate of convergence do you expect? What do you actually see?

3.3. Modify poisson.c to allow nonhomogeneous Dirichlet boundary data u|∂S = g. That
is, solve (3.1) with both f and g derived from an exact solution such as u(x, y) = 3x +
sin(20xy). Again examine numerical errors under grid refinement; a correct code will
show O(h2) convergence.

3.4. Confirm the nearly identical performance of un-preconditioned and Jacobi-preconditioned
CG by doing
$ ./poisson -da_refine N -ksp_converged_reason -log_view \

-ksp_type cg -pc_type X

for N ∈ {1, . . . , 6} and X ∈ {none,jacobi}. Explain. Now confirm that ICC precondi-
tioning gives lower iteration counts but the same scaling with refinement.

3.5. Add -log_view to an un-preconditioned CG run, e.g.,
$ ./poisson -ksp_converged_reason -ksp_type cg -pc_type none \

-log_view

By looking at the “Count” column, and noting that an iteration count comes from
-ksp_converged_reason output, confirm that the computational work of one CG it-
eration consists of one matrix-vector product (MatMult), two inner products (VecTDot),
and three vector updates (VecAXPY and VecAYPX). Compare Exercise 2.8.

3.6. Let A be an SPD N ×N matrix. Note A is diagonalizable and has positive eigenvalues.

(i) Show that (2.29) defines a norm on RN .

(ii) Define the matrix
√
A as the unique SPD matrix such that (

√
A)2 = A. Show that

‖v‖A = ‖
√
Av‖2 and that κ2

(√
A
)

=
√
κ2(A).

(iii) Suppose Ae = −r and show that

1

‖
√
A‖2
‖r‖2 ≤ ‖e‖A ≤ ‖

√
A‖2‖r‖2.

(iv) Prove part (ii) of Theorem 3.4.

3.7. Generate Figure 3.11 using -ksp_view_eigenvalues. (You will need to use the un-
preconditioned operator. Remember to scale the computed eigenvalues by h−2.)

3.8. The minimum residual method (MINRES) [66] applies to symmetric matrices, and so
it could be added to Table 3.1. Confirm [49, p. 91]: “when solving discrete Poisson
problems the convergence of MINRES is almost identical to that of CG.”
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66 Chapter 3. Poisson equation on a structured grid

3.9. Produce figures similar to Figure 3.12 for GMRES+ILU and MINRES+ICC precondi-
tioning to show that the scaling limitations which apply to CG+ICC also apply to these
solvers. (Only with geometric (Chapter 6) and algebraic (Chapter 10) multigrid precon-
ditioning is this fixed.)

3.10. See what happens when you try
$ ./poisson -da_refine 7 -ksp_type cg -pc_type mg

Though there is no error message, and the solution eventually succeeds, the solver is not
geometric multigrid at all. See the result of -ksp_view. (The solver view may not make
sense. Consider returning to this exercise after reading Chapter 6.)

3.11. If you have difficulty reproducing timings comparable to those in Table 3.3, note that they
come from a PETSC configuration using the “optimized” option --with-debugging=0.
If you have not already done so, see the PETSC installation page

www.mcs.anl.gov/petsc/documentation/installation.html

and generate an optimized PETSC configuration with a new PETSC_ARCH value. Then
generate your own version of Table 3.3.

3.12. Use DMDACreate3d(), and etc., in a code poisson3D.c which solves a 3D Poisson prob-
lem on the unit cube C = (0, 1)3 using the same DMDA and KSP methods as in poisson.c.
Looking forward, describe how the resulting solver is different from the one in Chapter 6.
(The latter version is recommended.)
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Chapter 4

Nonlinear equations
by Newton’s method

Compared to linear equations, nonlinear equations merely change the functional form of the
residual. For a linear system Ax = b the residual is the linear function r(x) = b − Ax,
but now we consider cases where the residual is a more general function. That is, suppose
F : RN → RN is differentiable. Because the input x and output F(x) are column vectors, F has
the same domain and range spaces as multiplication by a square matrix A, i.e., F(x) and r(x)
are analogous. We hope to solve the general nonlinear equation

F(x) = 0. (4.1)

For the equation Ax = b, an iterative linear solver would generate a sequence xk which
reduces r(xk) = b−Axk to zero. Similarly, we will solve nonlinear equation (4.1) by iteration,
by generating approximations xk so that F(xk) goes to zero. As explained below, Newton’s
method does this by linearizing equation (4.1) around an iterate, solving this linear system for
a vector which is a “Newton step,” and computing a new iterate, which we hope is closer to the
solution, by adding this vector to the current iterate. This is not the only possible plan for solving
(4.1)—compare [29]—but this chapter is devoted to it.

What choices arise in using Newton’s method in practice? First, both exact and approximate
linearizations are allowed. Second, deciding on a distance to move, even if the search direction
is fixed to be along the Newton step vector, is a nontrivial choice. Finally, choices made in
solving the linear problem for the Newton step, especially Krylov method and preconditioning
choices, are critical for efficiency. Nonlinear solvers in PETSC can, and should, exploit all of
the linear-system tools from Chapters 2 and 3, and more.

In this book we are led to Newton’s method because large systems of nonlinear equations
(4.1) arise as the discretizations of nonlinear PDE models. While much of the following material
focuses on fixed-dimension nonlinear systems, i.e., systems not necessarily derived from PDEs,
in this chapter we do eventually solve a nonlinear boundary value problem in one dimension.
In later chapters Newton’s method is routinely used to solve nonlinear PDEs in two or three
dimensions.

Newton’s method
Suppose xk ∈ RN is an approximation to the solution of equation (4.1). If F : RN → RN is
differentiable then for s ∈ RN we have

F(xk + s) = F(xk) + JF(xk)s + o(‖s‖) (4.2)

67
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68 Chapter 4. Nonlinear equations by Newton’s method

for some (square) matrix-valued function

JF(x) =


∂F0

∂x0
. . . ∂F0

∂xN−1

...
. . .

...
∂FN−1

∂x0
. . . ∂FN−1

∂xN−1

 (4.3)

and some quantity o(‖s‖) which goes to zero as ‖s‖ → 0. The matrix JF(x), uniquely defined
by (4.2), is called the Jacobian of F at x.

Each iteration of Newton’s method approximately solves (4.1) by truncating (4.2) to a linear
equation for s and finding s so that the updated value F(xk+1) would be zero if that linear
equation were exact. That is, we drop the “+o(‖s‖)” term and define s as the solution to 0 =
F(xk) + JF(xk)s. If s is the step to take from the current iterate xk then xk+1 = xk + s is the
next iterate. Thus each iteration of Newton’s method requires solving a linear system and doing
a vector addition:

JF(xk)s = −F(xk), (4.4a)
xk+1 = xk + s. (4.4b)

Example 4.1. Small nonlinear systems are visualized as finding the intersections of curves, sur-
faces, or hypersurfaces, depending on dimension. For example, given a real parameter b, the
nonlinear equations y = 1

b e
bx and x2 + y2 = 1 may be intersecting curves in the plane. If b ≥ 1,

for instance, it is clear that the curves intersect exactly twice. Put in form (4.1), the nonlinear
residual function is

F(x) =

[
1
b e
bx0 − x1

x2
0 + x2

1 − 1

]
, (4.5)

and thus the Jacobian is

JF(x) =

[
ebx0 −1
2x0 2x1

]
. (4.6)

As shown in Figure 4.1 for the b = 2 case, if we start the Newton iteration with x0 = [1, 1]>

then the sequence of iterates from (4.4) is

x0 =

[
1
1

]
, x1 =

[
0.619203
0.880797

]
, x2 =

[
0.394157
0.948623

]
, x3 =

[
0.325199
0.948157

]
, . . . .

At least visually, xk are approaching a solution of F(x) = 0.

Thus Newton’s method is simple in theory. Actual practice is also not that complicated with
PETSC in hand. In fact, despite the perception that it is fragile or scary, Newton’s method works
well on many nonlinear systems if one has a good initial iterate x0 and one adds some important
protections [89]. A line search, which sometimes moves a shorter distance than computed in
(4.4b), is such a “protection”; see the discussion starting page 90.

Inside the first SNES code
We will compute the Newton iterates in the above example by using a PETSC object of type
SNES, a scalable nonlinear equation solver. Our code provides F to the SNES as a call-back. That
is, the SNES calls the function we provide when it needs a value F(x) during the Newton iteration.
We may also provide a call-back function which evaluates JF, but, because this Jacobian can be
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Inside the first SNES code 69

x0x1
x2

Figure 4.1. Newton iterates xk approach a solution of F(x) = 0.

approximated by repeated F evaluations using finite differences, as explained below, our first
code succeeds without it.

The whole of expcircle.c, which solves Example 4.1, is in Code 4.1. The main()
function starts by allocating a Vec x of fixed dimension 2 to hold the initial iterate; when
the Newton iteration terminates this Vec will instead hold the converged solution. A dupli-
cate Vec r is also needed so that the SNES has space to store the current residual. Note we
apply the usual Create/SetFromOptions/Destroy sequence to the SNES, and the call to
SNESSetFromOptions() permits run-time control both on how the Jacobian is calculated and
on how the length of the step is determined. After (4.1) is solved by a call to SNESSolve() the
values in x, presumably the converged solution, are printed using VecView().

static char help [ ] = "Newton ’ s method for a two−var iable system . \ n"
"No ana ly t i ca l Jacobian . Run with −snes_fd or −snes_mf . \ n \n" ;

#include <petsc .h>

extern PetscErrorCode FormFunction (SNES, Vec , Vec , void * ) ;

int main( int argc , char ** argv ) {
SNES snes ; / / nonlinear solver
Vec x , r ; / / solut ion , residual vectors

Petsc In i t i a l i ze (&argc ,&argv ,NULL, help ) ;
VecCreate (PETSC_COMM_WORLD,&x ) ;
VecSetSizes (x ,PETSC_DECIDE,2) ;
VecSetFromOptions (x ) ;
VecSet (x ,1 .0 ) ; / / i n i t i a l i t e ra te
VecDuplicate (x,& r ) ;

SNESCreate(PETSC_COMM_WORLD,&snes) ;
SNESSetFunction(snes , r , FormFunction ,NULL) ;
SNESSetFromOptions(snes) ;
SNESSolve(snes ,NULL, x ) ;
VecView(x ,PETSC_VIEWER_STDOUT_WORLD) ;

SNESDestroy(&snes) ; VecDestroy(&x ) ; VecDestroy(& r ) ;
return PetscFinalize ( ) ;

}
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70 Chapter 4. Nonlinear equations by Newton’s method

PetscErrorCode FormFunction (SNES snes , Vec x , Vec F, void * ctx ) {
const PetscReal b = 2.0 , *ax ;
PetscReal *aF;

VecGetArrayRead(x,&ax) ;
VecGetArray (F,&aF) ;
aF[0 ] = (1.0 / b) * PetscExpReal (b * ax [ 0 ] ) − ax [ 1 ] ;
aF[1 ] = ax [0 ] * ax [0 ] + ax [1 ] * ax [1 ] − 1.0;
VecRestoreArrayRead(x,&ax) ;
VecRestoreArray (F,&aF) ;
return 0;

}

Code 4.1. c/ch4/expcircle.c. A SNES code which solves (4.1) for F in (4.5).

Formula (4.5) is implemented in method FormFunction() and supplied to the SNES using
SNESSetFunction(). In order to match how SNES calls it, FormFunction() must have the
signature

PetscErrorCode FormFunction(SNES snes, Vec x, Vec F, void *ctx)

In particular, FormFunction() takes x as the first Vec argument and it generates output F(x)
as the second Vec. (A Vec is actually a pointer, so passing a Vec by value allows the object to be
modified.) There may be additional information, such as parameters, passed to FormFunction()
in an “application context,” justifying the fourth void* argument. (We show how to pass param-
eters in the next code.)

Looking inside FormFunction() in Code 4.1 we see two different ways of accessing the
values in a Vec. Previously we have used VecSetValues() to set values at given indices
(Chapter 2), or we have used a DMDA structured grid method of access (Chapter 3). Here we
access the C arrays inside the Vecs. Because we only need to read the entries of Vec x, we
use VecGetArrayRead() which returns a read-only pointer const PetscReal *ax,16 while
for Vec F we use VecGetArray() because we are setting its entries. Note that Get calls are
matched by Restore calls; the latter “free” the Vecs so that other parts of the code may work on
them, but they do not deallocate as would VecDestroy().

It is time to run this example:

$ cd c/ch4/
$ make expcircle
$ ./expcircle -snes_fd -snes_monitor
0 SNES Function norm 2.874105323289e+00
1 SNES Function norm 8.591393113962e-01
2 SNES Function norm 1.609958353862e-01
3 SNES Function norm 1.106891696425e-02
4 SNES Function norm 6.618141730691e-05
5 SNES Function norm 2.420782802130e-09

Vec Object: 1 MPI processes
type: seq

0.319632
0.947542

Option -snes_monitor counts iterations and shows residual norms ‖F(xk)‖2. After five it-
erations the Newton method has reduced the residual norm by a factor of 109—the default for
-snes_rtol is 10−8—so the iteration stops with solution x5 = [0.319632, 0.947542]

>.

16Because of the const qualifier, the C compiler will stop us from altering ax[0].
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Inside the first SNES code 71

The above run also uses option -snes_fd, the purpose of which the reader may already see.
Clearly the Newton iteration (4.4) requires the Jacobian, but we have only supplied a function
F(x). The entries of the Jacobian are, however, derivatives which can be approximated by finite
differences, as follows. Let uj ∈ RN denote the standard unit vector with entry one in the jth
position and zeros otherwise. If δ 6= 0 then an entry in matrix JF(x) is approximated:

Jij =
∂Fi
∂xj
≈ Fi(x + δuj)− Fi(x)

δ
. (4.7)

When using -snes_fd, PETSC chooses δ internally and applies (4.7). In this example the choice
amounts to δ =

√
ε, where ε is machine precision, giving an approximation accurate to

√
ε if the

solution values x are of order one and if the function F can be accurately evaluated [89].
Because there are several variations for the user to consider, it helps to describe the Newton

iteration from the point of view of the actions taken by the SNES object. Assuming we are using
the default -snes_type newtonls, namely a Newton solver with a line search (page 90), SNES
does these steps:

(i) From the current iterate xk, F(xk) is evaluated using the call-back function
set in SNESSetFunction(), e.g., FormFunction(),

(ii) The Jacobian JF(xk) is evaluated by one of the following methods:

a. computed and assembled by a call-back to user-supplied code set using
SNESSetJacobian(), e.g., FormJacobian() in code ecjac.c below,
or

b. computed and assembled by evaluating F(xk+δuj) for j = 0, . . . , N−1,
thus calling FormFunction() N times, and then using formula (4.7) up
to N2 times to compute all entries of JF(xk), or

c. computed and assembled by calling FormFunction() substantially fewer
than N times to compute F(xk + δv) for special vectors v, by using a
graph-coloring algorithm based on the Jacobian sparsity pattern to con-
struct the vectors v, and using formula (4.17) below, or

d. not assembled, but, in a Krylov iterative method for solving system (4.4a),
the action of the Jacobian on vectors (i.e., JF(xk)y) is computed by finite
differences,

(iii) Linear system (4.4a) is solved for the search direction s using the KSP and PC
objects chosen by the user,

(iv) a step length λk is determined through line search (page 90),

(v) the vector update xk+1 = xk + λks is done, and

(vi) convergence tests are applied, with repeat at (i) if not converged.

Our above run of expcircle.c used alternative (ii)b for the Jacobian, namely option
-snes_fd. Option -snes_mf, for method (ii)d, also works. Our next code will allow (ii)a
as well. The graph-coloring technique (ii)c, corresponding to option -snes_fd_color, requires
additional information: either a structured grid or other choice of a graph-coloring object. This
technique will be addressed starting on page 83.

Running expcircle.c with no options gives an error message. This error is opaque unless
you are conscious of the need to form the Jacobian matrix at each Newton iteration. That is,
something must supply a Jacobian at step (ii).

The benefit of using Jacobian alternatives (ii)b–(ii)d is that we do not initially need to write
any error-prone code based on by-hand differentiation of F. Avoiding a Jacobian implementation
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72 Chapter 4. Nonlinear equations by Newton’s method
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Figure 4.2. Quadratic convergence in a Newton iteration.

in this way usually shortens the time to create a correct solver. In many cases using an approxi-
mate Jacobian in the Newton iteration is effective [89]. On the other hand, a performance prob-
lem arises from using (4.7) naively for PDE-type applications of Newton’s method. In steps (i)
and (ii)b we doN+1 calls to FormFunction() per Newton iteration. This is a worrying amount
of work if N is large, as it would be when discretizing a PDE. We will return to this issue later
in this chapter, with more detail on alternatives (ii)c and (ii)d in particular.

Evaluating F and JF can dominate the work in the Newton iteration, especially when these
are expensive functions. As a first step to diagnose this, option -log_view will show how
many times F and JF are evaluated, as SNESFunctionEval and SNESJacobianEval counts,
respectively; use the search method -log_view | grep Eval. The other concern is the work
done in solving linear system (4.4a). For assessing the relative cost of function evaluations
versus linear solves, compare the KSPSolve and SNESSolve events in -log_view output. If
the KSPSolve time is the majority of the SNESSolve time, as is common, then the linear solves
dominate. Otherwise the cost of F or JF evaluations may be a concern. In any case, a good habit
is to profile using -log_view to see which kind of work actually dominates.

A further good habit is to use a --with-debugging=1 PETSC configuration while devel-
oping your code, but also to maintain an “optimized” configuration (--with-debugging=0) for
use in evaluating performance, e.g., when looking at timing results from -log_view.

Convergence of the Newton iteration
Now we return to running expcircle.c. Option -snes_rtol, with default value 1.0e-8,
specifies by what factor the SNES should reduce the residual norm. The following run asks for
much more accuracy, but -snes_monitor shows only one more iteration:

$ ./expcircle -snes_fd -snes_monitor -snes_rtol 1.0e-15

It may be come as a surprise that asking for a further 107 reduction in residual norm requires
only one more iteration than before, but this is the hoped-for behavior of a Newton iteration.

Figure 4.2 shows the residual norms from the above run in a graph with log scaling on the
y axis. The residual norm drops abruptly, reflecting success in a Newton iteration. The per-step
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Convergence of the Newton iteration 73

residual norm decrease becomes huge as the iteration converges because, in exact arithmetic, the
numerical error is proportional to the square of the numerical error at the previous iteration. If
x∗ denotes the solution of (4.1) to which the iterates xk are converging, i.e., if F(x∗) = 0, then
the numerical error at iteration k is

ek = xk − x∗. (4.8)

This is the quantity which we want to send to zero, but ek is just as unknown as x∗; we generally
do not have exact access to either. On the other hand, we compute the residuals F(xk) as part of
the Newton iteration. Thus both parts of the following theorem, which assumes exact arithmetic,
are important.

Theorem 4.2. (See [89].) Suppose that F : RN → RN is differentiable, JF is Lipschitz near
x∗, and JF(x∗) is nonsingular. Let xk be the iterates from Newton’s method, and suppose ‖ · ‖
is any vector norm.

(i) If x0 is sufficiently close to x∗ then there is C ≥ 0 such that, for all sufficiently large k,

‖ek+1‖ ≤ C‖ek‖2. (4.9)

(ii) If ‖ ·‖ also denotes the induced matrix norm, and if κ(A) = ‖A−1‖‖A‖ is the correspond-
ing condition number, then

1

4κ (JF(x∗))

‖ek‖
‖e0‖

≤ ‖F(xk)‖
‖F(x0)‖

≤ 4κ (JF(x∗))
‖ek‖
‖e0‖

. (4.10)

By definition, a sequence {xk} in RN converges quadratically to x∗ if the sequence of errors
{ek} goes to zero and satisfies (4.9) for some C ≥ 0. Heuristically, once ‖ek‖ gets reasonably
small then the number of correct digits in xk doubles with each additional iteration. Theorem 4.2
says that Newton’s method converges quadratically under certain assumptions about the initial
iterate and the regularity and nonsingularity of the Jacobian.

We seem to see quadratic convergence in Figure 4.2, but it actually shows the residual norm
‖F(xk)‖2 and not the error norm ‖ek‖2. The second part of the theorem reassures us that the
residual norm reduction ‖F(xk)‖/‖F(x0)‖ is within a factor, determined by the conditioning
of the Jacobian at the solution, of the error reduction ‖ek‖/‖e0‖. If we want to reduce the
generally un-knowable error ek by a given amount then it suffices to reduce the residual norm
by a comparable amount as long as the Jacobians are well conditioned. For poorly conditioned
Jacobians, note that precision is lost in solving (4.1) by any numerical means (Chapter 2).

The residual norm reduction is exactly what -snes_rtol controls, that is, the iteration ter-
minates once

‖F(xk)‖2
‖F(x0)‖2

≤ X if -snes_rtol X.

To give a more complete story, however, three SNES tolerances are listed in Table 4.1. The itera-
tion stops as soon as one of these conditions is satisfied, and option -snes_converged_reason
reports which. For example, the -snes_rtol condition stopped this iteration:

$ ./expcircle -snes_fd -snes_converged_reason
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 5
...

The defaults for the three tolerances in the table are X = 10−8, 10−50, 10−8, respectively. One
can force the SNES to not use a particular stopping criterion by setting the corresponding tolerance
to zero.
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74 Chapter 4. Nonlinear equations by Newton’s method

Table 4.1. Three ways SNES can succeed and stop the Newton iteration.

Option Name Stopping condition
-snes_rtol X relative (FNORM_RELATIVE) ‖F(xk)‖2 ≤ X ‖F(x0)‖2
-snes_atol X absolute (FNORM_ABS) ‖F(xk)‖2 ≤ X
-snes_stol X step-length (SNORM_RELATIVE) ‖sk‖2 ≤ X ‖xk‖2
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Figure 4.3. Even for well-behaved systems F(x) = 0, quadratic convergence can be postponed
for many iterations.

We have portrayed the Newton iteration in optimistic terms, but it is not magic and things can
go wrong. Note a key hypothesis in the above theorem, namely that x0 needs to be sufficiently
close to x∗. Even on well-behaved nonlinear equations, if x0 is far from the solution then the
iteration may take many steps before ‖ek‖ becomes small enough so that quadratic convergence
(4.9) “kicks in.” For example, Figure 4.3 shows what happens if we use initial iterate x0 =
[10 10]> in expcircle.c. About 18 iterations of slow progress are needed before the iterate xk
enters the region around x∗ where Theorem 4.2 applies. Furthermore, many real-world problems
do not have the smoothness needed to apply Theorem 4.2. In such cases regularization (Chapter
9), continuation [89], grid sequencing (Chapter 7), or other procedures may be needed to make
the Newton method effective.

Decrease in residual norm, as displayed in Figures 4.2 and 4.3, is also not guaranteed in gen-
eral. Indeed, there is nothing intrinsic about problem (4.4) that implies ‖F(xk+1)‖ ≤ ‖F(xk)‖.
In some cases the Newton iteration actually diverges; Exercise 4.4 gives an example. Line-search
methods (page 90), however, enforce residual norm decrease or stop if it cannot be achieved.
Such methods are said to “globalize” the convergence [89] by allowing convergence from a
larger set of initial states.

User-supplied Jacobians
We have yet to exploit two important aspects of using SNES objects, namely passing parame-
ters through the call-back mechanism, so that they can be used inside residual- and Jacobian-
evaluation functions, and providing a user-written Jacobian function JF(x). Our next code
ecjac.c does both.
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User-supplied Jacobians 75

To begin we declare a C struct for the “application context”:

typedef struct {
PetscReal b;

} AppCtx;

A struct is not really necessary here, but in future examples there will be multiple parameters.
The parameter b, which appears in formulas (4.5) and (4.6), is the single member of AppCtx.

The method FormFunction() is almost the same as in expcircle.c, but the value of b
now comes from the struct. As shown in Code 4.2, the argument void *ctx is “cast” in
the C language sense [90] to a pointer of type AppCtx*. Then the parameter is extracted by
dereferencing user->b.17 Note that the signature of FormFunction() matches PETSC type
SNESFunction.

PetscErrorCode FormFunction (SNES snes , Vec x , Vec F, void * ctx ) {
AppCtx *user = (AppCtx* ) ctx ;
const PetscReal b = user−>b , *ax ;
PetscReal *aF;

VecGetArrayRead(x,&ax) ;
VecGetArray (F,&aF) ;
aF[0 ] = (1.0 / b) * PetscExpReal (b * ax [ 0 ] ) − ax [ 1 ] ;
aF[1 ] = ax [0 ] * ax [0 ] + ax [1 ] * ax [1 ] − 1.0;
VecRestoreArrayRead(x,&ax) ;
VecRestoreArray (F,&aF) ;
return 0;

}

PetscErrorCode FormJacobian (SNES snes , Vec x , Mat J , Mat P, void * ctx ) {
AppCtx *user = (AppCtx* ) ctx ;
const PetscReal b = user−>b , *ax ;
PetscReal v [ 4 ] ;
PetscInt row [2 ] = {0 ,1} , col [ 2 ] = {0 ,1} ;

VecGetArrayRead(x,&ax) ;
v [0 ] = PetscExpReal (b * ax [ 0 ] ) ; v [1 ] = −1.0;
v [2 ] = 2.0 * ax [ 0 ] ; v [3 ] = 2.0 * ax [ 1 ] ;
VecRestoreArrayRead(x,&ax) ;
MatSetValues (P,2 , row,2 , col , v ,INSERT_VALUES) ;
MatAssemblyBegin (P,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(P,MAT_FINAL_ASSEMBLY) ;
i f ( J != P) {

MatAssemblyBegin (J ,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(J ,MAT_FINAL_ASSEMBLY) ;

}
return 0;

}

Code 4.2. c/ch4/ecjac.c, part I. This code solves the same nonlinear system as expcircle.c,
but now with an exact Jacobian and parameter-passing.

Function FormJacobian() in Code 4.2 has similar structure to FormFunction(), but it has
a new signature matching PETSC type SNESJacobianFunction:

PetscErrorCode FormJacobian(SNES snes, Vec x, Mat J, Mat P, void *ctx)

Input Vec x and pointer void *ctx have the same meaning as in FormFunction(), but
now there are two output Mats which FormJacobian() should set. The first, called J here,

17An equivalent expression is (*user).b.

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



76 Chapter 4. Nonlinear equations by Newton’s method

corresponds to the Jacobian matrix itself. The second, P, is the “material” from which PETSC
can build a preconditioner. In our case FormJacobian() sets entries P to the correct derivatives
of F, namely (4.6), and we assemble P. Because we have set the Mats to the same object when
calling SNESSetJacobian() (below), J is also now assembled.

In some cases, because of user options, J is a different Mat at the time of the call-back, so
it is also assembled. This Mat might be a piece of code, such as a user-defined function which
defines an operator which approximates the Jacobian. An important case, described on page
86, is when we are using a preconditioned Jacobian-free Newton-Krylov method using option
-snes_mf_operator.

Regarding the inside of FormJacobian(), the roles of real array v[4] for the entries of
the Mat, and integer arrays row[2] and col[2] as global indices, are the same as they were
in Chapter 2. MatSetValues(), is also used the same way. Note that for input x we use
VecGetArrayRead() and VecRestoreArrayRead().

In main() (Code 4.3) we create and configure a 2 × 2 Mat J to hold the Jacobian, and
Create/SetSizes/SetFromOptions/SetUp mimics what we did for linear systems in Chap-
ter 2. However, this time we pass Mat J to the SNES in two arguments to provide this allocated
Mat as both the Jacobian and preconditioner-material matrices:

SNESSetJacobian(snes,J,J,FormJacobian,&user);

We are telling PETSC that we have a Jacobian function and that we want the preconditioner for
linear system (4.4a) to be built from it too.

int main( int argc , char ** argv ) {
SNES snes ; / / nonlinear solver
Vec x , r ; / / solut ion , residual vectors
Mat J ;
AppCtx user ;

Pe tsc In i t i a l i ze (&argc ,&argv ,NULL, help ) ;
user .b = 2.0;

VecCreate (PETSC_COMM_WORLD,&x ) ;
VecSetSizes (x ,PETSC_DECIDE,2) ;
VecSetFromOptions (x ) ;
VecDuplicate (x,& r ) ;

MatCreate (PETSC_COMM_WORLD,&J ) ;
MatSetSizes (J ,PETSC_DECIDE,PETSC_DECIDE,2 ,2) ;
MatSetFromOptions (J ) ;
MatSetUp(J ) ;

SNESCreate(PETSC_COMM_WORLD,&snes) ;
SNESSetFunction(snes , r , FormFunction,&user ) ;
SNESSetJacobian(snes , J , J , FormJacobian,&user ) ;
SNESSetFromOptions(snes) ;

VecSet (x ,1 .0 ) ; / / i n i t i a l i t e ra te
SNESSolve(snes ,NULL, x ) ;
VecView(x ,PETSC_VIEWER_STDOUT_WORLD) ;

SNESDestroy(&snes) ; MatDestroy(&J ) ; VecDestroy(&x ) ; VecDestroy(& r ) ;
return PetscFinalize ( ) ;

}

Code 4.3. c/ch4/ecjac.c, part II. main() looks like this when we supply a Jacobian function.
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User-supplied Jacobians 77

Now that we have assembled an exact Jacobian, we may verify that its finite difference ap-
proximation produces nearly the same result:

$ make ecjac
$ ./ecjac -snes_monitor_short
0 SNES Function norm 2.87411
1 SNES Function norm 0.859139
2 SNES Function norm 0.160996
3 SNES Function norm 0.0110689
4 SNES Function norm 6.61811e-05
5 SNES Function norm 2.41926e-09

Vec Object: 1 MPI processes
type: seq

0.319632
0.947542
$ ./ecjac -snes_monitor_short -snes_fd
0 SNES Function norm 2.87411
1 SNES Function norm 0.859139
2 SNES Function norm 0.160996
3 SNES Function norm 0.0110689
4 SNES Function norm 6.61814e-05
5 SNES Function norm 2.42078e-09

Vec Object: 1 MPI processes
type: seq

0.319632
0.947542

PETSC can provide direct assistance with debugging a user’s Jacobian code. Option
-snes_test_jacobian compares the results of FormJacobian() evaluations to finite differ-
ence approximations which need only FormFunction() evaluations. The user must read the
output and decide if the comparison is good:

$ ./ecjac -snes_test_jacobian
---------- Testing Jacobian -------------
Run with ... -snes_test_jacobian ... to show difference
of hand-coded and finite difference Jacobian entries ...

Testing hand-coded Jacobian, if ... ||J - Jfd||_F/||J||_F is
O(1.e-8), the hand-coded Jacobian is probably correct.

||J - Jfd||_F/||J||_F = 1.9182e-08, ||J - Jfd||_F = 1.52973e-07
---------- Testing Jacobian -------------
||J - Jfd||_F/||J||_F = 1.87628e-08, ||J - Jfd||_F = 7.85803e-08
---------- Testing Jacobian -------------
||J - Jfd||_F/||J||_F = 1.88596e-08, ||J - Jfd||_F = 5.98169e-08
---------- Testing Jacobian -------------
||J - Jfd||_F/||J||_F = 1.79441e-08, ||J - Jfd||_F = 5.2901e-08
---------- Testing Jacobian -------------
||J - Jfd||_F/||J||_F = 1.41658e-08, ||J - Jfd||_F = 4.15227e-08

Vec Object: 1 MPI processes
type: seq

0.319632
0.947542

Noting that the relative error in the finite difference Jacobian evaluation is O(
√
ε) = O(10−8),

we have good evidence that FormJacobian() is correct.
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78 Chapter 4. Nonlinear equations by Newton’s method

A nonlinear diffusion-reaction equation
Our first nonlinear PDE is a two-point boundary value problem, so it is actually an ODE. The
equation

− u′′ −R(u) = f (4.11)

might model the balance of diffusion (u′′), reaction (R(u)), and source (f = f(x)) processes
for a substance with concentration u(x). We will only consider Dirichlet boundary conditions,
namely u(0) = α and u(1) = β.

Equation (4.11) is the steady state of the time-dependent model

ut = uxx +R(u) + f (4.12)

for u(t, x), an equation which generalizes the one-dimensional, time-evolving heat equation ut =
uxx (Chapter 5). In a context where u represents temperature, term R(u) might model a heat-
producing/absorbing chemical reaction and f an applied heating/cooling source (according to
sign). Note that if u solves (4.12) then positive values of R(u) + f tend to increase u relative to
solutions of ut = uxx.

One may regard (4.11) as a nonlinear elliptic PDE in one dimension. Standard techniques
then show that the problem is well posed if R(u) is a continuous and nonincreasing function
because then the nonlinear operator in (4.11) is strictly monotone [91, p. 83] and coercive on the
appropriate function space, namely the Sobolev space H1

0 (0, 1) [51]. Abstract arguments then
show unique existence of a solution [91, pp. 93–94].

However, equation (4.11) may not be solvable in cases where R is an increasing function of
u. If R is positive and increasing then the ability of the diffusion term to damp out maxima in
u(x) may be exceeded by the production there, so that balance (4.11) becomes impossible. If
R is negative and increasing then the same concern applies at minima of u(x). For example, if
R(u) = λeu then (4.11) is not solvable for sufficiently large λ; see Exercise 4.5.

As a result of these considerations we plan to solve

− u′′ + ρ
√
u = 0. (4.13)

This is of form (4.11) with R(u) = −ρ
√
u and f(x) = 0. Because R is nonincreasing and

continuous if ρ > 0, the corresponding Dirichlet problem is well posed, and also this problem
has a convenient exact solution. In fact, both the second-derivative and the square-root oper-
ations convert certain 4th-degree polynomials into quadratic polynomials [119, Exercise 5.50]:
Substituting u(x) = M(x + 1)4 into (4.13) finds M = (ρ/12)2. We then obtain the boundary
conditions from the exact solution: α = M and β = 16M .

A numerical method and its convergence
A centered finite difference scheme for differential equation (4.11), on an N -point grid with
h = 1/(N − 1) > 0, xj = jh for j = 0, 1, . . . , N − 1, and uj ≈ u(xj), is

− uj+1 − 2uj + uj−1

h2
−R(uj) = f(xj). (4.14)

This scheme has O(h2) local truncation error [115].
Our implementation of (4.14), shown in Codes 4.4 and 4.5 below, is called reaction.c. This

solver uses a SNES object for the Newton iteration and a DMDA object for the grid, and it includes
functions which compute F(u) and JF(u). Figure 4.4 shows the overall structure. There are six
major PETSC object types, but we explicitly create and destroy only three, namely DMDA, SNES,
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A numerical method and its convergence 79

user code

residual FormFunctionLocal()

Jacobian FormJacobianLocal()

SNES
nonlinear solver

KSP
linear solver

PC
preconditioner

DMDA
structured grid

Mat
Jacobian

Vecs
solution, other fields

Figure 4.4. An overview of reaction.c, a structured-grid solver for a nonlinear PDE. Solid
arrows should be read as “user code acts directly on,” while dotted arrows are call-backs. Compare with
Figure 3.13.

and Vec (Code 4.5). We will also set entries in a Mat created by the DMDA object, and, because
each step of Newton’s method solves a linear system, KSP and PC objects exist “inside” the SNES,
but user code does not touch them directly. However, we will need to control these parts of the
solver—option -snes_view reveals the structure—if we are to get good performance on fine
grids.

Functions FormFunctionLocal() and FormJacobianLocal() in Code 4.4 are call-backs
provided to SNES. Each takes one argument of type DMDALocalInfo* and one or two arguments
of type PetscReal*. The former provides both the local part of the grid and the global grid
size, as shown in Figure 3.7. The PetscReal *u arguments are C arrays containing the current
Newton iterate, with valid ghost points duplicated from neighboring processes (when run in
parallel). In particular, expressions u[i-1] and u[i+1] are always valid if i is an interior-point
index. Though we never see the corresponding Vec directly, the SNES, in fact, has allocated
a local Vec with memory for the ghost locations, communicated between processes to update
those ghost values, and then used DMDAVecGetArray() and DMDAVecRestoreArray() to get
a C array, namely the PetscReal *u pointer which is provided to FormFunctionLocal()
and FormJacobianLocal(). (This sequence is also illustrated by the implementation of our
function InitialAndExact(); see the reaction.c code itself.)

PetscErrorCode FormFunctionLocal (DMDALocalInfo * info , PetscReal *u ,
PetscReal *FF, AppCtx *user ) {

PetscInt i ;
PetscReal h = 1.0 / ( info −>mx−1) , x , R;
for ( i =info −>xs ; i <info −>xs+info −>xm; i ++) {

i f ( i == 0) {
FF[ i ] = u [ i ] − user−>alpha ;

} else i f ( i == info −>mx−1) {
FF[ i ] = u [ i ] − user−>beta ;

} else { / / i n t e r i o r locat ion
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80 Chapter 4. Nonlinear equations by Newton’s method

i f ( i == 1) {
FF[ i ] = − u [ i +1] + 2.0 * u [ i ] − user−>alpha ;

} else i f ( i == info −>mx−2) {
FF[ i ] = − user−>beta + 2.0 * u [ i ] − u [ i −1] ;

} else {
FF[ i ] = − u [ i +1] + 2.0 * u [ i ] − u [ i −1] ;

}
R = − user−>rho * PetscSqrtReal (u [ i ] ) ;
x = i * h ;
FF[ i ] −= h*h * (R + f_source (x ) ) ;

}
}
return 0;

}

PetscErrorCode FormJacobianLocal (DMDALocalInfo * info , PetscReal *u ,
Mat J , Mat P, AppCtx *user ) {

PetscInt i , col [ 3 ] ;
PetscReal h = 1.0 / ( info −>mx−1) , dRdu, v [ 3 ] ;
for ( i =info −>xs ; i <info −>xs+info −>xm; i ++) {

i f ( ( i == 0) | ( i == info −>mx−1) ) {
v [0 ] = 1.0;
MatSetValues (P,1 ,& i ,1 ,& i , v ,INSERT_VALUES) ;

} else {
col [ 0 ] = i ;
v [0 ] = 2.0;
i f ( ! user−>noRinJ ) {

dRdu = − ( user−>rho / 2.0) / PetscSqrtReal (u [ i ] ) ;
v [ 0 ] −= h*h * dRdu;

}
col [ 1 ] = i −1; v [1 ] = ( i > 1) ? − 1.0 : 0.0;
col [ 2 ] = i +1; v [2 ] = ( i < info −>mx−2) ? − 1.0 : 0.0;
MatSetValues (P,1 ,& i ,3 , col , v ,INSERT_VALUES) ;

}
}
MatAssemblyBegin (P,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(P,MAT_FINAL_ASSEMBLY) ;
i f ( J != P) {

MatAssemblyBegin (J ,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(J ,MAT_FINAL_ASSEMBLY) ;

}
return 0;

}

Code 4.4. c/ch4/reaction.c, part I. Functions computing the residual F(u) and Jacobian JF(u).

The main() function in Code 4.5 has the usual parts which create, configure, and de-
stroy various objects. Note we use structured-grid versions of SNESSetFunction() and
SNESSetJacobian(), and never explicitly allocate a Mat to hold the Jacobian. Instead, the
DMDA object has enough information about the grid and stencil to do the allocation internally
(using the DMCreateMatrix() function; see Chapter 10).

int main( int argc , char ** args ) {
DM da ;
SNES snes ;
AppCtx user ;
Vec u , uexact ;
PetscReal errnorm , *au , *auex ;
DMDALocalInfo i n fo ;
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A numerical method and its convergence 81

Petsc In i t i a l i ze (&argc ,&args ,NULL, help ) ;
user . rho = 10.0;
user .M = PetscSqr ( user . rho / 12.0) ;
user . alpha = user .M;
user . beta = 16.0 * user .M;
user . noRinJ = PETSC_FALSE;

PetscOptionsBegin (PETSC_COMM_WORLD, " rct_ " , " options for react ion " , " " ) ;
PetscOptionsBool ( "−noRinJ" , "do not include R(u) term in Jacobian " ,

" react ion . c " , user . noRinJ ,&( user . noRinJ ) ,NULL) ;
PetscOptionsEnd ( ) ;

DMDACreate1d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE,9 ,1 ,1 ,NULL,&da) ;
DMSetFromOptions(da) ;
DMSetUp(da) ;
DMSetApplicationContext (da,&user ) ;

DMCreateGlobalVector (da,&u) ;
VecDuplicate (u,&uexact ) ;
DMDAVecGetArray(da ,u,&au) ;

DMDAGetLocalInfo (da,& in fo ) ;
DMDAVecGetArray(da , uexact ,&auex) ;
In i t ia lAndExact (& info ,au , auex,&user ) ;
DMDAVecRestoreArray(da ,u,&au) ;
DMDAVecRestoreArray(da , uexact ,&auex) ;

SNESCreate(PETSC_COMM_WORLD,&snes) ;
SNESSetDM(snes ,da) ;
DMDASNESSetFunctionLocal(da ,INSERT_VALUES,

(DMDASNESFunction) FormFunctionLocal ,&user ) ;
DMDASNESSetJacobianLocal(da ,

(DMDASNESJacobian) FormJacobianLocal ,&user ) ;
SNESSetFromOptions(snes) ;

SNESSolve(snes ,NULL,u) ;

VecAXPY(u, −1.0 ,uexact ) ; / / u <− u + ( −1.0) uexact
VecNorm(u ,NORM_INFINITY,&errnorm ) ;
PetscPrint f (PETSC_COMM_WORLD,

"on %d point gr id : | u−u_exact | _ in f = %g\n" , in fo .mx, errnorm ) ;

VecDestroy(&u) ; VecDestroy(&uexact ) ;
SNESDestroy(&snes) ; DMDestroy(&da) ;
return PetscFinalize ( ) ;

}

Code 4.5. c/ch4/reaction.c, part II. In main() we create a DMDA, a SNES, and some Vecs,
pass functions to the SNES via the DMDA, and then solve the equation.

An application context struct is used in our functions:

typedef struct {
PetscReal rho, M, alpha, beta;
PetscBool noRinJ;

} AppCtx;

This includes the physical parameter ρ and also problem parameters α, β,M for problem (4.13)
and its exact solution. The Boolean flag noRinJ will be used to optionally remove the reaction
term in the calculation of the Jacobian (below).
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Figure 4.5. Numerical error ‖u− uexact‖∞ versus grid spacing h.

Having implemented both a residual function and a Jacobian, we should check the latter by
comparing behavior from analytical and finite-differenced Jacobians. We can quickly see that on
a modestly refined grid the number of Newton iterations is identical:

$ make reaction
$ ./reaction -snes_converged_reason -da_refine 6
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
on 513 point grid: |u-u_exact|_inf = 5.13617e-07
$ ./reaction -snes_converged_reason -da_refine 6 -snes_fd
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
on 513 point grid: |u-u_exact|_inf = 5.13617e-07

and the residual norms from -snes_monitor are close (not shown). We can also use
-snes_test_jacobian on a coarse grid (not shown) or graph the Newton iterates themselves
in a solver “movie”:

$ ./reaction -da_refine 6 -snes_monitor_solution draw -draw_pause 1

This view (not shown) confirms that the first Newton step moves close to the solution, and then
quadratic convergence sets in, with little visible change. Such evidence suggests we have a
correctly implemented Jacobian.

The next concern is convergence under grid refinement. By using the exact solution, we want
to check that the rate at which the numerical error goes to zero is O(h2) like the local truncation
error of our scheme. Consider the following loop, with results in Figure 4.5:

$ for N in 0 2 4 6 8 10 12 14 16; do
./reaction -da_refine $N -snes_rtol 1.0e-10; done

on 9 point grid: |u-u_exact|_inf = 0.00209725
on 33 point grid: |u-u_exact|_inf = 0.000131389
...
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Finite-differenced Jacobians by coloring 83

If we ignore the result on the finest grid then the convergence rate is O(h2). By adding
-snes_converged_reason we also see consistent evidence of quadratic convergence of the
Newton iteration at all levels of refinement (not shown).

Our implementation is correct, and, in fact, the numerical solution shows ideal behavior on
this easy problem. However, regarding the anomalous finest-grid result shown in Figure 4.5, it is
another numerical “fact of life” that measurable convergence always runs out:

Fact 9. Error stagnation will occur at some level of refinement. For a given floating-point preci-
sion, at some point in the refinement path the round-off error will become comparable with the
discretization error. Beyond this level, convergence cannot be verified.

In 2D and 3D examples the refinement levels at which round-off and discretization errors com-
pete are often never reached. Either in terms of run time or memory usage, solving on grids of
the necessary resolution is too costly.

Finite-differenced Jacobians by coloring
Finite-differenced Jacobians save programmer effort, at least at the prototyping stage, and in
many cases in production solvers as well. However, runs using -snes_fd cause far too many
function evaluations when applied to PDEs, so this option cannot be used for 2D and 3D PDE
problems at practical levels of refinement. To show the concern in our current problem, the
following run requires three Newton iterations, three evaluations of our analytical Jacobian JF,
four evaluations of F, and less than 0.1 seconds:

$ ./reaction -snes_converged_reason -da_refine 10
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
on 8193 point grid: |u-u_exact|_inf = 1.95115e-09

(Add -log_view | grep Eval to confirm evaluation counts, and likewise for timing.) By
contrast the finite difference Jacobian method seems to fail:

$ ./reaction -snes_converged_reason -da_refine 10 -snes_fd
Nonlinear solve did not converge due to DIVERGED_FUNCTION_COUNT iterations 1
on 8193 point grid: |u-u_exact|_inf = 0.0549199

The difficulty is that a single Jacobian evaluation using finite difference formula (4.7) requires
N + 1 = 8194 evaluations of F, one for each column of the Jacobian plus one for the right side
of (4.4a), and thus SNES’s default limit of 10000 evaluations of F is exceeded during the three
Newton iterations. If we raise the limit on function evaluations then we do get convergence, but
about 30 times slower:

$ ./reaction -snes_converged_reason -da_refine 10 -snes_fd \
-snes_max_funcs 100000

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
on 8193 point grid: |u-u_exact|_inf = 1.95152e-09

This run evaluates F about 3N ≈ 24000 times. The trend is unsustainable.
However, an exploitable property of the algebraic systems generated by discretizing PDEs is

that they have a small number of unknowns per equation. Finite difference, element, and volume
schemes all use a small set of grid values—a small stencil—in approximating the PDE at each
location.18 This observation leads to an effective, graph-theoretic idea for rescuing the finite

18Spectral methods [142] have a global stencil and may not benefit from coloring.
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84 Chapter 4. Nonlinear equations by Newton’s method

x0 x1 x2 x3 x4 x5 x6

Figure 4.6. reaction.c uses discretization (4.14) at each interior node of the grid. This corre-
sponds to a three-point stencil, as shown.

difference approach. The new idea applies both on structured grids and unstructured meshes; an
example of the latter is in Chapter 10.

The new idea is to “color” the unknowns of the problem, and thus the columns of the Ja-
cobian, with a small set of colors so that each scalar equation in the system F(u) = 0 relates
unknowns with distinct colors. The “colors” are merely integers {0, 1, 2, . . . , c − 1}. Finite
difference formula (4.7) can then be redesigned using the coloring, as shown below, to allow
computation of entries in many columns of J = JF(u) simultaneously. The number of F evalu-
ations is reduced to one more than the number of colors needed for a proper vertex coloring [34]
of a graph constructed from the sparsity (nonzero) pattern of J .

Before getting into any details we show a small example. Consider this seven-point grid:

$ ./reaction -da_grid_x 7

Figure 4.6 shows the grid and the stencil for scheme (4.14). The scalar equation at xj involves
three unknowns uj−1, uj , and uj+1 so the jth row of J has three nonzero entries. (Exceptions
occur at the boundary nodes. Use option -ksp_view_mat to show the Jacobian matrix at each
Newton iteration.)

One can assign c = 3 colors {0, 1, 2} to the seven columns of J as follows:

J =



J00 J01
J10 J11 J12

J21 J22 J23
J32 J33 J34

J43 J44 J45
J54 J55 J56

J65 J66

 →

0 1
0 1 2

1 2 0
2 0 1

0 1 2
1 2 0

2 0

(4.15)

Each row thus has distinct colors.
Actually, there are two graphs associated to this coloring problem. On the left in Figure 4.7

is an (undirected) bipartite graph Gb(J) with two sets of vertices, the rows r0, . . . , r6 and the
columns c0, . . . , c6, with edges only between a row and a column. There is an edge (ri, cj) if
and only if Jij 6= 0. (Note this bipartite graph construction ignores symmetry.) The goal is then
to assign colors to the column vertices so that any two vertices ck and c` connected by a length
two path get different colors, a distance-2 coloring [57] of the columns. The coloring algorithms
in PETSC generate such bipartite, distance-2 colorings.

On the other hand, for symmetric matrices like J here one can construct an (undirected)
graph on the columns only, shown at right in Figure 4.7. This column-intersection graph [37]
G(J) has an edge (ci, cj) if and only if unknowns ui and uj both appear in at least one of the
equations of the system F(u) = 0, that is, if columns ci and cj of J have nonzero entries in a
common row. For this graph one seeks a distance-1 coloring so that if (ci, cj) is an edge in G(J)
then ci and cj are assigned distinct colors. The chromatic number [34] of G(J) is the minimum
number of such colors. For the case shown in the Figure 4.7 this number is χ(G(J)) = 3, so
we cannot do better with our coloring. For symmetric matrices these two coloring problems are
equivalent, but the bipartite, distance-2 framework is more flexible [57].

For a structured 2D grid the stencil of our scheme for the Poisson equation (Chapters 3 and
6) involves five unknowns ui,j+1, ui−1,j , ui,j , ui+1,j , ui,j−1. Thus the graph G(J) includes
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Finite-differenced Jacobians by coloring 85

bipartite graph Gb(J)

r0 c0 0

r1 c1 1

r2 c2 2

r3 c3 0

r4 c4 1

r5 c5 2

r6 c6 0

column-intersection graph G(J)

0c0

1c1

2c2

0c3

1c4

2c5

0c6

Figure 4.7. From a symmetric matrix J one can either build a bipartite graph for the nonzero pat-
tern (left), then find a distance-2 coloring on the column vertices {ci} only, or build the column-intersection
graph (right) and find a distance-1 coloring.

Figure 4.8. For the 2D finite difference scheme used in Chapter 3, the graph G(J) has a K5 at
every node because the stencil (thick lines) involves five unknowns.

a complete graph [34] on five vertices, a so-called K5, at each generic interior node, as shown
in Figure 4.8, so χ(G(J)) ≥ 5. PETSC’s default coloring algorithm finds, at least in generic
refined cases, that indeed five colors suffice to color G(J).

Optimally coloring a graph is, however, a hard problem which PETSC does not attempt to
solve. Instead the “incidence-degree ordering” [37], the default, and “smallest-last ordering”
[57] algorithms provide c-colorings for which c ≤ αN1/2χ(G(J)), for some constant α > 0,
whereN is the number of equations in (4.1). These algorithms also do well in the informal sense
that c is close to χ(G(J)) for a large selection of test matrices. In any case, they run in a time
proportional to the number of nonzeros in J [37] so they are inexpensive.

Finite-difference formula (4.7) is modified to use a coloring of graph Gb(J) and/or G(J),
i.e., a coloring of the columns of J , in the following way. One first generates vectors v0,v1,
. . . ,vc−1 ∈ RN so that vk is 1 in entry j if k is the color of column cj , and otherwise is zero.
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86 Chapter 4. Nonlinear equations by Newton’s method

In the c = 3 case shown in Figure 4.7,

v0 =



1
0
0
1
0
0
1


, v1 =



0
1
0
0
1
0
0


, v2 =



0
0
1
0
0
1
0


. (4.16)

We also define a function k(j) which maps from column index j to the color k of cj , thus
(vk)j = δk,k(j). Then (4.7) is replaced with

Jij =
∂Fi
∂xj
≈
Fi(x + δvk(j))− Fi(x)

δ
. (4.17)

The right sides of (4.7) and (4.17) compute exactly the same entries Jij , but (4.17) requires far
fewer evaluations of F. In particular, all columns of J with color k are computed by (4.17) using
only the smallest j for which k(j) = k. Thus, given a c-coloring of Gb(J) or G(J) there are
exactly c evaluations F(x + δvk(j)), plus one more for F(x) itself, sufficient to fill J .

The news is good when we actually try coloring on reaction.c, with the following run that
is just as fast as the one shown on page 83:

$ ./reaction -snes_converged_reason -da_refine 10 -snes_fd_color
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
on 8193 point grid: |u-u_exact|_inf = 1.95152e-09

Counting the number of function evaluations in the various cases gives a more precise com-
parison than timing. Note there is no need to alter reaction.c to count evaluations; just use
-log_view and grep for Eval. The result is that for a N = 8193 point grid the number of F
evaluations was 24586, 13, and 4, respectively, for -snes_fd, -snes_fd_color, and analytical-
Jacobian methods. While 13 is larger than 4, remember that the analytical Jacobian method
requires 3 evaluations of user code for JF.

We will see in future Chapters that coloring is an effective tool in 2D and 3D structured-grid
cases (Chapters 7, 9, and 11) and even with unstructured meshes (Chapter 10).

Jacobian-free Newton-Krylov (JFNK)
A different approach also avoids user-written Jacobian-evaluation code. The Jacobian-free
Newton-Krylov (JFNK) method [96] seeks a solution s to the Newton step equation (4.4a) from
a Krylov subspace

Km = span{r, Jr, J2r, . . . , Jm−1r} (4.18)

without computing or storing the entries of the Jacobian matrix J = JF(xk). JFNK instead
approximates Jacobian-vector products Jv by a finite difference formula

Jv ≈ F(x + δv)− F(x)

δ
. (4.19)

Thus JFNK only computes the action of J on v, not the entries Jij . One usually starts from
initial iterate s = 0, so r = −F(xk)−J0 = −F(xk) is the first basis vector inKm. Then (4.19)
computes Jr, J2r = J(Jr), . . . , thus building space Km in m total evaluations of F.

Recall that finite difference formula (4.7) computes a generic N ×N Jacobian via N evalua-
tions of F. Thus, relative to forming J using -snes_fd, JFNK is worthwhile if the Newton step
equation (4.4a) can be solved to desired tolerance in m � N iterations. Other considerations
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Jacobian-free Newton-Krylov (JFNK) 87

might also suggest using JFNK, such as if we have no good way to store an N × N matrix
in memory or if the memory bandwidth for loading matrix entries is too slow, or if a coloring
is not available. On the other hand, as we will see on structured grids, the -snes_fd_color
approach using equation (4.17) is often superior to JFNK. This is because the number of colors
is usually smaller than m and because preconditioners based on matrices (e.g., ILU) can exploit
the computed Jacobian entries.

JFNK is a good strategy to the extent that it actually works, so let us try it. Un-preconditioned
JFNK is invoked by option -snes_mf, where mf in stands for “matrix-free.” For example:

$ ./reaction -snes_converged_reason -snes_mf
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
on 9 point grid: |u-u_exact|_inf = 0.00209725

This is fine, but additional results from refined grids will damp our enthusiasm. Noting J is
symmetric, we use the CG method (Chapter 2). On 500 and 1000 point grids the performance is
poor in the sense that far too many “inner” Krylov iterations are needed:

$ ./reaction -snes_converged_reason -snes_mf -ksp_converged_reason \
-ksp_type cg -da_refine 6

Linear solve converged due to CONVERGED_RTOL iterations 511
Linear solve converged due to CONVERGED_RTOL iterations 504
Linear solve converged due to CONVERGED_RTOL iterations 506

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
on 513 point grid: |u-u_exact|_inf = 5.13618e-07
$ ./reaction -snes_converged_reason -snes_mf -ksp_converged_reason \

-ksp_type cg -da_refine 7
Linear solve converged due to CONVERGED_RTOL iterations 1023
Linear solve converged due to CONVERGED_RTOL iterations 1005
Linear solve converged due to CONVERGED_RTOL iterations 996
Linear solve converged due to CONVERGED_RTOL iterations 960

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 4
on 1025 point grid: |u-u_exact|_inf = 1.28418e-07

These large iteration counts, apparently proportional to the number of unknowns N , illustrate
the well-known doubling of un-preconditioned CG iterations for FD solutions of the Poisson
problem under h→ h/2 refinement (Chapter 3).

Krylov method convergence generally requires preconditioning, and Newton equation (4.4a)
is no exception. That is, we want to build Km for a linear operator M−1J , not J itself, in the
hope that m � N Krylov iterations give sufficient accuracy. However, most preconditioning
approaches need an assembled matrix to generate the action of M−1. For example, incomplete
matrix factorizations and algebraic multigrid (Chapter 10) act on matrix entries. In this sense we
see that, though the approach may be “Jacobian-free,” to be effective it should not be entirely
matrix-free [96].

The left- and right-sided preconditioned forms (Chapter 2) of the Newton step equation (4.4a)
are

(M−1J)s = M−1r, (4.20)

(JM−1)(Ms) = r, (4.21)

respectively, where r = −F(uk). In (4.20) the action of M−1J on some vector v is a straight-
forward composition of the finite difference formula (4.19) followed by application of M−1. In
(4.21) the action of JM−1 is computed by first applying M−1 to v (i.e., solving My = v) and
then using (4.19) in the form (JM−1)v ≈ (F(x + δy) − F(x))/δ. Recall that M and M−1

are usually not assembled, but the action of M−1 is computed by an algorithm which extracts
entries from an assembled preconditioner-material matrix.
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88 Chapter 4. Nonlinear equations by Newton’s method

Table 4.2. Jacobian options when using SNES, listed according to what evaluation functions are
provided by the user: F for a residual function, J = JF for an exact Jacobian, and K ≈ JF for an
approximate Jacobian. A check mark indicates feasibility, with an underline for recommended usage on
PDE problems.

Implemented functions
option F only F and J F and K

none

-snes_fd

-snes_fd_color

-snes_mf

-snes_mf_operator

Testing Jacobian cases
We are now in position to test various Jacobian choices for our Newton-method solutions, but
at risk of being confused by the multiplying options. A pause to review the possibilities, before
testing them on our reaction-diffusion equation problem, makes sense.

First, at the minimum, the user must provide a residual functionF, usingSNESSetFunction()
or DMDASNESSetFunctionLocal(), because the SNES needs to know what equations are being
solved!19 Then Table 4.2 summarizes the Jacobian-usage options for SNES-based codes.

If only F is provided then the available methods all use finite difference approximations of
the Jacobian. In these cases the user does not create a Mat for the Jacobian, as this is done
internally by the SNES for -snes_fd and -snes_fd_color, and never done for -snes_mf.

If a Jacobian evaluation routine J = JF is provided by the user then it is used in the New-
ton iteration when no option is given. This is the preferred usage, at least once the Jacobian is
checked for correctness, but writing an exact Jacobian may be a burden. If instead an approxi-
mate Jacobian K ≈ JF is provided then it is reasonable to use it only for preconditioning the
Jacobian-vector product in JFNK, and option -snes_mf_operator does this. This approach
can achieve both quadratic convergence and small Krylov iteration counts if the chosen precon-
ditioning method, acting on the preconditioner material provided by K, generates an operator
M which is spectrally equivalent to the exact Jacobian [96]. (This means that M−1J has eigen-
values clustered around 1. See more on this topic in Chapter 7.) We will illustrate this usage
momentarily.

There are two API choices for providing an implemented Jacobian, either J or K, to the
SNES:

• OnaDMDA structuredgrid, set thecall-back toyour function,namedFormJacobianLocal()
or similar, using DMDASNESSetJacobianLocal().

• Otherwise, declare a Mat variable, say J, and then call MatCreate(), MatSetSizes(),
and MatSetFromOptions() on it. Then call MatSetUp(), or preferably
MatXAIJPreallocate(),20 to allocate space for the assembled Jacobian matrix. The call-
back function, e.g., FormJacobian(), is then provided through SNESSetJacobian().

19The only exception is when the residual function F is the gradient of an objective function, thus the problem is really
optimization [118], and when the user is prepared to accept very poor solver performance. Though an example is given
in Chapter 9, this usage is never suitable for solving PDEs at significant resolution.

20A nontrivial example of pre-allocation, in an unstructured FE scheme, is in Chapter 10.
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Testing Jacobian cases 89

Table 4.3. A simplified model for the number of call-back evaluations for an N -dimensional
problem solved in q SNES iterations. Here c is the number of colors and m is the Krylov space dimension
at KSP convergence.

Option F evaluations J or K evaluations
none q + 1 q
-snes_fd q(N + 1) + 1 0
-snes_fd_color q(c+ 1) + 1 0
-snes_mf qm 0
-snes_mf_operator qm q

In the most common usages, FormJacobian() or FormJacobianLocal() only needs to set
values in the second Mat argument (the preconditioner-material argument), but both should also
do final assembly on both Mat arguments. An example is shown in FormJacobianLocal() in
Code 4.4.

Another way to compare the options is shown in Table 4.3, which models the number of
evaluations in various cases. However, even if the number q of SNES iterations is independent
of other choices in the solver, the number of Krylov iterations per Newton step will depend on
many aspects of the problem, especially the preconditioner. Regarding the table we note two
fundamental points:

• Improved performance of -snes_fd_color relative to -snes_fd comes from having a
c-coloring where c� N .

• Improved performance of -snes_mf_operator relative to -snes_mf comes from using
a preconditioner, based on the material generated by the function K, which significantly
reduces the number m of Krylov iterations.

To give a nontrivial demonstration of -snes_mf_operator on our diffusion-reaction prob-
lem, we have added a Boolean option -rct_noRinJ which simplifies the diagonal of the
Jacobian, thereby generating an approximation K ≈ JF. In Code 4.4 one sees

v[0] = 2.0;
if (!user->noRinJ) {

dRdu = - (user->rho / 2.0) / PetscSqrtReal(u[i]);
v[0] -= h*h * dRdu;

}

If -rct_noRinJ is set then we keep only the tridiagonal leading-order part of the Jacobian, but
this preserves most spectral characteristics of the linearization of (4.11).

Removing a term from the Jacobian formula slows convergence if we use the approximation
as though it were exact. At this resolution the iterations go from 3 to 15:

$ ./reaction -da_refine 7 -snes_converged_reason
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
on 1025 point grid: |u-u_exact|_inf = 1.28363e-07
$ ./reaction -da_refine 7 -snes_converged_reason -rct_noRinJ
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 15
on 1025 point grid: |u-u_exact|_inf = 1.11714e-07

The residual norms from -snes_monitor also suggest that convergence is no longer quadratic
(not shown); this is expected in theory [89]. However, -snes_mf_operator with the approxi-
mate Jacobian is now an effective option:

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



90 Chapter 4. Nonlinear equations by Newton’s method

$ ./reaction -da_refine 7 -snes_converged_reason -rct_noRinJ \
-snes_mf_operator

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 4
on 1025 point grid: |u-u_exact|_inf = 1.28418e-07

One can show that on high-resolution grids this usage is competitive with exact and finite-
difference-by-coloring Jacobian choices, though in this case not superior to those methods.

Here is a summary of advice on SNES usage:

(i) Start by implementing, and double-checking, the residual F.

(ii) Before implementing a Jacobian J = JF, try finite difference evaluation (-snes_fd) first,
using coloring (-snes_fd_color) if it applies to your case.

(iii) JFNK with no preconditioning (-snes_mf), which needs no Jacobian, is easy to try on
small problems but rarely effective upon refinement because KSP iterations grow rapidly
with this un-preconditioned operator.

(iv) Consider implementing the exact Jacobian J . If this is too much work, or too error prone,
consider a simpler approximate JacobianK ≈ JF, used with option -snes_mf_operator.

The first item of advice (i) must not be forgotten; it is another numerical fact of life:

Fact 10. Residual-evaluation code must be correct. All other choices about solving nonlinear
equations—Jacobian-evaluation methods, linear solvers, line search, initial iterates, etc.—are
irrelevant if your implementation of the nonlinear residual F(x) is wrong.

Regarding item (iv), in PDE cases an approximate Jacobian K should capture at least the
correctly-scaled highest-order derivatives in the true Jacobian. Runs using -snes_mf_operator
with such K can then show quadratic convergence, assuming it would occur using the exact
Jacobian. On the other hand, one may do “no option” runs which use K as though it were J , but
then convergence will generally revert to a linear rate.

As further practical advice for the debugging stage, you have correctly and fully implemented
the Jacobian if all checked options in Table 4.2 work without error messages for medium res-
olution grids, and if the recommended options give apparent quadratic convergence (i.e., from
-snes_monitor). As the reader may check, this description applies to reaction.c.

An adequate initial iterate u0 is critical, but in the current 1D problem the simplest reason-
able construction, a straight line connecting the boundary conditions, was adequate. In harder
problems, finding an adequate u0 may require some insight into the nonlinear problem. Chapter
7 proposes a grid-sequencing method for generating high-quality initial iterates on fine grids. We
will see that this technique works well for many nonlinear elliptic problems.

Line-search methods
The Newton step s computed by solving equation (4.4a) may not yield a new iterate xk+1 =
xk + s that we want. The residual norm ‖F(xk + s)‖ may exceed ‖F(xk)‖, so no progress is
being made in solving (4.1).

A globalization technique will actually reduce the residual norm at each iteration, thus ex-
panding the domain of convergence of the Newton iteration. A line-search globalization [40]
replaces the original update (4.4b) with

xk+1 = xk + λks, (4.22)

where λk > 0. Here we accept s as a search direction for solving (4.4a), but we may actually
use a step of reduced (λk < 1) length. Clearly, the question is how to choose λk.
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Line-search methods 91

Observe that for a generic system of nonlinear equations F(x) = 0 there is no a priori sense
of whether a given value is “better” or “worse” as an approximation to an exact solution x∗. We
may, however, introduce a merit function [118] to provide such a sense, for example,

φ(x) =
1

2
‖F(x)‖22. (4.23)

Merit function (4.23) is used in all SNES line searches, unless a replacement objective function
is provided by the user. (See the example in Chapter 9.)

To determine λk one might solve the one-dimensional optimization problem

min
λ>0

φ(xk + λs). (4.24)

That is, one could make the merit function as small as possible along the search direction. How-
ever, solving (4.24) accurately is rarely justified because λk only determines the next Newton
iterate, not the final answer. Also, after the line search gets us out of difficulties, we expect that
the quadratically-convergent Newton iteration with full step λk = 1 is preferable.

Thus a practical line-search algorithm tests candidate values of λ for whether φ(xk + λs) is
reduced. Requiring sufficient decrease [118], namely

φ(xk + λs) ≤ φ(xk) + αλ s>∇φ(xk), (4.25)

with parameter α ∈ (0, 1), is a common way to guarantee progress. The default value α =
10−4 (-snes_linesearch_alpha 0.0001) corresponds to an easy-to-satisfy norm-reduction
criterion, but the Newton iteration fails with an error message if (4.25) is not satisfied after a
certain number of reductions of λ (default: -snes_linesearch_max_it 40).

The quantity s>∇φ(xk) in (4.25) is the directional derivative of φ(x) in the search direction
s. For merit function (4.23) this is always negative, if equation (4.4a) is solved accurately:

s>∇φ(xk) = s>JF(xk)>F(xk) = (JF(xk)s)
>
F(xk) = −‖F(xk)‖22. (4.26)

Thus s is at least a descent direction [118] in the most common SNES usage. Notice that the same
calculation shows that (4.25) can be tested without evaluating the Jacobian.

Merit function (4.23) has another nice property. Though φ(x) may have a local minimum x′

which is not a solution to (4.1), the Jacobian must be singular at such locations. In fact,

0 = ∇φ(x′) = JF(x′)>F(x′), (4.27)

so JF(x′)> has a nonzero null-space if F(x′) 6= 0. Thus a local minima of φ which is not a
solution of F(x) = 0 will not arise in a region where there is a finite bound on the condition
number of the Jacobian.

The replacement of an objective function by the squared norm of the residual, namely merit
function (4.23), was also an algorithmic transition that occurred when solving linear systems
Ax = b (Chapter 2). Namely, while the CG algorithm for SPD matrices A minimizes g(x) =
1
2x
>Ax − b>x, if A is not positive-definite then we may switch to the MINRES or GMRES

algorithms which minimize the merit function φ(x) = 1
2‖b − Ax‖

2
2. That is, if the problem is

not a true minimization then we switch to the goal of minimizing the residual norm.
The available line-search options are summarized in Table 4.4. Choose the line-search type

by -snes_linesearch_type X and observe its progress by -snes_linesearch_monitor.
For more details on line searches see [40, Chapter 6], [89], and the PETSC source code itself.

In this book we use one type of SNES solver, Newton iteration with line search (-snes_type
newtonls), almost exclusively. PETSC also implements trust region methods (-snes_type
newtontr) and nonlinear solvers which are not Newton iterations at all, including nonlinear
conjugate gradients (-snes_type ncg) and quasi-Newton methods (-snes_type qn) [118];
the latter two are demonstrated in Chapter 9. For a general perspective and recent advances in
nonlinear solvers see [29].
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92 Chapter 4. Nonlinear equations by Newton’s method

Table 4.4. Line-search types; choose using option -snes_linesearch_type.

Name Summary
basic No line search: λk = 1 in (4.22).

bt [default] Polynomial-fit back-tracking [40, section 6.3.2]. A cubic polyno-
mial is built up as a model for f(λ) = φ(xk + λs). Successive values λ are
required to decrease.

cp Assumes F is the gradient of an unknown objective function, i.e., F = ∇g. The
secant method then finds a critical point of g along the search direction.

l2 Secant-line minimization along the search direction, starting from λ = 1/2 and
λ = 1, is repeated a fixed number of times.

Exercises
4.1. One needs to see quadratic convergence to believe it. Observe that for both parts (b) and

(c) below, the number of correct digits in xk doubles at each iteration.

(a) The sequence xk = 1 − 2−k converges linearly to x∗ = 1. Find k so that |ek| <
10−16 if ek = xk − x∗ is the error.

(b) The sequence xk = 1 − 2(−2k) converges quadratically to x∗ = 1. Find k so that
|ek| < 10−16. Find the smallest C so that |ek+1| ≤ C|ek|2 for all k.

(c) Let F (x) = cos(x − 1) − exp(1 − x) and x0 = 0.5. Using PETSC, or any other
tool, compute Newton iterates xk for k = 1, . . . , 6 to solve F (x) = 0. Estimate C
so that |ek+1| ≤ C|ek|2 for large k.

4.2. Modify ecjac.c to set the initial vector to x0 = [10 10]>. Rerun it with option
-snes_monitor and note it does not converge to a solution. Why does the SNES stop?
Add one run-time option so that it converges, thereby reproducing Figure 4.3.

4.3. Running with -snes_monitor_solution will show the Newton iterates, but one might
want to see more than the default 6-digit values. One way to do this is to add a monitor
via SNESMonitorSet(). Modify ecjac.c by adding a monitor which shows 16-digit
values of the solution at each SNES iteration. Thereby observe that the number of correct
digits doubles in the Newton iteration.

4.4. The original Newton iteration (4.4), without line search, can diverge or enter a limit cycle.

(a) By straightforward modifications of expcircle.c, write a code atan.c which
solves nonlinear equation (4.1) with F (x) = arctan(x) and initial iterate x0 = 2.0.
Observe that running it as ./atan -snes_fd -snes_linesearch_type basic
causes it to diverge, but the default choice -snes_linesearch_type bt gives con-
vergence.

(b) Turning to paper calculation, consider the Newton iteration for solving arctan(x) =
0. Set up an equation which requires the iteration to enter a sign-flipping limit cycle
(xk+1 = −xk). Solving this equation yields the positive initial value x0 so that the
Newton iteration makes no progress, and yet remains bounded, for all k. Sketch the
situation.

(c) By modifying x0 in atan.c and using line-search type basic, confirm that one can
make the Newton iteration “stick” in this actually unstable limit cycle for quite a
while. Then confirm that line-search types bt,l2,cp all get unstuck immediately.
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Exercises 93

4.5. Modify reaction.c to a new code bratu1D.c which solves the Liouville-Bratu equa-
tion [23, 106]

− u′′ − λeu = 0 (4.28)

subject to Dirichlet boundary conditions u(0) = u(1) = 0. Make λ an adjustable
parameter via PetscOptionsReal(). Confirm by using fine grids, and option
-snes_converged_reason, plus other options as needed, that around λ̃ = 3.513 there
is a transition to nonconvergence of the Newton iteration. The critical parameter value
λ̃, which should be robust across sufficiently fine grids, is intrinsic to the nonlinear PDE
problem [42]. Nonconvergence for λ > λ̃ is not merely a Newton iteration failure, al-
though that is indeed the symptom at run time.

4.6. Because one should not walk on high wires too often without a net, it is worthwhile finding
exact solutions even for hard-to-solve nonlinear PDEs. One can usually “manufacture”
[129, 153] an exact solution to a generalized form of the problem (if not the original
form). For instance, for equation (4.11) with boundary values u(0) = u(1) = 0, one
can choose u(x) = sin(πx) as the exact solution. Then we determine f(x) from the
differential equation. Add such a manufactured exact solution to bratu1D.c (previous
exercise). Confirm that we have both quadratic convergence of the Newton iteration on
fixed grids and O(h2) convergence of the numerical error under grid refinement when the
code is verified using the exact solution. (This verification procedure gives confidence in
purely numerical results like those in the previous exercise.)

4.7. As long as the number of MPI processes does not exceed the number of grid points, then
reaction.c will work correctly, though perhaps not efficiently, in parallel. Confirm this
by running
$ mpiexec -n N ./reaction -snes_converged_reason -da_refine M

with a few values of N and M. However, ecjac.c does not run correctly even on two MPI
processes. Modify it so that it does.
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Chapter 5

Time-stepping

We now restart our introduction to PETSC and PDEs with a well-known topic: numerical solu-
tions to ordinary differential equation (ODE) initial value problems. Because we have practice
with PETSC objects, many aspects of solving ODE systems will be straightforward. Nonethe-
less, a review of time-stepping methods is appropriate, including the basics of both explicit and
implicit methods, after which we will transition to numerical methods for time-dependent PDEs.

Three examples are solved in this chapter:

• a linear system of two ODEs, i.e., an entry-level problem;

• an arbitrarily large system of ODEs arising from a spatial (2D) finite difference discretiza-
tion—this is the method of lines—of the time-dependent heat equation (PDE);

• and a similar approach on a pair of coupled, nonlinear PDEs forming a 2D reaction/diffu-
sion model with two chemical species.

These problems are solved using PETSC TS time-stepping objects [1, 10]. In the PDE exam-
ples, both of which use DMDA structured grids (Chapter 3), the user writes code which discretizes
in space, thus generating an ODE system, but then the time integration method is determined
only at run time. If an implicit time-stepping method is chosen then the full stack of SNES/KSP/PC
solver tools is used for the (generally) nonlinear equations at each time step, thus we will be ex-
ploiting our experience with PETSC solvers from Chapters 2–4. Though numerical ODE solvers
are at a relatively mature stage of development compared to PDE methods, and often treated as
black boxes, aspects of the run-time control of their PETSC implementations deserve discussion.

Systems of ordinary differential equations (ODEs)
Consider an ODE system in form

y′ = g(t,y), (5.1)

where y(t) ∈ RN and y′ = dy/dt. Suppose an initial value is also given:

y(t0) = y0. (5.2)

The general purpose of such ODE initial value problems (IVPs) is to make predictions forward
or backward from the initial time t0. That is, there should be a unique solution y(t) to (5.1) and
(5.2).

95
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96 Chapter 5. Time-stepping

Under reasonable assumptions about the behavior of the right-hand-side function in (5.1), the
problem is indeed well posed, at least for short times. To be specific, assume that g is continuous
on a cylinder around the initial point (t0,y0),

D = {(t,y) : |t− t0| ≤ δ, ‖y − y0‖ ≤ ω}, (5.3)

where δ > 0 and ω > 0, and assume further that g is Lipschitz in its second argument, namely
that there is L ≥ 0 so that

‖g(t,y1)− g(t,y0)‖ ≤ L‖y1 − y0‖ (5.4)

for all (t,yi) ∈ D. Then the problem (5.1), (5.2) has a unique continuously differentiable
solution y(t) on an interval |t − t0| < ε, for some 0 < ε ≤ δ, and this solution depends
continuously on the initial value y0 [82, section 17.5]. Note that the solution may only exist on
a shorter interval than the one used to define D in (5.3).

The above brief attention to well-posedness is motivated by the following practical observa-
tion: When we run a numerical ODE code it will produce numbers! These numbers are never the
exact solution of the ODE system, but they are “correct” in a numerical-analysis sense if we can
demonstrate convergence to the solution of the continuum problem. That is, we accept wrong
(i.e., not exact) numbers in cases where convergent methods are correctly applied to well-posed
continuum problems. On the other hand, numbers which approximate no continuum solution at
all are meaningless and should not be accepted.

Benign-looking scalar nonlinear ODEs can put us in peril of generating such nonsense. For
example, Exercise 5.1 considers a well-known scalar ODE problem in which the solution ceases
to exist after a finite interval of time. A code will sail past the end of this interval of time,
producing numbers that are infinitely erroneous; they approximate no continuum solution at all.
Furthermore, this concern arises even for linear PDE problems, for instance in the sense that
one should only integrate forward in time for the heat equation. Nonlinear PDEs are even worse
because there may be no solution at all, either forward or backward in time. In summary, when
possible we will consider well-posedness prior to starting numerical solutions.

Numerical methods for ODE initial value problems
For linear ODE systems like the following, unique solutions exist for all time.

Example 5.1. Consider the initial value problem

y′ = Ay + f(t), y(0) =

[
0
0

]
, (5.5)

where A =

[
0 1
−1 0

]
and f(t) =

[
0
t

]
. The exact solution is shown in Figure 5.1: y(t) =[

y0(t)
y1(t)

]
=

[
t− sin t
1− cos t

]
.

This example ODE system can be approximated by almost any time-stepping numerical
method. Such methods start from the initial values and use the right-hand-side g(t,y), i.e.,
the slopes defining the ODE, to generate a sequence {Y`} which approximates the solution at
discrete times t`. The goal, of course, is that Y` ≈ y(t`). In more detail, let t0 < t1 < t2 <
· · · < tL be a finite sequence of times, with steps ∆t` = t` − t`−1 for ` = 1, 2, . . . , L. Let
Y0 = y0 be the (known) initial value (5.2).
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Numerical methods for ODE initial value problems 97
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Figure 5.1. The solution to (5.5): y0(t) (solid) and y1(t) (dashed).

Euler’s method, also known as the forward Euler method, generates Y1,Y2, . . . ,YL from

Y` −Y`−1

∆t`
= g(t`−1,Y`−1) (5.6)

or, equivalently, by this update formula:

Y` = Y`−1 + ∆t` g(t`−1,Y`−1). (5.7)

The backward Euler method is just as easy to state,

Y` −Y`−1

∆t`
= g(t`,Y`), (5.8)

but much more work is required to use it in practice. Merely writing the analog of (5.7), namely
a formula by which to compute Y`, requires doing algebra on the function g which may not be
possible; backward Euler is thus an implicit method. At each time step equation (5.8) generates
a (generally) nonlinear algebraic system for the unknown values Y`, but this is exactly the kind
of problem solved in Chapter 4 using SNES objects to do Newton’s method.

Though they evaluate the right-hand-side function g(t,y) at different points, the Euler meth-
ods (5.6) and (5.8) both use first-order finite difference approximations of the derivative of y(t).
Recall that for any twice-differentiable function f(t), by Taylor’s theorem

f(t+ h)− f(t)

h
= f ′(t) +O(h1)

as h→ 0. The Euler methods thus have O(h1) local truncation error τ = O(h1) [7], where τ is
defined as the residual from applying the scheme to the exact solution. A scheme is consistent if
the local truncation error goes to zero as h→ 0, that is, by the mild condition τ = o(h).

Another meaning of “first-order accuracy” also applies to the Euler methods, namely that
the approximations Y` converge to the values y(t`) as the time steps ∆t` go to zero, such that
‖Y` − y(t`)‖ ≤ Ch1 for some constant C. (In this context h denotes a uniform bound on the
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98 Chapter 5. Time-stepping

steps ∆t`.) Showing this property of a scheme, that is, its convergence at rate O(h1), requires
more assumptions than O(h1) local truncation error. One also needs to bound the rate at which
errors build up over many steps, so the scheme must also have a stability property. We discuss
absolute stability below, but much more on the stability of methods can be found in the references
[7, 104].

For Euler’s method, an elementary argument [7] suffices to show that the approximations
converge at first order. One assumes that the solution y(t) exists, that a Lipschitz bound (5.4)
applies to g(t,y), and that the solution has bounded second derivative (‖y(t)′′‖ ≤ M ); these
statements must all apply on some nontrivial interval [t0, tf ]. Then

‖Y` − y(t`)‖ ≤
hM

2L
(eL(t`−t0) − 1). (5.9)

However, this exponentially growing bound is often pessimistic.

Higher-order and adaptive methods
The order of a method, the power p > 0 for which ‖Y` − y(t`)‖ = O(hp) as h → 0, tells us
what to expect when we shorten the time step. For example, halving the time step in a first-order
method reduces the numerical error by half, but for a second-order method by a factor of four.

By definition, one-step methods use Y`−1 only, and not previous values, to build the next
approximation Y`. However, one-step methods generally use multiple evaluations of the right-
hand-side g, i.e., they have multiple stages, and a method of order p must have at least p stages.
Among one-step methods the Runge-Kutta (RK) family [31] is best known, and we will try
several RK schemes.

The explicit trapezoidal method [7] is a one-step, two-stage, second-order RK method, de-
noted RK2a. It takes a forward Euler step but then recomputes the step using an average of
slopes:

Ŷ = Y`−1 + hg(t`−1,Y`−1),

Y` = Y`−1 +
h

2
g(t`−1,Y`−1) +

h

2
g(t`, Ŷ).

(5.10)

The well-known fourth-order Runge-Kutta method RK4 has four stages. Instead of stating
this particular scheme using formulas like (5.10) above, consider tabular notation for any one-
step, s-stage Runge-Kutta method. The formulas

Ŷi = Y`−1 + h

s∑
j=1

aij g(t`−1 + cjh, Ŷj), 1 ≤ i ≤ s,

Y` = Y`−1 + h

s∑
i=1

bi g(t`−1 + cih, Ŷi)

(5.11)

correspond to the tableau [31]

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · bs
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Higher-order and adaptive methods 99

Table 5.1. Tableau for the explicit trapezoidal rule (RK2a; left), the classical fourth-order Runge-
Kutta method (RK4; middle), and an embedded four-stage, third-order scheme (RK3bs, the PETSC default;
right).

0
1 1

1
2

1
2

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

0
1
2

1
2

3
4 0 3

4

1 2
9

1
3

4
9

2
9

1
3

4
9 0

7
24

1
4

1
3

1
8

For example, the s = 2 method RK2a is the left tableau in Table 5.1, and the s = 4 method
RK4 is in the middle. Blanks in the tableau correspond to zeros. In all three methods in Table
5.1, Ŷ1 = Y`−1 so the first rows are trivial. Also, because these schemes are explicit, nonzero
values aij only appear strictly below the diagonal; we return to this idea below.

Most ODE schemes in PETSC, including the default type for TS time-stepping objects, are
adaptive. That is, they adjust the time step using information from the already computed values,
taking shorter steps when g is rapidly changing or irregular, and longer steps when it is smoother
and thus more predictable. Adaptive strategies require error estimation and control [7], actions
internal to the TS object.

One adaptation strategy is to compare results from an embedded pair of methods. These two
methods will have the same cj and aij coefficients in their tableau, but different bj and different
orders of accuracy. The default TS scheme RK3bs [17] is the embedded pair shown at right in
Table 5.1; note the two rows of bj coefficients below the line. In RK3bs one method (first row)
makes O(h3) local truncation errors, while the other (second row) makes O(h2) errors. The
difference between the results is used to estimate the accuracy of the lower-order scheme [31];
the details are beyond our scope. The work of computing two approximations is nearly the same
cost as just one, because they share the same evaluations of g.

There are also multistep alternatives, for example the implicit, second-order backwards dif-
ferentiation formula (BDF2),

Y` =
4

3
Y`−1 −

1

3
Y`−2 +

2

3
hg(t`,Y`), (5.12)

which uses two previous values, and there are usable BDF formulas for orders 3–6 [7]; we
compare BDF and other formulas on the heat equation later in this chapter. Other schemes such
as the general linear methods [31] combine the multistage and multistep ideas.

When comparing the performance of methods one observes for explicit schemes that the
computational cost of a time step is essentially proportional to the number of evaluations of
the right-hand-side g. (The additional arithmetic in a particular scheme, represented by the
number of nonzero coefficients in a tableau, for example, is relatively small.) Implicit schemes,
however, require solving the algebraic systems that arise at each step. This imposes a large
additional cost, including both the costs of solving linear systems and of additional evaluations
of g or its derivatives, e.g., as needed in a Newton iteration. Implicit schemes thus have more
expensive steps, so the question is whether one may use significantly fewer steps by taking longer
steps. This question relates fundamentally to scheme stability, not order, and so we consider
explicit/implicit comparisons later in this chapter in terms of absolute stability.

A large number of methods are available at the PETSC command line. Choosing the “best”
one for a given ODE system may not even be a reasonable goal, so our goal in this chapter is
only to suggest reasonable choices for broad classes of problems.
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100 Chapter 5. Time-stepping

A first TS example
The linear ODE system in Example 5.1 is a good starting point for our first ODE-solving pro-
gram. It has fixed dimension and an exact solution from which to evaluate numerical error.
Program c/ch5/ode.c, shown in Codes 5.1 and 5.2, solves this problem.

Consider how the TS object is initialized:

TSCreate(PETSC_COMM_WORLD,&ts);
TSSetProblemType(ts,TS_NONLINEAR);
TSSetRHSFunction(ts,NULL,FormRHSFunction,NULL);
TSSetType(ts,TSRK);

By setting the problem type to TS_NONLINEAR we are saying that the problem is in form (5.1)
with a potentially nonlinear function g(t,y), even though our particular function is linear. Call-
ing TSSetRHSFunction() sets a call-back to FormRHSFunction() which evaluates g(t,y);
see Code 5.2. Next we set the TS type to be the Runge-Kutta family; this choice can be overrid-
den by run-time option -ts_type (more below).

Additional commands configure the time axis of the TS:

TSSetTime(ts,t0);
TSSetMaxTime(ts,tf);
TSSetTimeStep(ts,dt);
TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);
TSSetFromOptions(ts);

The first three of these commands imply that the interval of integration is [t0, tf ] and
that, if the method were not adaptive, the discrete times would be from the list t0:dt:tf
(MATLAB notation). However, for adaptive methods dt is only the initial time step. The
TSSetExactFinalTime() command makes sure that adaptive TS types respect the final time
you just set. Finally, using TSSetFromOptions() means these choices can be overridden at the
command line.

int main( int argc , char ** argv ) {
PetscInt steps ;
PetscReal t0 = 0.0 , t f = 20.0 , dt = 0.1 , err ;
Vec y , yexact ;
TS ts ;

Pe tsc In i t i a l i ze (&argc ,&argv , ( char * ) 0 ,help ) ;

VecCreate (PETSC_COMM_WORLD,&y ) ;
VecSetSizes (y ,PETSC_DECIDE,2) ;
VecSetFromOptions (y ) ;
VecDuplicate (y,&yexact ) ;

TSCreate(PETSC_COMM_WORLD,& ts ) ;
TSSetProblemType( ts ,TS_NONLINEAR) ;
TSSetRHSFunction( ts ,NULL,FormRHSFunction ,NULL) ;
TSSetType( ts ,TSRK) ;

/ / set time axis
TSSetTime( ts , t0 ) ;
TSSetMaxTime( ts , t f ) ;
TSSetTimeStep( ts , dt ) ;
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A first TS example 101

TSSetExactFinalTime ( ts ,TS_EXACTFINALTIME_MATCHSTEP) ;
TSSetFromOptions( ts ) ;

/ / set i n i t i a l values and solve
TSGetTime( ts ,& t0 ) ;
ExactSolution ( t0 , y ) ;
TSSolve( ts , y ) ;

/ / compute error and report
TSGetStepNumber( ts ,&steps ) ;
TSGetTime( ts ,& t f ) ;
ExactSolution ( t f , yexact ) ;
VecAXPY(y , −1.0 , yexact ) ; / / y <− y − yexact
VecNorm(y ,NORM_INFINITY,& err ) ;
PetscPrint f (PETSC_COMM_WORLD,

" error at t f = %.3f with %d steps : | y−y_exact | _ in f = %g\n" ,
t f , steps , err ) ;

VecDestroy(&y ) ; VecDestroy(&yexact ) ; TSDestroy(& ts ) ;
return PetscFinalize ( ) ;

}

Code 5.1. c/ch5/ode.c, part I. ode.c creates and configures a TS object, then solves the
problem and reports the numerical error.

Because of run-time options, the TSSetFromOptions() call can cause the time axis to
change. Thus we get the current time using TSGetTime(), set the initial values using that, and
then call TSSolve(). After the solve we also get the time for computing the numerical error; it
may not be the original tf.

Code 5.2 shows the functions that evaluate the exact solution and the right-hand-side
g(t,y) for ODE (5.5). For the latter, the input Vec y is read into a const array with
VecGetArrayRead() while the output Vec g needs to be accessed through VecGetArray().

PetscErrorCode ExactSolution (PetscReal t , Vec y ) {
PetscReal *ay ;
VecGetArray (y,&ay) ;
ay [0 ] = t − PetscSinReal ( t ) ;
ay [1 ] = 1.0 − PetscCosReal ( t ) ;
VecRestoreArray (y,&ay) ;
return 0;

}

PetscErrorCode FormRHSFunction(TS ts , PetscReal t , Vec y , Vec g ,
void * p t r ) {

const PetscReal *ay ;
PetscReal *ag ;
VecGetArrayRead(y,&ay) ;
VecGetArray (g,&ag) ;
ag [0 ] = ay [ 1 ] ; / / = g_1( t , y )
ag [1 ] = − ay [0 ] + t ; / / = g_2( t , y )
VecRestoreArrayRead(y,&ay) ;
VecRestoreArray (g,&ag) ;
return 0;

}

Code 5.2. c/ch5/ode.c, part II. Evaluating the exact solution y(t) and the right-hand-side g(t,y).
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102 Chapter 5. Time-stepping

Let us try it:

$ cd c/ch5/
$ make ode
$ ./ode -ts_monitor
0 TS dt 0.1 time 0.
1 TS dt 0.170141 time 0.1
2 TS dt 0.169917 time 0.270141
...
87 TS dt 0.161127 time 19.8389
88 TS dt 0.205214 time 20.
error at tf = 20.000 with 88 steps: |y-y_exact|_inf = 0.00928173

It is clear that the time-stepping method is adaptive and, given the small numerical error, that it
has succeeded. But what solution method was used?

$ ./ode -ts_view
TS Object: 1 MPI processes
type: rk
RK type 3bs
...

maximum time=20.
total number of rejected steps=12
using relative error tolerance of 0.0001, ...

TSAdapt Object: 1 MPI processes
type: basic
...

error at tf = 20.000 with 88 steps: |y-y_exact|_inf = 0.00928173

The default subtype for type TSRK is RK3bs (Table 5.1). Note that the adaptive method rejected
12 steps in addition to the 88 which were accepted.

Controlling TS
As with other PETSC objects, there are many run-time options. To list them do

$ ./ode -help |grep ts_

To see numerical values of the solution at each time step, do

$ ./ode -ts_monitor -ts_monitor_solution

For a run-time graphical (line-graph) view of the solution:

$ ./ode -ts_monitor_lg_solution -draw_pause 0.1

The result is a graphic similar to Figure 5.1.
If desired, option -ts_monitor can write the discretized t axis to a binary file, while option

-ts_monitor_solution can write the solution values {Y`}. Specifically, the Python script
c/ch5/plotTS.py21 takes, as input, such files:

21It needs copies of, or sym-links to, Python scripts PetscBinaryIO.py and petsc_conf.py from the
lib/petsc/bin/ directory of $PETSC_DIR. Try make petscPyScripts.
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Implicit methods and stiffness 103

$ ./ode -ts_monitor binary:t.dat -ts_monitor_solution binary:Y.dat
$ ./plotTS.py -o figure.png t.dat Y.dat

The result is again Figure 5.1.
We are free to adjust the start time, end time, and initial time step at the command line:

$ ./ode -ts_init_time 1.0 -ts_max_time 2.0 -ts_dt 0.001 -ts_monitor

Turning off adaptive time-stepping and setting the time step to h = 0.1 yields 200 steps:

$ ./ode -ts_adapt_type none -ts_monitor -ts_dt 0.1

We can also change the relative and absolute tolerances, used in adaptive time-stepping, from
their default values of 10−4:

$ ./ode -ts_rtol 1.0e-1
$ ./ode -ts_rtol 1.0e-6
$ ./ode -ts_rtol 1.0e-6 -ts_atol 1.0e-6

These runs take 19, 117, and 392 steps, respectively, and the final numerical errors are 1.4,
3.6× 10−3, and 1.3× 10−4. Thus one observes that

Setting -ts_rtol and/or -ts_atol does not cause the final numerical error to be
bounded by those values.

In fact the numerical error accumulates with steps, and can grow exponentially, while the toler-
ances can only control per-step errors.

Various TS methods can be compared on this ODE example—see Exercises 5.2 and 5.3—
but we mostly defer comparisons until after introducing the concepts of stiffness and stability.
However, note that when an RK method is chosen (-ts_type rk) then the particular flavor is
assigned with -ts_rk_type:

$ ./ode -ts_type rk -help |grep ts_rk
-ts_rk_type <3bs> ... 8vr 7vr 6vr 5bs 5dp 5f 4 3bs 3 2a 1fe ...

Implicit methods and stiffness
The RK methods mentioned above, including the forward Euler method, are explicit. They
compute Y` from previous values without needing to solve any equations. Implicit methods, by
contrast, require solving, at each time step, the kind of generally nonlinear systems of equations
addressed in Chapter 4. That is, given values Y`−1, for time t` an implicit scheme generates a
nonlinear system

F(Y`) = 0. (5.13)

For example, backward Euler (5.8) corresponds to the function F(X) = X−Y`−1− hg(t`,X)
while BDF2 (5.12) yields F(X) = X− 4

3Y`−1 + 1
3Y`−2 − 2

3hg(t`,X). If we solve equations
(5.13) by Newton’s method, for the N real components of Y`, then we will need to differentiate
F, and thus g, either exactly or by finite differences. An implicit method will generally evaluate
g a variable number of times per time step, depending on the number of Newton steps.

The following so-called theta methods are implicit when 0 < θ ≤ 1:

Y` = Y`−1 + (1− θ)hg(t`−1,Y`−1) + θhg(t`,Y`), (5.14)
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104 Chapter 5. Time-stepping

These are, in fact, Runge-Kutta methods with tableau

0
1 1− θ θ

1− θ θ

The θ = 0 case is the explicit forward Euler method (5.7), while θ = 1 gives the backward
Euler method (5.8); these have first-order local truncation error. The θ = 1/2 case, the (implicit)
trapezoid method, has second-order O(h2) local truncation error. This method is called the
Crank-Nicolson (CN) method in PETSC, and when used on a PDE problem [115].

Both the RK2a rule (5.10) and the CN method are second order. Why would one ever use the
latter scheme, an implicit method which requires solving a system of algebraic equations at each
time step? The answer is that the CN method is more stable than RK2a, and it therefore may
allow much longer, and thus significantly fewer, time steps.

Though there are several useful definitions of stability, we focus below on absolute stability.
Most explicit schemes are conditionally absolutely stable, thus they give good results when used
with sufficiently small time steps, but the length of stable time steps depends on the particular
ODE. The computational burden of many small steps may be avoidable in some cases, but there
is always a trade-off between many inexpensive explicit time steps versus expensively solving
equations at each time step in an implicit scheme. Some ODE solutions, with certain accuracy
goals, can succeed if computed implicitly while being too costly when done by explicit methods.
This is characteristic of parabolic PDEs, at least for fine spatial grids, as explored later in this
chapter.

Continuing in this informal vein, the property of certain ODE problems which drives our
concern with scheme stability is the “stiffness” of those problems. Though only an informal
definition is possible [7], an ODE system is stiff if it has short timescales which do not need to
be accurately resolved in order to compute the final-time result at the desired accuracy, but which
cause explicit schemes to take small time steps.

Example 5.2. Consider the linear ODE IVP, in N = 3 dimensions,

y′ = By, y(0) =

1
1
1

 , (5.15)

where

B =

 0 1 0
−1 0 0.1
0 0 −101

 . (5.16)

The exact solution at a particular time, say tf = 10, can be found by exponentiating a matrix
(Exercise 5.4). To an absolute accuracy of 10−7,

y(tf ) = eBtfy(0) =

−1.383623
−0.295886

0

 . (5.17)

The eigenvalue λmin = −101 of B (Exercise 5.4) corresponds to a short timescale and a rapid
decay rate. Precisely following this fast timescale is not needed to produce absolutely accurate
values for y(tf ).

For the ODE in Example 5.2 we consider the two O(h2) methods introduced above, the
explicit (RK2a) and implicit (Crank-Nicolson) trapezoid rules. A modification of ode.c called
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Absolute stability 105

stiff.c (Exercise 5.5) solves this problem. Starting with the explicit RK2a method, we take
200 steps from t0 = 0 to tf = 10:

$ ./stiff -ts_type rk -ts_rk_type 2a -ts_adapt_type none -ts_dt 0.05
Vec Object: 1 MPI processes
type: seq

8.08433e+182
-8.16517e+184
8.24763e+187
total steps = 200

This is clearly nonsense; the solution has exploded. Using 1000 steps gives an answer which
instead has (roughly) three-digit accuracy:

$ ./stiff -ts_type rk -ts_rk_type 2a -ts_adapt_type none -ts_dt 0.01
Vec Object: 1 MPI processes
type: seq

-1.38367
-0.295656
1.03141e-301
total steps = 1000

By contrast, in 200 steps of Crank-Nicolson we get two-digit accuracy:

$ ./stiff -ts_type cn -ts_adapt_type none -ts_dt 0.05
Vec Object: 1 MPI processes
type: seq

-1.383
-0.298767
1.6678e-73
total steps = 200

The effect caused by the issue in Example 5.2, namely the need for many short time steps
for the explicit scheme, and the potential for lower computational cost from an implicit scheme,
becomes more pronounced as the dimension of the problem increases and the condition number
of the matrix increases. On an example like this, explicit schemes are sensitive to the range of
eigenvalue magnitudes. Here |λmin| is large even though the size of the solution component for
that eigenvalue, i.e., eλmint, is tiny. For a stiff problem an explicit scheme exhibits the “symptom”
that the number of steps is both large and insensitive to the accuracy goal unless very high
accuracy is needed (Exercise 5.5).

Stiffness is supposed to be a property of the problem not the method. However, there is no
precise way to decide if a particular ODE system, by itself, is stiff. A problem may be stiff for
one accuracy goal, and not for others, or stiff only for long intervals of integration. Thus the
word “stiff” is like the word “sparse.” Namely, to use such words precisely one must supply an
“enough so that” criterion.

Absolute stability
The so-called test equation is a simple scalar ODE IVP:

y′ = λy, y(0) = 1, (5.18)

with solution y(t) = eλt. We say that a numerical method with step size h is absolutely stable
for a given λ ∈ C if it generates iterates {Y`} from equation (5.18) with the property that the
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106 Chapter 5. Time-stepping

absolute values are nonincreasing, |Y`| ≤ |Y`−1|. Noting that the magnitude of the solution
|y(t)| = e(Reλ)t is nonincreasing when Reλ ≤ 0, we clearly want the iterates to have the same
property.

What does a numerical solution look like when absolute stability fails? Consider the test
problem with λ = −1. With h = 0.5 and h = 2.2, the (explicit) Euler method gives results
shown in Figure 5.2. The exact solution is a decaying exponential, and a sufficiently small step
size (e.g., h = 0.5) gives a qualitatively correct result. However, for the larger step size (h = 2.2)
the method generates a sequence {Y`} which grows in magnitude, clearly wrong. For h = 2.2
the RK2a method also yields a growing-magnitude solution (not shown).

On the other hand, iterates should increase in magnitude if the exact solution is actually grow-
ing in magnitude. That is, if Reλ > 0 then the numerical scheme should generate exponentially
growing iterates when applied to (5.18), so absolute stability is not a desirable scheme property
when Reλ > 0.

The definition of absolute stability is not usually treated as dependent on the separate pa-
rameters λ and h, but on the product z = hλ. In fact, applying any one-step method to the test
equation gives

Y` = f(z)Y`−1 (5.19)

for some stability function f(z). For example, applying the one-step methods so far to (5.18)
gives these formulas (Exercise 5.6):

Euler Y` = (1 + z)Y`−1, (5.20)

RK2a Y` =

(
1 + z +

1

2
z2

)
Y`−1,

RK4 Y` =

(
1 + z +

1

2
z2 +

1

3!
z3 +

1

4!
z4

)
Y`−1,

Crank-Nicolson Y` =

(
1 + 1

2z

1− 1
2z

)
Y`−1,

backward Euler Y` =

(
1

1− z

)
Y`−1.

The stability function f(z) of a consistent scheme is a polynomial or rational approximation of
the exponential: f(z) ≈ ez for small z.

We may revise the definition slightly to say that a numerical method is absolutely stable for
z ∈ C if |Y`| ≤ |Y`−1| holds when hλ = z [7, 125]. Thus absolute stability is equivalent to
|f(z)| ≤ 1 for a one-step method. For example, f(z) = 1 + z for the Euler method. For the two
runs shown in Figure 5.2, for which λ = −1, we see that z = hλ satisfies |1 + z| < 1 when
h = 0.5 and |1 + z| > 1 when h = 2.2. The region of absolute stability for a one-step scheme is
the subset {z : |f(z)| ≤ 1} ⊂ C. For the schemes in (5.20), these regions are shown in Figure
5.3.

The absolute stability region of a multistep scheme is also determined by applying the scheme
to the test equation, but the resulting recurrence is at least second order. Absolute stability
holds only if all solutions of the recurrence have nongrowing magnitudes [7, 125]. Exercise 5.6
considers the BDF2 case (Figure 5.3), including a precise condition on the roots of the stability
function.

By definition, a numerical scheme is A-stable if it is absolutely stable for all z in the left
half-plane [7]. All of the implicit schemes in Figure 5.3, and also the θ ≥ 1/2 theta methods
(5.14), are A-stable. (However, one should not overgeneralize. The BDF schemes with order
greater than 2 are not A-stable, though for orders 3–6 they remain well suited to stiff problems.)

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Absolute stability 107

0 1 2 3 4 5 6 7
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
y

exact
h = 0.5 Euler
h = 2.2 Euler

Figure 5.2. Numerical solutions to test problem (5.18) with λ = −1. Large time steps h cause a
failure of absolute stability for this explicit method.
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Figure 5.3. Shaded regions of absolute stability for some ODE schemes. Explicit at left: Euler
(darkest), RK2a (next), and RK4 (lightest). Implicit at right: backward Euler (lightest), BDF2 (next), and
Crank-Nicolson (darkest).
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108 Chapter 5. Time-stepping

On the other hand, no explicit methods are A-stable. When an explicit Runge-Kutta scheme is
applied to the test equation one gets Y` = p(z)Y`−1 for a nonconstant polynomial p(z). Because
|p(z)| → ∞ as |z| → ∞, the absolute-stability region |p(z)| ≤ 1 is bounded; it cannot include
the left half-plane.

Now consider, instead of the scalar test equation (5.18), a homogeneous linear system with a
diagonalizable coefficient matrix:

y′ = Ay. (5.21)

After diagonalizing A = XΛX−1 one finds that eAt = XeΛtX−1 so the solutions of (5.21) are
of the form

y(t) = XeΛtX−1y(0). (5.22)

Thus the components of w(t) = X−1y(t) are decoupled, and they evolve by the (complex)
exponential rates which appear in Λ: w(t) = eΛtw(0). It follows that growth or decay of the
solutions of (5.21) is determined by Reλ for λ ∈ σ(A).

These observations lead to our primary conclusion about the concept of absolute stability.
Suppose that in (5.21) all eigenvalues have negative real parts, Reλ < 0. The only way a
numerical solution {Y`} can be close to an exact solution y(t) is for the step size h to be chosen
sufficiently small so that, for all λ ∈ σ(A), the values z = hλ are in the absolute stability
region R of the scheme. This condition should be seen as necessary, at best, but for such h
the numerical solution is in qualitative agreement with the exact solution because both solutions
eventually decay. In summary, we have this well-known principle for using numerical ODE
solvers:

When solving a linear system y′ = Ay by a scheme with absolute stability region
R, choose h small enough so that z = hλ ∈ R for all eigenvalues λ ∈ σ(A) such
that Reλ ≤ 0.

In choosing among schemes, any desire for higher-order accuracy is thus constrained by
the requirement of stability. For stiff systems, with a large spread of eigenvalue magnitudes,
we may accept significant relative error for those eigenvalues which are in the left half-plane
because these modes represent small absolute changes to an exact solution which contains faster-
growing, or at least slower-decaying, modes. The essential requirement of absolute stability
often dictates the choice of implicit methods, with their large stability regions, over higher-order
explicit methods which are less expensive in a per-step sense.

An important distinction among implicit methods relates to their ability to follow decaying
solutions in the presence of forcing terms. Consider the generalized test problem

y′ = λ (y − γ(t)) , y(0) = 1, (5.23)

for some bounded and continuous function γ(t). The exact solution is asymptotic to γ(t) as
Re(λ)→ −∞ (Exercise 5.7). We say that a scheme has stiff decay [7] if, when applied to (5.23)
for any such γ(t), it yields approximations {Y`} which approach γ(t) for every fixed t > 0 in
the following sense. Choose ` ∈ Z, define h = t/` so that Y` ≈ y(t), and require that

|Y` − γ(t)| → 0 as hRe(λ) = Re z → −∞. (5.24)

Thus a scheme has stiff decay if it can follow any nonhomogeneity γ(t) in the limit of a suffi-
ciently negative exponential rate λ. Backward Euler (5.8) has stiff decay, as do the order 1–6
BDF schemes implemented in PETSC [7]. However, the A-stable Crank-Nicolson rule does not.
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Jacobians for implicit methods 109

Note that BDF2 has three nice properties, namely second order, A-stability, and stiff decay, so it
will be the default TS type for our time-dependent heat equation solver later in this chapter.

By way of a conclusion to this section, the need for stability is another numerical fact of life
[141]:

Fact 11. Stability is obligatory in a numerical scheme. You may seek greater accuracy, but
exponential growth of the approximation to a bounded or decaying solution is never acceptable.

Jacobians for implicit methods
TS objects contain a SNES solver object inside because Newton’s method may be needed to
solver the nonlinear equations which arise at each time step of an implicit method. Two aspects
of using Newton’s method are then relevant, namely finding an initial iterate and providing or
approximating the appropriate Jacobian. The first concern is (generally) not challenging because
the last value of the solution can be used. That is, by default the implicit TS types choose
Y

(0)
` = Y`−1 if Y(k)

` denotes the kth Newton iterate when solving (5.13).
On the other hand, we need the Jacobian derivative of F in (5.13). As a representative

example, the θ method (5.14) corresponds to the residual function

F(X) = X−Y`−1 − (1− θ)hg(t`−1,Y`−1)− θhg(t`,X), (5.25)

where Y`−1 is known from the previous time step. The Jacobian is then

JF(X) =
∂F

∂X
= I − θh∂g

∂y
(t`,X).

There is no need, however, to write Jacobian user code which is specific to the θ method or any
other method. Each implicit TS type knows how to convert user-supplied code for the Jacobian
derivative of g(t,y), the right-hand side of the original ODE system (5.1), into the Jacobian of
F for Newton’s method on (5.13). That is, instead of the Jacobian of F the user supplies code
for evaluating

∂g

∂y
=

[
∂gi
∂yj

]
. (5.26)

As an illustration we have program odejac.c, built by small modifications of ode.c
and excerpted below. Note we call TSSetRHSJacobian() in Code 5.3 to set a call-back to
FormRHSJacobian(), which is shown in Code 5.4, and to set the TS type to Crank-Nicolson
(CN). An allocated Mat called J, for holding a value of ∂g/∂y, is assigned to both the Ja-
cobian and preconditioner-material arguments of TSSetRHSJacobian(); compare usage of
SNESSetJacobian() in Chapter 4.

MatCreate (PETSC_COMM_WORLD,&J ) ;
MatSetSizes (J ,PETSC_DECIDE,PETSC_DECIDE,2 ,2) ;
MatSetFromOptions (J ) ;
MatSetUp(J ) ;
TSSetRHSJacobian( ts , J , J ,FormRHSJacobian,NULL) ;
TSSetType( ts ,TSCN) ;

Code 5.3. c/ch5/odejac.c, part I. A Mat is created to hold ∂g/∂y. The TS type is set to the
implicit Crank-Nicolson method.
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110 Chapter 5. Time-stepping

PetscErrorCode FormRHSJacobian(TS ts , PetscReal t , Vec y , Mat J , Mat P,
void * p t r ) {

PetscInt row [2 ] = {0 , 1} , col [ 2 ] = {0 , 1} ;
PetscReal v [4 ] = { 0.0 , 1.0 ,

−1.0 , 0 .0 } ;
MatSetValues (P,2 , row,2 , col , v ,INSERT_VALUES) ;
MatAssemblyBegin (P,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(P,MAT_FINAL_ASSEMBLY) ;
i f ( J != P) {

MatAssemblyBegin (J ,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(J ,MAT_FINAL_ASSEMBLY) ;

}
return 0;

}

Code 5.4. c/ch5/odejac.c, part II. FormRHSJacobian() computes the matrix ∂g/∂y for Example 5.1.

So, how does nonadaptive, implicit CN compare to the default explicit, adaptive RK3bs
method?

$ make odejac
$ ./odejac
error at tf = 20.000 with 200 steps: |y-y_exact|_inf = 0.0151358
$ ./odejac -ts_type rk
error at tf = 20.000 with 88 steps: |y-y_exact|_inf = 0.00928173

The former run evaluates the Jacobian at every time step,

$ ./odejac -log_view | grep TSJacobianEval
TSJacobianEval 200 1.0 ...

while the latter run, which is equivalent to the default case of ode.c, does not evaluate the
Jacobian at all. Noting that the current example is small and nonstiff, in contrast to the next
example we see no benefit here to the CN method.

In any case, the following three runs yield the same displayed results:

$ ./ode -ts_type cn -snes_fd
$ ./ode -ts_type cn -snes_mf
$ ./odejac

All of these call the SNES inside the TS to solve the system of equations (5.13) arising from
setting up the CN (trapezoid rule) equations at each time step, but the latter two runs use a finite-
differenced Jacobian.

Table 5.2 shows the TS types considered so far [10], including their (local truncation error)
order. The backward Euler and CN methods are actually implemented as special cases of the
θ method:

$ ./odejac -ts_type theta -help |grep ts_theta
-ts_theta_theta <0.5 : 0.5>: Location of stage (0<Theta<=1) ...
-ts_theta_endpoint: <FALSE : FALSE> Use the endpoint instead ...
-ts_theta_initial_guess_extrapolate: <FALSE : FALSE> Extrapolate ...
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A time-dependent heat equation problem 111

Table 5.2. A selection of ODE integration methods; see allowed -ts_type choices for more.
Schemes below the line are implicit.

Method -ts_type Order Adaptive?
forward Euler (5.6) euler 1 no
Runge-Kutta (5.11) rk

-ts_rk_type 2a 2 yes
-ts_rk_type 3 3 no
-ts_rk_type 3bs [default] 3 yes
-ts_rk_type 4 4 no
-ts_rk_type 5bs 5 yes

θ method (5.14) theta
-ts_theta_theta θ, θ ∈ (0, 1] 1 or 2 optional
backward Euler (5.8): θ = 1 beuler 1 optional
Crank-Nicolson: θ = 1/2 cn 2 optional

backward differentiation (5.12) bdf
-ts_bdf_order X X = 1, . . . , 6 yes

Thus the following are equivalent:

$ ./odejac -ts_type beuler
$ ./odejac -ts_type theta -ts_theta_theta 1.0

as are

$ ./odejac -ts_type cn
$ ./odejac -ts_type theta -ts_theta_theta 0.5 -ts_theta_endpoint

These methods are optionally adaptive. For example,

$ ./odejac -ts_type cn -ts_adapt_type basic

is an adaptive, though not embedded, form of Crank-Nicolson.
For the rest of this chapter we will use methods suitable for stiff and nonlinear ODE systems

(5.1). That is, we will solve problems of the form y′ = g(t,y) by implicit and semi-implicit
methods which use the SNES inside the TS object.

A time-dependent heat equation problem
We now have the tools to solve many time-dependent PDEs. Such problems generate arbitrarily
large systems of ODEs once the spatial derivatives are discretized. For example, consider this
time-dependent heat equation in two space dimensions:

∂u

∂t
= D0∇2u+ f(x, y). (5.27)

The solution is the temperature u(t, x, y) for t ∈ [0, T ] and (x, y) in the unit square S = (0, 1)×
(0, 1); see Figure 5.4. For simplicity we set the diffusivity D0 > 0 to be constant, while the heat
source f(x, y) is time independent, and the initial temperature is zero: u(0, x, y) = 0.

To complete the specification of a concrete, well-posed [51] problem we choose a rather
arbitrary source function which takes both positive and negative values,

f(x, y) = 3e−25(x−0.6)2 sin(2πy).

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



112 Chapter 5. Time-stepping

x

y

0 1

1

∂u
∂t = D0∇2u+ f(x, y)

(periodic)

(periodic)

−
∂
u
∂
x

=
γ

(y
)

∂
u
∂
x

=
0

Figure 5.4. A time-dependent initial/boundary value problem on a square.

On the left (x = 0) and right (x = 1) sides we pick nonhomogeneous and homogeneous Neu-
mann conditions, respectively, with

− ∂u

∂x
= γ(y) = sin(6πy) (5.28)

along the left side. For the sake of variety, periodic boundary conditions apply along the top and
bottom boundaries.

We do not know the exact solution to the above problem, but a scalar quantity is conserved,
namely the total thermal energy [119]. Recall that this is the integral of ρcu over the domain if the
material has density ρ and heat capacity c. (If the material also has constant thermal conductivity
k then D0 = k/(ρc).) The main idea here is that the integral of temperature u is conserved if the
material properties are constant.

For our particular problem it is easy to verify (Exercise 5.8) that the sources integrate to zero,∫
S
f(x, y) dx dy = 0,

∫ 1

0

γ(y) dy = 0, (5.29)

and thus integrating equation (5.27) yields a constant total heat energy,

d

dt

(∫
S
u(t, x, y) dx dy

)
= D0

∫ 1

0

γ(y) dy +

∫
S
f(x, y) dx dy = 0. (5.30)

Thus we will want our discretized equations to conserve thermal energy too.

Method of lines
A time-dependent PDE like the heat equation becomes a system of ODEs after semidiscretization
in space. This technique is called the method of lines [84, 104, 115], a name which imagines the
continuous-time ODE domain as lines t 7→ (t, xi, yj) in space-time.

For problem (5.27) we will discretize spatial derivatives just as in Chapter 3, using a grid of
N = mx×my points (xi, yj), with grid spacings hx and hy , and replacing the spatial derivatives
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Method of lines 113

user code

RHS function RHS Jacobian

TS
time-stepping

SNES
nonlinear solver

KSP
linear solver

PC
preconditioner

DMDA
structured grid

Mat
Jacobian

Vecs
solution, other fields

Figure 5.5. Component stack used for time-dependent, structured-grid PDE examples based on
the the method of lines. “RHS” stands for right-hand side.

in (5.27) by centered finite differences:

u′i,j = D0
ui+1,j − 2ui,j + ui−1,j

h2
x

+D0
ui,j+1 − 2ui,j + ui,j−1

h2
y

+ fi,j . (5.31)

Here fi,j = f(xi, yj) and ui,j(t) ≈ u(t, xi, yj). Note that partial derivatives in t have become
ordinary derivatives. Equations (5.31) form an ODE system y′ = g(t,y), which we will solve
numerically. The method of lines strategy requires that our code define the right-hand-side g, but
there is no need to choose a time-stepping method just yet.

Program c/ch5/heat.c, extracted in Codes 5.5–5.9, implements (5.31). It has the structure
shown in Figure 5.5, and it is easy to write based on our experience using DMDA in Chapters 3
and 4. Code 5.5, an extract of main(), sets up the DMDA object for the grid shown in Figure 5.6.
By periodicity, grid points along the lower boundary y = 0 are also (conceptually) located on
the upper boundary y = 1. The default grid of mx ×my = 5 × 4 points therefore has square
cells; the spacings are hx = 1/(mx − 1) and hy = 1/my , respectively, as computed by a helper
function Spacings() (not shown).

DMDACreate2d(PETSC_COMM_WORLD,
DM_BOUNDARY_NONE, DM_BOUNDARY_PERIODIC, DMDA_STENCIL_STAR,
5 ,4 ,PETSC_DECIDE,PETSC_DECIDE, / / defaul t to hx=hx=0.25 gr id
1 ,1 , / / degrees of freedom , s tenc i l width
NULL,NULL,&da) ;

DMSetFromOptions(da) ;
DMSetUp(da) ;
DMCreateGlobalVector (da,&u) ;

Code 5.5. c/ch5/heat.c, part I. Set up the DMDA grid object and a Vec.
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114 Chapter 5. Time-stepping

x

y

0 1

1

Figure 5.6. Because of periodicity in y, the default 5× 4 point grid in heat.c has square cells.

Code 5.6, another extract of main(), shows how we create and configure the TS. Through
an association to the DMDA grid object, namely TSSetDM(), the TS knows the dimension N of
the system of ODEs. We also set DMDA-based call-back functions; see Codes 5.7 and 5.8 below.
Finally, because a stiff-decay method is appropriate for the stiff heat equation, we set the default
TS type to BDF; the default order is 2.

TSCreate(PETSC_COMM_WORLD,& ts ) ;
TSSetProblemType( ts ,TS_NONLINEAR) ;
TSSetDM( ts ,da) ;
TSSetApplicationContext ( ts ,&user ) ;
DMDATSSetRHSFunctionLocal(da ,INSERT_VALUES,

(DMDATSRHSFunctionLocal)FormRHSFunctionLocal,&user ) ;
DMDATSSetRHSJacobianLocal(da ,

(DMDATSRHSJacobianLocal)FormRHSJacobianLocal,&user ) ;
i f ( monitorenergy ) {

TSMonitorSet ( ts , EnergyMonitor ,&user ,NULL) ;
}
TSSetType( ts ,TSBDF) ;
TSSetTime( ts ,0 .0 ) ;
TSSetMaxTime( ts ,0 .1 ) ;
TSSetTimeStep( ts ,0.001) ;
TSSetExactFinalTime ( ts ,TS_EXACTFINALTIME_MATCHSTEP) ;
TSSetFromOptions( ts ) ;

Code 5.6. c/ch5/heat.c, part II. Create the TS and associate the DMDA, RHS evaluation,
Jacobian evaluation, and energy monitor to it.

FormRHSFunctionLocal() in Code 5.7 evaluates g(t,y) in equation (5.31) and
FormRHSJacobianLocal() in Code 5.8 evaluates its derivatives ∂g/∂y. These functions use
the same finite difference formula and 5-point stencil shown in Figure 3.5. Note that heat.c
also defines functions f_source(x,y) and gamma_neumann(y) (not shown) which compute f
and γ in (5.27).
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Method of lines 115

PetscErrorCode FormRHSFunctionLocal (DMDALocalInfo * info ,
PetscReal t , PetscReal **au ,
PetscReal **aG, HeatCtx *user ) {

PetscInt i , j , mx = info −>mx;
PetscReal hx , hy , x , y , ul , ur , uxx , uyy ;

Spacings ( info ,&hx,&hy) ;
for ( j = info −>ys ; j < info −>ys + info −>ym; j ++) {

y = hy * j ;
for ( i = info −>xs ; i < info −>xs + info −>xm; i ++) {

x = hx * i ;
/ / apply Neumann b . c . s
ul = ( i == 0) ? au [ j ] [ i +1] + 2.0 * hx * gamma_neumann(y )

: au [ j ] [ i −1] ;
ur = ( i == mx−1) ? au [ j ] [ i −1] : au [ j ] [ i +1] ;
uxx = ( ul − 2.0 * au [ j ] [ i ]+ ur ) / (hx*hx) ;
/ / DMDA is per iodic in y
uyy = (au [ j −1] [ i ] − 2.0 * au [ j ] [ i ]+ au [ j +1] [ i ] ) / (hy*hy) ;
aG[ j ] [ i ] = user−>D0 * (uxx + uyy ) + f_source (x , y ) ;

}
}
return 0;

}

Code 5.7. c/ch5/heat.c, part III. Evaluate RHS g(t,y) for ODE system (5.31).

A Neumann condition scheme is needed at the left and right boundaries. In detail, at each
point (x0, yj) = (0, yj) we have (5.28), which becomes

−u+1,j − u−1,j

2hx
= γ(yj),

using aO(h2
x) centered finite difference approximation and a notional value “u−1,j” [115]. Solv-

ing this for u−1,j , namely u−1,j = u+1,j + 2hxγ(yj), defines a version of the ODE RHS (5.31)
at points (0, yj) on the left boundary. The same technique also applies at the right boundary.

PetscErrorCode FormRHSJacobianLocal (DMDALocalInfo * info ,
PetscReal t , PetscReal **au ,
Mat J , Mat P, HeatCtx *user ) {

PetscInt i , j , ncols ;
const PetscReal D = user−>D0;
PetscReal hx , hy , hx2 , hy2 , v [ 5 ] ;
MatStencil col [ 5 ] , row ;

Spacings ( info ,&hx,&hy) ;
hx2 = hx * hx ; hy2 = hy * hy ;
for ( j = info −>ys ; j < info −>ys+info −>ym; j ++) {

row . j = j ; col [ 0 ] . j = j ;
for ( i = info −>xs ; i < info −>xs+info −>xm; i ++) {

/ / set up a standard 5−point s tenc i l fo r the row
row . i = i ;
col [ 0 ] . i = i ;
v [0 ] = − 2.0 * D * (1.0 / hx2 + 1.0 / hy2) ;
col [ 1 ] . j = j −1; col [ 1 ] . i = i ; v [1 ] = D / hy2 ;
col [ 2 ] . j = j +1; col [ 2 ] . i = i ; v [2 ] = D / hy2 ;
col [ 3 ] . j = j ; col [ 3 ] . i = i −1; v [3 ] = D / hx2 ;
col [ 4 ] . j = j ; col [ 4 ] . i = i +1; v [4 ] = D / hx2 ;
ncols = 5;
/ / i f at the boundary , ed i t the row back to 4 nonzeros
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116 Chapter 5. Time-stepping

i f ( i == 0) {
ncols = 4;
col [ 3 ] . j = j ; col [ 3 ] . i = i +1; v [3 ] = 2.0 * D / hx2 ;

} else i f ( i == info −>mx−1) {
ncols = 4;
col [ 3 ] . j = j ; col [ 3 ] . i = i −1; v [3 ] = 2.0 * D / hx2 ;

}
MatSetValuesStencil (P,1 ,&row , ncols , col , v ,INSERT_VALUES) ;

}
}

MatAssemblyBegin (P,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(P,MAT_FINAL_ASSEMBLY) ;
i f ( J != P) {

MatAssemblyBegin (J ,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(J ,MAT_FINAL_ASSEMBLY) ;

}
return 0;

}

Code 5.8. c/ch5/heat.c, part IV. Evaluate the Jacobian of (5.31).

Finally, a new feature of this example is a monitor function (call-back) which reports the
total thermal energy as well as a ratio related to stability. We use TSMonitorSet() to set a call-
back to EnergyMonitor(), shown in Code 5.9. Option -ht_monitor activates the new code,
which supplements the usual -ts_monitor output. In this function the trapezoid rule is used to
compute the local processor’s contribution to the integral

∫
u dx dy, in variable lenergy, and

then MPI_Allreduce() sums the integral over the entire grid.
The monitor also prints the value of ν = D0∆t/(hxhy) where ∆t is the current time step.

Because D0/(hxhy) ∼ |λmin| is comparable to the magnitude of the most negative eigenvalue of
the discrete ODE system, ν measures the stiffness of the ODE problem. Theorems showing that
ν . 1 is either necessary or sufficient for conditional stability of fully discrete explicit methods
for the heat equation can be found in [115]; additional discussion of this connection is in [104].
We will see that adaptive explicit methods generate ν values less than one while implicit methods
may take time steps ∆t such that ν � 1.

PetscErrorCode EnergyMonitor (TS ts , PetscInt step , PetscReal time , Vec u ,
void * ctx ) {

HeatCtx *user = (HeatCtx * ) ctx ;
PetscReal lenergy = 0.0 , energy , dt , hx , hy , **au ;
PetscInt i , j ;
MPI_Comm com;
DM da ;
DMDALocalInfo i n fo ;

TSGetDM( ts ,&da) ;
DMDAGetLocalInfo (da,& in fo ) ;
DMDAVecGetArrayRead(da ,u,&au) ;
for ( j = in fo . ys ; j < in fo . ys + in fo .ym; j ++) {

for ( i = in fo . xs ; i < in fo . xs + in fo .xm; i ++) {
i f ( ( i == 0) | | ( i == in fo .mx−1) )

lenergy += 0.5 * au [ j ] [ i ] ;
else

lenergy += au [ j ] [ i ] ;
}

}
DMDAVecRestoreArrayRead(da ,u,&au) ;
Spacings(& info ,&hx,&hy) ;
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Visualization and performance 117

lenergy *= hx * hy ;
PetscObjectGetComm ( ( PetscObject ) (da) ,&com) ;
MPI_Allreduce(&lenergy ,&energy ,1 ,MPIU_REAL,MPIU_SUM,com) ;
TSGetTimeStep( ts ,& dt ) ;
PetscPrint f (PETSC_COMM_WORLD, " energy = %9.2e nu = %8.4 f \n" ,

energy , user−>D0* dt / ( hx*hy) ) ;
return 0;

}

Code 5.9. c/ch5/heat.c, part V. Print the total thermal energy and the stability ratio ν =
D0∆t/(hxhy).

Visualization and performance
A helpful first run exposes the TS/SNES/KSP/PC stack:

$ make heat
$ ./heat -ts_view

This reveals that we are using the implicit BDF2 type for the TS (-ts_type bdf
-ts_bdf_order 2), adaptive time-stepping (-ts_adapt_type basic), Newton’s method
with line search (-snes_type newtonls), a GMRES Krylov solver (-ksp_type gmres), and
ILU as the preconditioner (-pc_type ilu).

One can understand the time-stepping by using both monitors:

$ ./heat -ts_monitor -ht_monitor -snes_converged_reason
solving on 5 x 4 grid for t0=0. to tf=0.1 ...
energy = 0.00e+00 nu = 0.0160

0 TS dt 0.001 time 0.
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
energy = -2.51e-12 nu = 0.0196

1 TS dt 0.00122484 time 0.001
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
energy = -3.60e-12 nu = 0.0303

...
17 TS dt 0.00877976 time 0.0912202
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
energy = -5.03e-12 nu = 0.2589

18 TS dt 0.0161833 time 0.1

Note the default initial time step is dt = 0.001 and the default final time is tf = 0.1. (Change
these with -ts_dt and -ts_max_time, respectively.) In the above run adaptive time-stepping
lengthens the step so that the final time is reached in only 18 steps. Because our heat equation
problem has no time-varying inputs, the solution is converging to steady state.

Solving the implicit time-step equations apparently requires two Newton iterations, but, be-
cause these equations are actually linear for the heat equation, one can reduce this to one Newton
iteration by using -ksp_rtol 1.0e-10 or -snes_type ksponly. However, the first time step
is exceptional. Because BDF2 is a multistep method there must be a separate strategy to get
started. For that purpose it solves two systems of equations, the first of which is a preliminary
solution with BDF1, that is, backward Euler.

Because the initial thermal energy is zero we would want the monitor to show that it is zero
at every time step, but of course there is rounding error. Noting the coarseness of the grid, so that
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118 Chapter 5. Time-stepping

Figure 5.7. Temperature as grayscale, the final frame from a heat.c run.

truncation errors are many orders of magnitude larger than the energy errors seen here, we see
that energy is conserved.

Refining the grid and extending the run duration shows that the adaptive BDF2 method con-
tinues to lengthen the step, resulting in large nu = D0∆t/(hxhy) values. For example, at the
end of the following run nu exceeds 24,000:

$ ./heat -da_refine 4 -ts_monitor -ht_monitor -ts_max_time 10

On the other hand, with spatial refinement the initial time step should also be shortened:

$ ./heat -da_refine 4 -ts_monitor -ts_dt 1.0e-4

The problem can, of course, also be solved in parallel:

$ mpiexec -n 4 ./heat -da_refine 5 -ts_dt 1.0e-5 -ts_monitor

A graphical (X windows) view of the evolving solution, i.e., a movie, comes from

$ ./heat -da_refine 5 -ts_max_time 0.02 -ts_dt 1.0e-5 -ts_monitor \
-ts_monitor_solution draw

Figure 5.7 shows the last frame. The spatial variation in temperature at the left side comes from
the nonhomogeneous boundary condition γ(y), while in the interior emerging variation is caused
by f(x, y).

A Python script plotTS.py in the same directory (c/ch5/) can be used to put either a
trajectory like Figure 5.1 or a sequence of frames like Figure 5.7 into image files. One generates
PETSC binary files from a run with a given resolution mx ×my as follows; in this context we
also ask for fixed time steps:

$ ./heat -da_refine 5 -ts_adapt_type none -ts_monitor binary:t.dat \
-ts_monitor_solution binary:u.dat

$ ./plotTS.py -mx 129 -my 128 t.dat u.dat -oroot bar

Files bar000.png . . .bar100.png are generated. MOVIES.md describes how these frames can
be used to generate a movie in .m4v format.
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Visualization and performance 119

To summarize our heat equation problem so far, the method of lines converts the heat equation
(5.27) into a large, stiff, and linear system of ODEs in form (5.1). An implicit time-stepping
method using SNES solves equations (5.13) at each time step.

Now we may compare the performance of schemes. The following base run takes M = 29
adaptive steps to reach the final time tf = 0.1 using the default O(∆t2) BDF2 method on a
modestly refined grid of N = mx ×my ≈ 104 points:

$ ./heat -da_refine 5 -ts_monitor -ht_monitor

Note that the initial time step (-ts_dt 0.001) grows to much larger values as the solution ap-
proaches steady state. The wall clock time is a couple of seconds using a �with-debugging=0
PETSC configuration.

In the list below we add options to the base run. The results are compared by relative wall
clock time R, number of steps M , and final ν = νf value. Thus R < 1 for a method faster than
BDF2 and R > 1 for a slower method. Note that νf � 1 indicates time steps which are long
relative to the limitations imposed by stiffness.

(a) (base run) R = 1, M = 28, νf = 265

This implicit, A-stable, stiff-decay, and O(∆t2) local truncation error method,
namely -ts_type bdf -ts_bdf_order 2, is the default for heat.c.

(b) -ts_type rk R = 7.7, M = 5200, νf = 0.31

The explicit, adaptive, and O(∆t3) RK3bs method (-ts_rk_type 3bs) de-
tects the stiffness as a difference between the embedded schemes and thus takes
many short time steps and too much run time. It gets worse on further-refined
grids, with R = 18 on the next (-da_refine 6) grid.

(c) -ts_type rk -ts_adapt_type none R =?, M = 100, νf = 16.4

The same method as (b), but without adaptivity. This unstable numerical solu-
tion overflows at around 50 steps.

(d) -ts_type beuler R = 2.5, M = 100, νf = 16.4

This implicit, A-stable, stiff-decay, and O(∆t1) method generates a qualita-
tively good solution (-ts_monitor_solution draw) without adaptivity, but
(presumably) with larger numerical error than BDF2. Slower run time comes
from not lengthening the step as the solution approaches equilibrium.

(e) -ts_type beuler -ts_adapt_type basic R = 1.2, M = 32, νf = 232

Adding adaptivity speeds things up, but the numerical error is still larger than
for BDF2.

(f) -ts_type cn R = 2.2, M = 100, νf = 16.4

Crank-Nicolson (θ = 1/2) is an implicit, A-stable, and O(∆t2) method, but
without stiff decay. Here it is nonadaptive. Visualization (-ts_monitor_solution
draw) shows a subtle problem: solution features oscillate unphysically near the
left boundary.
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120 Chapter 5. Time-stepping

(g) -ts_type cn -ts_dt 0.01 R = 0.49, M = 10, νf = 164

With longer fixed time steps, visualizations shows large, though bounded, os-
cillations everywhere. This implicit method is unsafe for the heat equation
without adaptivity.

(h) -ts_type cn -ts_adapt_type basic R = 1.1, M = 36, νf = 230

With adaptivity, a perfectly reasonable method.

(i) -ts_type theta -ts_theta_theta 0.7 -ts_theta_endpoint

R = 2.3, M = 100, νf = 16.4

By moving the θ value toward the more stable θ = 1 (beuler) end, we tame
the oscillation of nonadaptive Crank-Nicolson. But now the order is O(∆t1)
like beuler.

(j) -ts_bdf_order 3 R = 0.90, M = 28, νf = 324

BDF3: This implicit, stiff decay, and O(∆t3) method is excellent, even though
it slightly fails A-stability [7].

(k) -ts_bdf_order 4 R = 0.99, M = 32, νf = 302

BDF4: This O(∆t4) method has the same properties as BDF3; it is also excel-
lent though, again, it fails A-stability [7].

For a heat or diffusion equation problem like this we conclude that BDF2–4 and adaptive
Crank-Nicolson are all good choices. For these methods the trade-off between speed and accu-
racy can be controlled by options -ts_rtol and -ts_atol (not shown). We also conclude that
only A-stable and stiff decay methods (backward Euler and BDF2), or methods whose violation
of absolute stability in the left half-plane is small (BDF3–4), are safe to use without adaptivity.
Adaptive explicit methods are sometimes usable for diffusion problems but rarely a good choice
on fine grids.

Coupled reaction-diffusion equations
The next example also uses a method of lines discretization, a 2D DMDA, and centered finite dif-
ferences to produce a stiff ODE system. This example is more interesting than the heat equation
in three ways:

• It is a system of two coupled, scalar PDEs.

• They are nonlinear.

• The stiff part is separated to allow implicit/explicit (IMEX) methods.

We solve the following reaction-diffusion problem [123]:

∂u

∂t
= Du∇2u− uv2 + φ(1− u),

∂v

∂t
= Dv∇2v + uv2 − (φ+ κ)v.

(5.32)
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Coupled reaction-diffusion equations 121

Here u(t, x, y) and v(t, x, y) model chemical concentrations, both of which diffuse in space,
with constant coefficients Du > 0 and Dv > 0. A reaction between the two chemicals converts
u into v at a rate uv2. Chemical u is supplied externally at rate φ > 0, which also determines
a decay rate for both species, and an additional chemical reaction eliminates v by converting it
into an inert product at rate κ > 0. We consider an initial/boundary value problem for (5.32) in
a square domain S = [0, L) × [0, L) with periodic boundary conditions, i.e., on a torus with no
boundary.

One needs a numerical approximation to reveal the “surprising variety of irregular spatiotem-
poral patterns” [123] produced by this model. Turing himself suggested that it “might be possible
to treat a few particular cases [of such a reaction-diffusion model] in detail with the aid of a digital
computer” [145], and we are doing exactly that.

While the 1993 simulations by Pearson [123] used the explicit Euler scheme on an early
parallel supercomputer, we may take implicit time steps which are potentially thousands of times
longer than such stability restricted forward Euler steps. On the other hand, though this problem
illustrates the value of implicit time-stepping in the presence of stiff diffusive terms, long time
steps will lose accuracy even if done stably. Thus this example illustrates the typical trade-offs
in a (nonlinear and autonomous) problem where the evolving solution remains far from steady
state; compare this with the previous heat equation model which approaches steady state.

As with the heat equation, the Laplacian ∇2 in (5.32) is stiff. For such situations we may
write the (spatially discretized) system in the form

F(t,y,y′) = G(t,y). (5.33)

We will put the stiff terms in F and the nonstiff in G so that a TS can apply different schemes to
each side. Actually, considering a method of lines discretization of (5.32), either form (5.1) or
(5.33) can be made to work (Exercise 5.10), but form (5.33) increases our solver options. The
latter form is also suitable for differential-algebraic equations (DAEs) [7], wherein ∂F/∂y′ is
singular, but such problems are outside of our scope.

Extracts from code pattern.c appear below. We first define two structs named Field
and PatternCtx. The first is simply the pointwise value of the solution, a pair (u, v):

typedef struct {
double u, v;

} Field;

The second contains parameter values:

typedef struct {
double L, // domain side length

Du, // diffusion coefficient: u equation
Dv, // v equation
phi, // "dimensionless feed rate" (F in Pearson 1993)
kappa; // "dimensionless rate constant" (k in Pearson 1993)

} PatternCtx;

Each parameter can be adjusted using option -ptn_parameter.
Next we show how the major types are created in main(), starting with a periodic, 2D DMDA

with two degrees of freedom at each point, i.e. u, v, and a “box” stencil for the 9-point FD
formula22 applied to the Laplacian terms:

22The default grid is 3× 3, in part so that -snes_fd_color can be effective. On a periodic grid with a stencil width
of one, the grid dimensions must be divisible by 3 for coloring to work.
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122 Chapter 5. Time-stepping

DMDACreate2d(PETSC_COMM_WORLD,
DM_BOUNDARY_PERIODIC, DM_BOUNDARY_PERIODIC,
DMDA_STENCIL_BOX, // for 9-point stencil
3,3,PETSC_DECIDE,PETSC_DECIDE,
2, 1, // degrees of freedom, stencil width
NULL,NULL,&da);

Code 5.10 shows the setup of the TS object and the time axis, which differs from heat.c
because we set four call-backs for parts of form (5.33):

• DMDATSSetIFunctionLocal() for F(t,y,y′),

• DMDATSSetIJacobianLocal() for derivatives of F,

• DMDATSSetRHSFunctionLocal() for G(t,y), and

• DMDATSSetRHSJacobianLocal() for derivatives of G.

Note there are options to not set the Jacobians. (Compare Exercise 5.10.)

TSCreate(PETSC_COMM_WORLD,& ts ) ;
TSSetProblemType( ts ,TS_NONLINEAR) ;
TSSetDM( ts ,da) ;
TSSetApplicationContext ( ts ,&user ) ;
DMDATSSetRHSFunctionLocal(da ,INSERT_VALUES,

(DMDATSRHSFunctionLocal)FormRHSFunctionLocal,&user ) ;
i f ( ! no_rhsjacobian ) {

DMDATSSetRHSJacobianLocal(da ,
(DMDATSRHSJacobianLocal)FormRHSJacobianLocal,&user ) ;

}
DMDATSSetIFunctionLocal (da ,INSERT_VALUES,

(DMDATSIFunctionLocal ) FormIFunctionLocal ,&user ) ;
i f ( ! no_ijacobian ) {

DMDATSSetIJacobianLocal (da ,
(DMDATSIJacobianLocal ) FormIJacobianLocal ,&user ) ;

}
TSSetType( ts ,TSARKIMEX) ;
TSSetTime( ts ,0 .0 ) ;
TSSetMaxTime( ts ,200.0) ;
TSSetTimeStep( ts ,5 .0 ) ;
TSSetExactFinalTime ( ts ,TS_EXACTFINALTIME_MATCHSTEP) ;
TSSetFromOptions( ts ) ;

Code 5.10. c/ch5/pattern.c, part I. Set up the TS and its callbacks.

We have chosen ARKIMEX (adaptive Runge-Kutta implicit/explicit) [8], which treats F in
(5.33) implicitly and G explicitly, as the default TS type. However, nonsplit, fully implicit
methods also work well on this example without any modifications to user code; see Exercise 5.9
which compares CN and BDF methods.

Regarding the spatial discretization of (5.32), we assume a vector u of discrete values ui,j(t)
≈ u(t, xi, yj), and a similar vector v. Together these form the state vector of ODE system (5.33),
namely y = [ uv ], but the actual order of the values in memory is

y =


u0,0

v0,0

u1,0

v1,0

...

 . (5.34)
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Coupled reaction-diffusion equations 123

That is, the components u, v are interleaved, with the particular i, j grid order coming from the
DMDA (Chapter 3). On the other hand, awareness of the storage order is not needed when writing
code because DMDAVecGetArray() and MatSetValuesStencil() let us to refer to values of
u and v by component name (for Vecs) or component index (c=0,1 for Mat entries), respec-
tively. For example, in Codes 5.11–5.13 below, Field **aY is a C array holding the gridded
approximation to y, with components referenced by names aY[j][i].u and aY[j][i].v.

PetscErrorCode FormIFunctionLocal (DMDALocalInfo * info , PetscReal t ,
Field **aY, Field **aYdot , Field **aF,
PatternCtx *user ) {

PetscInt i , j ;
const PetscReal h = user−>L / (PetscReal ) ( info −>mx) ,

Cu = user−>Du / (6.0 * h * h) ,
Cv = user−>Dv / (6.0 * h * h) ;

PetscReal u , v , lapu , lapv ;

for ( j = info −>ys ; j < info −>ys + info −>ym; j ++) {
for ( i = info −>xs ; i < info −>xs + info −>xm; i ++) {

u = aY[ j ] [ i ] . u ;
v = aY[ j ] [ i ] . v ;
lapu = aY[ j +1] [ i −1] .u + 4.0*aY[ j +1] [ i ] . u + aY[ j +1] [ i +1] .u

+ 4.0*aY[ j ] [ i −1] .u − 20.0*u + 4.0*aY[ j ] [ i +1] .u
+ aY[ j −1] [ i −1] .u + 4.0*aY[ j −1] [ i ] . u + aY[ j −1] [ i +1] .u ;

lapv = aY[ j +1] [ i −1] . v + 4.0*aY[ j +1] [ i ] . v + aY[ j +1] [ i +1] . v
+ 4.0*aY[ j ] [ i −1] . v − 20.0*v + 4.0*aY[ j ] [ i +1] . v
+ aY[ j −1] [ i −1] . v + 4.0*aY[ j −1] [ i ] . v + aY[ j −1] [ i +1] . v ;

aF[ j ] [ i ] . u = aYdot [ j ] [ i ] . u − Cu * lapu ;
aF[ j ] [ i ] . v = aYdot [ j ] [ i ] . v − Cv * lapv ;

}
}
return 0;

}

Code 5.11. c/ch5/pattern.c, part II. Evaluate F in (5.33).

Code 5.11 shows FormIFunctionLocal() which computes

F(t,y,y′) = y′ −
[
DuAu
DvAv

]
. (5.35)

Here A is a centered, 9-point finite difference approximation of the scalar Laplacian ∇2 using
square-cell spacing h = hx = hy . Note that the 5-point, star-stencil scheme used in heat.c
corresponds to this submatrix at each grid point:

A[5] =
1

h2

 1
1 −4 1

1

 , (5.36)

By contrast, the 9-point, box-stencil scheme used in pattern.c has submatrix

A[9] =
1

6h2

1 4 1
4 −20 4
1 4 1

 . (5.37)

This scheme is recommended for reaction-diffusion models because it is more isotropic [84,
section III.6]. Both (5.36) and (5.37) are O(h2) approximations of the Laplacian, but, as demon-
strated in Exercise 5.11, the former leads to much larger grid artifacts.
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124 Chapter 5. Time-stepping

PetscErrorCode FormRHSFunctionLocal (DMDALocalInfo * info ,
PetscReal t , Field **aY, Field **aG, PatternCtx *user ) {

PetscInt i , j ;
PetscReal uv2 ;

for ( j = info −>ys ; j < info −>ys + info −>ym; j ++) {
for ( i = info −>xs ; i < info −>xs + info −>xm; i ++) {

uv2 = aY[ j ] [ i ] . u * aY[ j ] [ i ] . v * aY[ j ] [ i ] . v ;
aG[ j ] [ i ] . u = − uv2 + user−>phi * (1.0 − aY[ j ] [ i ] . u) ;
aG[ j ] [ i ] . v = + uv2 − ( user−>phi + user−>kappa) * aY[ j ] [ i ] . v ;

}
}
return 0;

}

Code 5.12. c/ch5/pattern.c, part III. Evaluate G in (5.33).

FormRHSFunctionLocal() in Code 5.12 computes the nonlinear terms, but it includes no
differential operators and thus is nonstiff:

G(t,y) =

[
−uv2 + φ(1− u)
+uv2 − (φ+ κ)v

]
. (5.38)

We want the stiff part F of form (5.33) to be treated implicitly for stability. The correspond-
ing Jacobian is implemented in FormIJacobianLocal() (Code 5.13). This call-back function
computes a shifted combination of derivatives,

J = (shift)
∂F

∂y′
+
∂F

∂y
, (5.39)

because all TS schemes use only such linear combinations, and not the derivatives separately. In
our case ∂F/∂y′ is the identity, and thus J equals ∂F/∂y plus a constant along the diagonal.
The other part of the Jacobian, ∂G/∂y implemented in FormRHSJacobianLocal(), is less
interesting and its evaluation is not shown.

PetscErrorCode FormIJacobianLocal (DMDALocalInfo * info ,
PetscReal t , Field **aY, Field **aYdot ,
PetscReal sh i f t , Mat J , Mat P,
PatternCtx *user ) {

PetscInt i , j , s , c ;
const PetscReal h = user−>L / (PetscReal ) ( info −>mx) ,

Cu = user−>Du / (6.0 * h * h) ,
Cv = user−>Dv / (6.0 * h * h) ;

PetscReal val [ 9 ] , CC;
MatStencil col [ 9 ] , row ;

for ( j = info −>ys ; j < info −>ys + info −>ym; j ++) {
row . j = j ;
for ( i = info −>xs ; i < info −>xs + info −>xm; i ++) {

row . i = i ;
for ( c = 0; c < 2; c++) { / / u , v equations are c=0,1

row . c = c ;
CC = (c == 0) ? Cu : Cv;
for ( s = 0; s < 9; s++)

col [ s ] . c = c ;
col [ 0 ] . i = i ; col [ 0 ] . j = j ;
val [ 0 ] = s h i f t + 20.0 * CC;
col [ 1 ] . i = i −1; col [ 1 ] . j = j ; val [ 1 ] = − 4.0 * CC;
col [ 2 ] . i = i +1; col [ 2 ] . j = j ; val [ 2 ] = − 4.0 * CC;
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Generating patterns 125

col [ 3 ] . i = i ; col [ 3 ] . j = j −1; val [ 3 ] = − 4.0 * CC;
col [ 4 ] . i = i ; col [ 4 ] . j = j +1; val [ 4 ] = − 4.0 * CC;
col [ 5 ] . i = i −1; col [ 5 ] . j = j −1; val [ 5 ] = − CC;
col [ 6 ] . i = i −1; col [ 6 ] . j = j +1; val [ 6 ] = − CC;
col [ 7 ] . i = i +1; col [ 7 ] . j = j −1; val [ 7 ] = − CC;
col [ 8 ] . i = i +1; col [ 8 ] . j = j +1; val [ 8 ] = − CC;
MatSetValuesStencil (P,1 ,&row,9 , col , val ,INSERT_VALUES) ;

}
}

}

MatAssemblyBegin (P,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(P,MAT_FINAL_ASSEMBLY) ;
i f ( J != P) {

MatAssemblyBegin (J ,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(J ,MAT_FINAL_ASSEMBLY) ;

}
return 0;

}

Code 5.13. c/ch5/pattern.c, part IV. Derivatives (5.39) of F in (5.33).

Generating patterns
It is time to try it out. The following run includes visualization of solution components (u, v) at
each time step:

$ make pattern
$ ./pattern -da_refine 5 -ts_monitor_solution draw

We can also monitor the TS and SNES behavior of the default method:

$ ./pattern -da_refine 4 -ts_monitor -snes_converged_reason

The output (not shown) reveals the adaptive time steps, and three SNES solves per time step,
of the default ARKIMEX type, namely -ts_arkimex_type 3, a third-order method with one
explicit stage and three implicit stages [8]. The SNES solves each show two Newton iterations,
which is surprising because we have separated the (stiff) linear diffusion term into F. However,
tightening the KSP tolerance to -ksp_rtol 1e-10 yields one Newton step per implicit stage as
expected. (One may instead avoid the issue by using -snes_type ksponly.)

A fully implicit method like CN or BDF can also use the separated form (5.33); see Exercise
5.9.

Next we reproduce Figure 4 of [123] which used a 256× 256 grid and the default parameter
values Du = 8× 10−5, Dv = 4× 10−5, φ = 0.024, κ = 0.06. The following run uses 65 total
time steps of fixed length ∆t = 10.0, with the result shown in Figure 5.8:

$ mpiexec -n 4 ./pattern -da_grid_x 256 -da_grid_y 256 -snes_type ksponly \
-ts_dt 10 -ts_max_time 650 -ts_adapt_type none -ts_monitor

Pearson [123] used 65,000 forward-Euler steps of ∆t = 0.01. This run would complete slightly
faster using adaptivity, but here we are duplicating the frames shown in the figure in [123].
Exercise 5.9 compares the performance of a number of TS types on this problem.

The reader might want to explore the φ, κ parameter space of pattern-formation equations
(5.32). By adding noise to the default four-spot initial condition one sees a variety of patterns
after sufficient duration. For example, Figure 5.9 is the last frame from the following run:

$ mpiexec -n 4 ./pattern -da_refine 6 -ptn_phi 0.05 -ptn_kappa 0.063 \
-snes_type ksponly -ts_max_time 15000 -ptn_noisy_init 0.15 \
-ts_monitor -ts_monitor_solution draw
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126 Chapter 5. Time-stepping

Figure 5.8. Component u as grayscale at t = 0 and t = 350 (top row) and t = 510 and t = 650
(bottom row).

Figure 5.9. Pattern generated from parameter values φ = 0.05, κ = 0.063.
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Exercises 127

Exercises
5.1. Show that y(t) = tan(t) is the (unique) solution to the scalar ODE initial value problem

y′ = 1 + y2, y(0) = 0. Modify ode.c to solve this problem, and run from t0 = 0
to tf = 2. What numerical evidence shows that your approximation of y(2) is totally
meaningless?

5.2. Which TS types work with ode.c, that is, do not give run-time errors? Do -help |grep
ts_type to find possibilities, and try them. Which ones work using the additional option
-snes_fd? Which ones work with odejac.c? Explain as much as you can.

5.3. Code ode.c is serial only. With mpiexec -n 2, what happens and why?
5.4. Show by hand that the eigenvalues of matrix B in (5.16) are λ = i,−i,−101. Use a full

eigen-decomposition B = XΛX−1 to confirm (5.17), noting that

eBt = XeΛtX−1 = X

e
λ0t

. . .
eλN−1t

X−1.

5.5. Modify odejac.c to a similar code stiff.cwhich solves (5.15)–(5.16). Use VecView()
to print the computed solution at tf = 10, and use TSGetStepNumber() to print the num-
ber of steps. Confirm the results shown in the text for -ts_type rk -ts_rk_type 2a
and for -ts_type cn. Now use the adaptive, default RK scheme RK3bs with an accuracy
goal set by -ts_rtol, -ts_atol as in the following Bash loop:

for POW in 2 3 4 5 6 7 8 9 10; do
./stiff -ts_type rk -ts_rtol 1.0e-$POW -ts_atol 1.0e-$POW

done

One may conclude that for this example about 400 steps are necessary to get any accuracy
at all (e.g., a couple of digits) using method RK3bs.

5.6. (a) One can compute the stability function f(z) for a one-step scheme by applying it to
the scalar test equation (5.18), using z = hλ, and simplifying. Confirm all formulas
(5.20).

(b) Finding the stability region {|f(z)| ≤ 1} is easy with a contour plotter tool. For the
RK2a scheme, for example, confirm that |f(z)|2 = 1 is as shown in Figure 5.3.

(c) Find the stability region of the BDF2 scheme (5.12) by first applying the scheme to
the test equation and deriving a second-order recurrence for Y`; the coefficients will
be z dependent. Solutions of this recurrence are linear combinations of solutions of
the form Y` = r`. Require these solutions to be bounded, i.e., |r| ≤ 1 for both roots,
and thereby generate the region shown in Figure 5.3. (Generally one needs |r| ≤ 1
for all roots, and also that all roots with |r| = 1 are simple [7].)

5.7. Show that the stiff-decay test equation (5.23) has solution

y(t) = eλt − λ
∫ t

0

eλ(t−s)γ(s) ds.

Then show that the family of functions Dλ(x) = −λeλx form a Dirac delta function
[51] in the sense that, for any continuous function ϕ(x),

∫∞
0
Dλ(x)ϕ(x) dx = ϕ(0) as

Reλ→ −∞. Conclude that the solution to (5.23) is asymptotic to γ(t) as Reλ→ −∞.
5.8. Show (5.29). Then fill in the details to show (5.30). Note that the periodic boundary

condition amounts to treating the top/bottom locations as interior points of a cylindrical
surface.
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128 Chapter 5. Time-stepping

5.9. PETSC TS provides an impressive variety of methods which are implicit (or semi-implicit),
adaptive, at least second order, and quadratically convergent at each step. Consider adap-
tive versions of the run which produced Figure 5.8. Which of the following is fastest
among the following IMEX, BDF, and Crank-Nicolson types?

-ts_type arkimex -ts_arkimex_type a2|l2|ars122|2c|2d|2e|3|4|5
-ts_type bdf -ts_bdf_order 2|3|4|5|6
-ts_type cn -ts_adapt_type basic

The ARKIMEX runs can use -snes_type ksponly but the BDF and CN runs should
not because then the SNES sees a nonlinear residual function. Jacobians can be tested
by comparing runs with and without -snes_fd_color, and note the Jacobians of parts
F and G can be unset with -ptn_no_ijacobian and -ptn_no_rhsjacobian, respec-
tively. The BDF and CN types do nonlinear solves and may therefore benefit from adding
-ts_max_snes_failures -1 to shorten the step after a SNES failure.

5.10. Modify pattern.c by converting the problem to form (5.1). Compare performance.
Demonstrate that -ts_type arkimex is no longer effective.

5.11. Consider this pair of reaction-diffusion equations from Barkley [13]:

∂u

∂t
= ∇2u+

1

ε
u(1− u)

(
u− 1

α
(v + β)

)
,

∂v

∂t
= δ∇2v + u− v.

(5.40)

Set the spatial domain to [0, 80] × [0, 80] and impose homogeneous Neumann boundary
conditions on the entire boundary. The suggested parameter values in [84, section III.6]
are α = 0.25, β = 0.001, δ = 0, ε = 0.002 and the initial conditions are

u(0, x, y) =

{
0, x < 40,

1, x ≥ 40,
v(0, x, y) =

{
0, y < 40,
1
2α, y ≥ 40.

Hundsdorfer and Verwer [84] show that there is a significant difference between using
the 5-point stencil (5.36) and the 9-point stencil (5.37). The natural spiraling patterns
generated by this problem become strongly aligned to the cartesian grid with the 5-point
scheme. Reproduce this result by modifying pattern.c into barkley.c, which uses
the new equations (5.40), and allow the user to choose between the 5-point and 9-point
stencils at run time.

5.12. In running pattern.c one may split the preconditioning of the implicit time-step equa-
tions over the blocks generated by u and v:

-pc_type fieldsplit -pc_fieldsplit_type additive \
-fieldsplit_u_pc_type ilu -fieldsplit_v_pc_type ilu

This PC type, discussed further in Chapters 7 and 14, replaces the default preconditioning
-pc_type ilu. Is there any benefit? Why or why not?
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Chapter 6

Preconditioners for PDEs

Our approach to solving nonlinear PDEs is to apply preconditioned Krylov methods to the dis-
crete Newton step equations. In fact, from Chapter 2 onward we have emphasized the need for
preconditioning to make a Krylov iteration effective as a linear solver. A good preconditioner
should be a fast, though approximate, solution method on its own. Preconditioning is usually
more critical to constructing a fast solver than is the Krylov iteration, which may shrink in im-
portance to being an accelerator of the preconditioner [134].

The current chapter explores new preconditioner (PC) types which are designed for PDE
problems. Specifically, when using a DMDA structured grid we will choose, at run time, domain
decomposition (DD) [43, 134] or geometric multigrid (GMG) [21, 26, 144] methods. These
preconditioners, originally conceived as stand-alone solution methods for linear elliptic PDEs,
deserve substantial introductions.

This chapter only addresses scalar and linear elliptic PDEs on structured grids, but all of
the major ideas generalize. An unstructured-mesh DD or GMG preconditioning method must
replace the DMDA type with either DMPlex as its mesh-topology/geometry data structure (Chapter
13), or some other unstructured-mesh “infrastructure” (Chapter 10 constructs a naive version).
In any case, for DD and GMG preconditioners there must be a connection between the topolo-
gy/geometry of the mesh and the PC object.

On the other hand, even without using underlying grid or mesh information, the algebraic
multigrid (AMG) method [22, 53, 144] can be applied as a preconditioner. An introduction to
AMG is deferred to Chapter 10, but we will use multigrid preconditioners, either GMG or AMG
or both, in all remaining chapters.

The previous four chapters have introduced seven major PETSC types:

Ch. 2: Vec, Mat, KSP, PC for iterative linear algebra,
Ch. 3: DMDA for structured grids,
Ch. 4: SNES for Newton’s method,
Ch. 5: TS for time-stepping.

Of course our PDE solutions always use Vec, Mat, KSP, and PC, though sometimes these com-
ponents are out of sight. Our codes use DMDA when the grid is structured and TS for initial value
problems. However, from now on we will solve all PDEs using SNES, including linear problems,
because this makes the call-backs to user code, for residual and Jacobian evaluations, more uni-
form and flexible. Using SNES means that our linear systems “Au = b” actually refer to the
Newton step J(uk)s = −F (uk). These systems resemble the error equation (2.10), but with a
residual as the right-hand side and a solution which converges to zero in the iteration. A single
Newton iteration suffices for a linear PDE if the step equations are solved accurately.

129
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130 Chapter 6. Preconditioners for PDEs

For most PDE problems the reader should seek advice from the literature regarding precon-
ditioner choices. Review articles [16, 152] and textbooks [64, 66] are recommended starting
points.

This chapter is a not-very-rigorous introduction to subgrid-based preconditioning techniques.
The leading goal is to understand and explore the PETSC API and run-time options relating to
DD and GMG preconditioners, but we start by clarifying what is a “preconditioner.”

Preconditioners in PETSC

If M is an invertible matrix then the left- and right-preconditioned forms of the linear system
Au = b are the new systems, equations (2.19) and (2.20), respectively:

(M−1A)u = M−1b and (AM−1) (Mu) = b. (6.1)

NoteM−1 is often dense—it is never assembled—and the action ofM itself is not needed. Given
a vector r, preconditioning with M requires a code which solves systems My = r for y, and
this is only effective if applying M−1 is much faster than applying A−1.

From PETSC’s point of view, a preconditioner is a function that takes in various information
about the problem and generates the action of M−1,

M−1 = P(Apre). (6.2)

A PC object is a preconditioner in this sense. The notional input Apre is the preconditioning
material, consisting of various data including possibly A itself (as a linear operator), the matrix
entries of A (if available), and/or other information. Note Apre may be a matrix which only
approximates A. For a PDE problem the material Apre might include the topology and geometry
of the underlying grid. (How is the grid is partitioned into subdomains? What are interpolation
operators from subgrids?) In any case, a PC object may use the action of A on vectors while a
KSP method only uses the action of A (or A>) on vectors.

A common case is that Apre is sparse matrix Mat object holding the entries of A. When a
preconditioner uses only this data to construct the action of M−1 on vectors, we call it a black-
box preconditioner. Examples include the jacobi preconditioner (-pc_type jacobi), which
uses the diagonal entries of A, and Gauss-Seidel and successive over-relaxation methods using
the lower/upper triangles of A (sor); these are all considered momentarily. Other black-box pre-
conditioners include direct factorizations of A (lu,cholesky,svd), incomplete factorizations
(ilu,icc), and classical or smoothed-aggregation algebraic multigrid (gamg; Chapter 10).

However, a preconditioner which is specifically designed for PDE problems will often not be
such a black box. This chapter focuses on DD (bjacobi,asm) and GMG (mg) methods which
use as their material both the action of A and additional information about the topology and the
geometry of the grid or mesh. In this chapter the grid is structured and this information comes
from the DMDA object. Chapter 13 shows how a DMPlex object can play the same role for an
unstructured mesh.

The goal of a preconditioner is that the spectrum of M−1A or AM−1—these matrices are
similar and have the same spectrum (Exercise 2.4)—is well behaved for some large class of
problems. For example, because the mainstream Krylov methods converge rapidly if polynomi-
als exist which have small magnitude on the spectrum of A (Chapter 2 and [44, 66, 152]), the
goal might be that the spectrum consists of a few small clusters in the complex plane.

We have previously identified some PC types as weak preconditioners for the 2D Pois-
son problem, especially Jacobi and incomplete Cholesky decomposition (ICC; see Chapter 3).
“Weak” is here in the sense that the resulting solvers scale poorly as the problem size in-
creases under grid refinement. For example, in Chapter 3 the combination -ksp_type cg
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Classical iterations 131

-pc_type icc seemed promising at first, because κ(M−1A) � κ(A), but as the problem
size N = O(h−2) increased the number of iterations increased as O(h−1). In fact the condition
number κ(M−1A), like κ(A) itself, grows as O(h−2). The best preconditioning for CG would
instead generate M−1 such that κ(M−1A) is bounded independently of h so that the number of
preconditioned CG iterations is independent of N .

It is sometimes said that a good preconditioner should exploit information about a particular
problem class. It is at least true that an effective preconditioner must provide something else
beyond the ideas already used in Krylov iterations (Chapter 2). The new idea might come from
a direct linear algebra algorithm, such as a matrix splitting or an incomplete factorization, or it
might be a subgrid-based divide-and-conquer strategy as in this chapter.

Fact 12. Effective preconditioners aren’t like Krylov iterations. If you are already using a norm-
minimizing Krylov method then you need to add a fundamentally different idea to build a fast
solver. In PETSC such ideas are lumped into the preconditioner paradigm. LU decomposition,
domain decomposition, multigrid, and fieldsplit are examples.

Classical iterations
The classical Jacobi and Gauss-Seidel (GS) iterations, defined below but possibly familiar to the
reader, are preconditioned simple iterations based on matrix splittings. There are several reasons
to consider these tools. They are inexpensive in a per-iteration sense, and they have smoothing
effects when used on linear systems arising from elliptic PDEs. Chebyshev iteration (Chapter
2) also makes a good smoother, particularly suitable in parallel [3]. The Jacobi iteration can be
used blockwise as the parallel part of a composed preconditioner. However, as we consider these
roles for the classical iterations, i.e., as components of multigrid and DD methods, keep in mind
that they have little power as stand-alone linear solvers.

Recall that simple iteration (2.23) is Richardson iteration (2.12) applied to the left-precondi-
tioned system M−1Au = M−1b. PETSC allows an additional scaling α (default α = 1) in
simple iteration:

uk+1 = uk + αM−1(b−Auk). (6.3)

This equation corresponds to the option combination

-ksp_type richardson -ksp_richardson_scale alpha -pc_type PC

where PC generates the action of M−1. Note that right-preconditioned Richardson iteration is
not defined.

Direct solution methods like LU decomposition, i.e., the “extreme preconditioners” with
M−1 = A−1 in Chapter 2, can be applied as simple iteration (6.3). For example, in exact
arithmetic -ksp_type richardson -pc_type lu would compute the exact solution in one
iteration from any u0 because u = u0 + A−1(b − Au0) = A−1b. (The solver -ksp_type
preonly -pc_type lu also computes u = A−1b, but without a convergence check or an
initial iterate.)

Suppose D is the matrix created from the diagonal of A, and that L,U are the strictly lower
and strictly upper triangular parts of A. This defines a matrix splitting [66]:

A = D + L+ U, (6.4)

where dij = 0 if i 6= j, `ij = 0 if i ≥ j, and uij = 0 if i ≤ j.
The classical Jacobi iteration is (6.3) with α = 1 and M = D,

uk+1 = uk +D−1(b−Auk). (6.5)
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132 Chapter 6. Preconditioners for PDEs

Generally this requires all diagonal entries of A to be nonzero (aii 6= 0), but PETSC will substi-
tute aii = 1 otherwise.23 Iteration (6.5) converges if ρ(I−D−1A) < 1, that is, if D−1A is close
to the identity matrix in a spectral sense (Exercises 2.3 and 6.2). The option combination is

-ksp_type richardson -pc_type jacobi

Certain references [26, 144] add a weight to the Jacobi iteration, but this is the same as using
α in Richardson iteration (Exercise 6.1). Regarding the entrywise form of the iteration, if v[i]
denotes the ith entry of v then (6.5) is

uk+1[i] =
1

aii

(
b[i]−

∑
j 6=i

aijuk[i]
)
. (6.6)

Entrywise form (6.6), which writes the updated value as an average of old values, suggests why
the Jacobi iteration is smoothing when A is the discretization of an elliptic operator [144, section
4.7.1].

Example 6.1. The centered FD approximation of −u′′ = f on a uniform grid with spacing h is

−ui−1 + 2ui − ui+1 = h2f(xi).

Note aii = 2 while ai,i−1 = ai,i+1 = −1. Thus (6.6) is

uk+1[i] =
h2

2
f(xi) +

1

2
(uk[i− 1] + uk[i+ 1]).

The updated value uk+1[i] adds the average of the neighbors uk[i−1], uk[i+1] from the previous
iteration, which smooths out bumps in uk.

In the Jacobi iteration all values uk+1[i] must be stored in a temporary work vector before
use at the next iteration. This is inefficient; the updated entries could be used as soon as they
are computed. Doing so by sweeping through indices in increasing order gives the classical
Gauss-Seidel (GS) iteration,

uk+1[i] =
1

aii

(
b[i]−

∑
j<i

aijuk+1[i]−
∑
j>i

aijuk[i]
)
, (6.7)

again assuming aii 6= 0. Equivalently, GS uses α = 1 and M = D+L in simple iteration (6.3):

uk+1 = uk + (D + L)−1(b−Auk). (6.8)

The equivalence of (6.7) and (6.8) follows from inverting the lower-triangular matrix D + L by
forward substitution (Exercise 6.3).

PETSC regards Gauss-Seidel as a case of successive over-relaxation (SOR) [157]. This
iteration adds a weight (relaxation factor) ω to the splitting (6.4), thus

A =

(
1

ω
D + L

)
+

(
(1− 1

ω
)D + U

)
.

In other words, SOR is

uk+1 = uk +

(
1

ω
D + L

)−1

(b−Auk) (6.9)

23This can be a cause of confusion, and it makes a potentially dangerous assumption about the scaling of your equa-
tions. It is wise, instead, either to avoid using Jacobi preconditioning on the part of a matrix with zero diagonal—see
Chapter 14 for a nontrivial case—or to explicitly modify the zero diagonal entries yourself.

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Classical iterations 133

as a simple iteration, with an entrywise form similar to (6.7). The weight can be set with
-pc_sor_omega ω; the default is ω = 1.

The option combination for classical GS is

-ksp_type richardson -pc_type sor -pc_sor_forward

Option -pc_sor_backward reverses the order, i.e., it uses M = 1
ωD + U in simple iteration.

The default PETSC version of SOR is actually symmetric, i.e., SSOR [64]. The classical
algorithm is simple iteration with

M =
ω

2− ω

(
1

ω
D + L

)
D−1

(
1

ω
D + U

)
. (6.10)

The action of M−1 is equivalent to a forward SOR pass followed by a backward pass. SSOR is
appropriate if A itself is symmetric, in which case U = L> and M is symmetric. The options
are

-ksp_type richardson -pc_type sor -pc_sor_omega OMEGA

using the default -pc_sor_symmetric ordering.
There is an oddity in the PETSC implementation of classical SOR, likely to afflict anyone

playing with the classical iterations (Exercise 6.4). Namely, to improve its speed as a parallel
smoother, the convergence test in -ksp_type richardson -pc_type sor is skipped because
it would require a global reduction. Thus this particular solver runs to the maximum number of
iterations allowed. It does so unless -ksp_monitor is used, in which case the norm is computed
at each iteration anyway, and the convergence test is applied.

Any Krylov iteration, not just Richardson, can be used with Jacobi and SOR PC objects. The
jacobi preconditioner merely extracts the entries of M = D from A and applies M−1 = D−1

to vectors, the GS preconditioner uses M = D + L the same way, and so on. On the other
hand, using -ksp_type cg -pc_type sor as a linear PDE solver, for example, is generally not
very fast. In fact, the Jacobi and SOR PCs are most useful as components of more-complicated
(composed) PCs, regardless of KSP choice.

The Jacobi preconditioner -pc_type jacobi is always available in parallel and its meaning
is unaltered by the number of processes. However, the combination

-pc_type bjacobi -sub_pc_type PC

applies PC blockwise, with no communication between the blocks during the preconditioner
application. Here M−1 is a block diagonal matrix with the “sub” PC providing the blocks. We
will generalize bjacobi, the default parallel PC in PETSC, to overlapping DD methods later in
this chapter.

In parallel, when applying SOR or GS preconditioning, if an entry has been computed on a
different processor then interprocess communication would be required. In fact, PETSC does
not implement classical SOR, GS, or SSOR in parallel. However, -pc_type bjacobi can be
used to provide “processor-block Gauss-Seidel” [3]. For example, processor-block SSOR is

-ksp_type richardson -pc_type bjacobi -sub_pc_type sor

(Add -sub_pc_sor_forward to get processor-block GS.) When run on P > 1 processes this
is a parallel, no-communication version of SOR, an example of a solver which depends on the
number of processors. Block SOR may be a reasonable approximation of full SOR if the number
of unknowns per process is large. At the other extreme, with one unknown per process, block
SOR becomes the Jacobi iteration.
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Figure 6.1. The classical iterations, such as Gauss-Seidel (GS) on the Poisson equation as shown
here, tend to stagnate.

We have not yet addressed the rate of convergence of the classical iterations for a given linear
system Ax = b [64, 66]. This question is somewhat tangential because we do not use these
iterations directly as linear solvers, but primarily as smoothers (next). However, a well-known
observation is that GS is a factor of two faster than Jacobi. For example, using a tridiagonal,
diagonally dominant problem from Chapter 2, compare

$ ./tri -ksp_type richardson -pc_type jacobi -ksp_monitor
$ ./tri -ksp_type richardson -pc_type sor -pc_sor_forward -ksp_monitor

The first run gives 18 iterations while the second gives 10. Exercise 6.12 shows the phenomenon
in a less trivial case.

The well-known bad news about applying the classical iterations to PDE problems is that
they tend to stall or stagnate after making initial progress [49, 64, 66, 152]. For example, in a 2D
Poisson problem with a random initial iterate, and using the code developed later in this chapter,
the residual norms from classical GS iteration from the following run are shown in Figure 6.1:

$ ./fish -da_refine 4 -ksp_type richardson -pc_type sor -pc_sor_forward \
-fsh_initial_type random -ksp_monitor

The first iteration reduces the residual norm by a factor of more than two. We would be happy if
this continued, but soon the ratio of consecutive residual norms is close to one. Achi Brandt, the
guru of multigrid methods, makes the following bold observation about this:

Fact 13. Stalling numerical processes must be wrong [21]. Whenever the computer grinds very
hard for small or slow effect, there must be a better way to achieve the same goal.

Part of righting this “wrong” comes in recognizing that the classical iterations do have a desirable
effect. Namely, their first few iterations smooth the error. though they are slow to eliminate it.
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Smoothers 135

x

Figure 6.2. Smoothing of a random 1D function (top) on a 9-point grid using 4 iterations of
Jacobi (left), α = 2/3 weighted Jacobi (middle), and GS (right) iterations, respectively, on a discrete
Laplacian matrix.

Smoothers
Suppose matrix A is the discretization of an elliptic PDE operator. As shown in Example 6.1,
the classical Jacobi iteration tends to average out variation in the previous iterate. Figure 6.2
compares the effect of a few steps of the Jacobi, α = 2/3 weighted Jacobi, and GS iterations
using a random initial iterate on a 9-point grid. We see that unweighted Jacobi is the least-
effective smoother and GS the most-effective.

To compare different smoothers in a more quantitative manner we recall that the power spec-
trum of a vector is the squared-magnitude of its frequency-domain representation. That is, for a
vector u representing u(x), its power spectrum is |û(s)|2, where û is its discrete Fourier trans-
form [25], so û(s) is the coefficient of the mode with frequency s. This definition can be gener-
alised to any dimension.

Figure 6.3 shows the relative smoothing effect of the same classical iterations as in Figure 6.2,
but by comparing the power spectra after one iteration. This figure uses a finer grid, but again
the initial iterate is random. Defining a high frequency as greater than half of the maximum
representable frequency for that grid, the better smoothers, namely α = 2/3 weighted Jacobi
and GS, strongly damp the high frequencies. Unweighted Jacobi does not damp the highest
frequencies at all, though it does in the middle of the spectrum; a little thought about sawtooth
functions will suggest why.
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low freq. high freq.

po
we

r

Figure 6.3. The power spectrum of a random initial vector (top), and from a single iteration, of
Jacobi (left), α = 2/3 weighted Jacobi (middle), and GS (right), on a 129-point grid.

For discrete Laplacian matrices on structured grids one may precisely quantify the smoothing
effect in any number of dimensions. Define the smoothing factor of an iteration as the worst-case
ratio of magnitudes |û1(s)|/|û0(s)| over all high frequencies s. For weighted Jacobi the α value
which minimizes the smoothing factor is α = 2/3 in 1D [26] and α = 4/5 in 2D [144]. Such
theory can be extended to constant-coefficient elliptic operators with nice boundary conditions.
For variable-coefficient and nonlinear PDE problems one can at least observe that smoothing
is a local property associated to the small-wavelength modes, and discuss smoothing based on
“freezing” the coefficients and using Fourier analysis on small patches [21].

However, instead of pursuing a priori estimation of smoothing, we will do run-time ex-
perimentation using smoothers as components of the multigrid preconditioners introduced soon
(Exercises 6.26 and 6.27). Empirical comparisons of the composed multigrid methods will indi-
rectly compare smoother quality, although other multigrid components (restriction and interpo-
lation methods, cycle choices, and coarse grid solvers—all of these are introduced below) will
interact with the smoother to determine multigrid performance.

One need not use the Richardson iteration in a smoother, but at least it avoids parallel com-
munication. Using a KSP such as CG or MINRES, with a Jacobi or GS preconditioner gives
different, and sometimes superior, smoothers.
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Restricting to subgrids 137

The Chebyshev iteration (Chapter 2), which applies a polynomial in the preconditioned ma-
trix M−1A, is also suitable for smoothing:

-ksp_type chebyshev -pc_type X

Each Chebyshev iteration increases the dimension of the Krylov space and degree of the polyno-
mial. The polynomial coefficients are chosen for effectiveness at damping error components, but
can be chosen either to speed up convergence (damp all components) or to improve performance
as a smoother (damp high-frequency components). In any case, the polynomial coefficients are
based on computed, iterative estimates of the spectrum of M−1A, a nontrivial aspect of the
Chebyshev iteration which we will not pursue [64].

As a smoother, especially when combined with an SSOR PC acting only on the degrees of
freedom owned by the processor, often described as “backward-forward processor-block GS,” the
Chebyshev iteration is recommended. This combination, -ksp_type chebyshev -pc_type
sor, is the PETSC default smoother inside multigrid preconditioners. Especially in parallel, a
Chebyshev-iteration-based smoother for multigrid is generally superior to either classical GS—
not implemented in parallel in PETSC—or classical processor-block GS [3]. (In this context
“classical” means “using -ksp_type richardson”.) This parallel default avoids interprocessor
communication as would be required in pure GS or in a Krylov iteration like CG with global
reductions (Chapter 2).

For the rest of the book, all one really needs to know about the classical iterations in their
role as smoothers can be compressed into this short list:

• The Jacobi, GS, and SOR methods are implemented as PC objects.

• The classical Jacobi, GS, and SOR iterations use -ksp_type richardson, but one may
combine these PCs with any Krylov iteration.

• Because they tend to stagnate, the classical iterations are rarely used as stand-alone linear
solvers.

• The classical iterations are often used as smoothers in multigrid, but the Chebyshev itera-
tion with backward-forward processor-block GS (i.e., local SSOR) is the default because
it has good smoothing performance while avoiding interprocess communication.

Restricting to subgrids
The most powerful preconditioners for elliptic PDE problems use subgrids to decompose the
solution space into vector subspaces, and then they apply a solver on each subspace. Figure
6.4 sketches this divide-and-conquer view of three classes of preconditioners in PETSC in the
structured-grid case. (A similar figure could be drawn for unstructured meshes.) In each case the
subspaces are defined by restricting information about the problem to subsets of the grid indices:

• In nonoverlapping (block Jacobi) and overlapping (Schwarz) domain decomposition (DD)
methods, the subspaces are defined by subgrids covering subdomains of the original solu-
tion domain.

• In geometric multigrid (GMG) methods the subspaces are defined by coarse subgrids
which cover the same domain as the original grid (coextensive grids [21]). This gener-
ates a decomposition in frequency.

• In fieldsplit methods ([27]; Chapters 7 and 14) the subspaces correspond to choices of
components of a vector-valued solution.
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Figure 6.4. Powerful preconditioners for discretized PDEs use subgrid-based divide-and-
conquer strategies: domain decomposition, multigrid, and componentwise decomposition of vector-valued
problems (fieldsplit).

The original problem could be decomposed once or many times, as is done in multigrid, but
the figure only shows a single-level domain-decomposition and a two-level decomposition as
representing multigrid.

Suppose we have an original grid of N points. Each subgrid is both a subset of the N
indices, i.e., the points of the subgrid, and a space of real-valued functions on those points. In
fact, a subgrid corresponds to a rectangular matrix as follows. Suppose we have identified p
subgrids and that the ith subgrid has ni points. The ni×N matrix Ri has a single nonzero entry
in each row, namely a 1 in the column corresponding to the global index of that point; this is the
injection matrix for that subgrid. Applying Ri to v ∈ RN leaves subgrid values unaltered but
it eliminates all other values. Though matrix representation is helpful in presenting ideas, the
matrix Ri is never formed. Instead an injection Ri is stored as an index set, a PETSC IS type
[10, 27], an ordered list of the ni global indices of the subgrid points.

The transpose R>i is a kind of prolongation matrix. If Ri is an injection then R>i extends a
vector on the subgrid by zero to all of the original grid (Figure 6.5). Also, whenRi is an injection
then the N × N matrix Qi = R>i Ri is an orthogonal projection; it zeros the entries which are
not in the subgrid.

For a given subgrid of ni points, a restriction matrix generalizes an injection. We define it
as any ni × N matrix with nonnegative entries and full row rank. Each row thus represents an
average, or scaled average, from values on the original grid points to a vector supported on the

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Restricting to subgrids 139

Ω

Ω0

Ω

R0

R>0

f

Figure 6.5. A subgrid injection matrix R0, acting on a piecewise-linear function f : Ω → R,
yields a function on a subdomain Ω0. Its transpose R>0 , a prolongation, extends functions by zero.

subgrid. Injections will suffice as the restriction matrices in DD methods, but for multigrid we
will use averaging restrictions when transferring functions from fine grids to coarse subgrids.

Now suppose Au = b is the discretization of a linear PDE problem on the original grid,
where A is the system matrix. For an injection or restriction Ri define

Ai = RiAR
>
i (6.11)

as the subgrid (system) matrix for the ith subgrid. If Ri is an injection then the action of Ai is to
zero out the columns (unknowns) other than on the ith subgrid, then apply A, and then zero out
the rows (equations) other than on the ith subgrid.

Example 6.2. Suppose we FD discretize (Chapter 3) the Poisson equation on a square, with zero
Dirichlet conditions on the sides and periodic conditions on top and bottom, using a 3 × 3 FD
grid. The linear system Au = b has a 9× 9 matrix

A =



1
4 −1 −1

1
1

−1 4 −1
1

1
−1 −1 4

1


(6.12)

and the unknowns have global indices {0, . . . , 8} (Figure 6.6, left). Suppose we decompose the
grid into two overlapping subgrids as shown in Figure 6.6, right. The two 6 × 9 injections Ri,
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0 1 2

3 4 5

6 7 8

R0, R1

0 1

2 3

4 5

0 1

2 3

4 5

Figure 6.6. A grid is decomposed into two overlapping subgrids via restriction operators R0

(solid loop; bold indices) and R1 (dashed loop; italic indices).

for i = 0, 1, are

Ri =


1

1 0
1

1 0
1

1 0

 ,


0 1
1

0 1
1

0 1
1

 ,

with index set representations R0 = (0, 1, 3, 4, 6, 7) and R1 = (1, 2, 4, 5, 7, 8), respectively.
The subgrid problems have 6× 6 system matrices

Ai = RiAR
>
i =


1

4 −1 −1
1

−1 4 −1
1

−1 −1 4

 ,


4 −1 −1
1

−1 4 −1
1

−1 −1 4
1

 .

Neither the Ri nor the Ai matrices need to be formed, even as sparse matrices, as their action
can be computed using A and index sets.

The above example of a subgrid decomposition goes with an underlying subdomain decom-
position. The next example illustrates how domain decomposition, and the matrices Ri and R>i ,
relate to piecewise-linear functions on intervals in R1.

Example 6.3. Suppose Ω = (0, 8) ⊂ R1 and choose overlapping subdomains (subintervals)
Ω0 = (0, 4.5) and Ω1 = (3.5, 8). Put a 9-point grid on Ω: xi = i for i = 0, 1, . . . , 8, so
{0, 1, . . . , 8} ⊂ Ω. Choose subgrids {0, . . . , 4} ⊂ Ω0 and {4, . . . , 8} ⊂ Ω1. The grid overlap
(intersection) consists of a single point: {4} ⊂ (3, 5) = Ω0 ∩ Ω1. Figure 6.5 shows the effect
of injection R0 and prolongation R>0 on a piecewise-linear function f(x) defined on Ω. We
may regard R0f as a function on Ω0, though the boundary value is indeterminant. The vector
Q0f = R>0 R0f is a well-defined function on Ω which is zero at grid points not in Ω0.

Note that, as long as the subgrids and their overlaps are precisely defined, some imprecision
in the subgrid ↔ subdomain correspondence is accepted with respect to whether subdomains
include the grid points on their topological boundaries.
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Subgrid corrections and their compositions 141

In a parallel computation a grid can be decomposed into (generally) overlapping subgrids
with each assigned to an MPI process. The actions of the restriction and prolongation matrices
Ri, R

>
i then involve communication between neighboring processors. Such communication up-

dates the “ghost” grid-overlap points (Figure 3.4), and, in this context, PETSC allows two repre-
sentations of a vector v on the original grid. A global representation of v assigns each value v[j]
uniquely to a single process. A local representation is a collection of subgrid representationsRiv
which generally contain redundant information on the overlaps. In our examples in Chapters 3
and 4 we called DMCreateGlobalVector() to allocate global Vecs to hold the initial iterate, so-
lution, or the right-hand side. When evaluating a residual we worked with the corresponding local
Vec; on each process it is a C array including the ghosts. The necessary ghost communication,
an update of the local Vec from the global Vec, uses a DMDAGlobalToLocalBegin|End() pair.
Once v has an up-to-date local representation, the process of solving on one subgrid, namely the
action (Ai)

−1Riv, requires no communication. However, the result of this local solution process
may need to be communicated back to other processes, and be combined into global information,
as explained in the next section.

Subgrid corrections and their compositions
From now on Ri denotes a restriction, that is, a full-rank ni ×N matrix with nonnegative rows;
injections are examples. The ith subgrid, now denoted Ωi, is defined as the range of Ri.

To use a solver on Ωi in a preconditioner, we will need the following sequence of actions:

• restrict the equation to the subgrid using Ri (restrict the residual),

• solve the subgrid problem using the matrix Ai = RiAR
>
i , and

• extend the solution back using R>i (generate a correction).

In terms of a residual r = b−Av, for a given global vector v, this sequence is

r → R>i (Ai)
−1Rir.

This action is a “correction” in the same sense that each step of simple iteration (6.3) should
move closer to u = A−1b, thereby correcting the error.

For the ith subgrid Ωi we define an N ×N subgrid correction matrix [134],

Bi = R>i (Ai)
−1Ri, (6.13)

about which we make several observations:

• The calculation

Bi = R>i
(
RiAR

>
i

)−1
Ri

wrong!
= R>i (R>i )−1A−1(Ri)

−1Ri = A−1

is wrong for any proper subgrid—Ri is not even square—but it captures the idea that Bi
wants to be A−1. (Matrix Bi is in fact limited to subgrid information so it cannot actually
solve the whole problem.)

• IfRi is a subgrid injection, and if the unknowns are ordered so that points in the ith subgrid
Ωi come first, then Bi has block form

Bi =

[
A−1
i 0
0 0

]
. (6.14)
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rk = b−Auk

B0rk B1rk

uk+1 = uk +B0rk +B1rk

rk = b−Auk

B0rk

u∗k = uk +B0rk
r∗k = b−Au∗k

B1r
∗
k

uk+1 = u∗k +B1r
∗
k

Figure 6.7. One simple iteration using additive (left) and multiplicative (right) composition of
two subgrid corrections Bi.

• If A is symmetric then Ai and Bi are symmetric.

• IfA is symmetric positive definite (SPD) then the matricesBiA are orthogonal projections
in the inner product 〈u,v〉A = u>Av (Exercise 6.7).

The Bi are defined in (6.13) using the exact inverses (Ai)
−1. However, even on each subgrid

we will only solve the linear system approximately, and often iteratively. By themselves correc-
tion matrices Bi are not preconditioners of the original systems Au = b because generally they
are not invertible, and in fact rank(Bi) is bounded by the number of subgrid points ni. Efficient
DD and multigrid methods are based on the idea that approximations of the corrections Bi are
effective as components of preconditioners for the original linear system.

Thus we compose (combine) the subgrid corrections Bi to create a preconditioner M−1. In
the case of p = 2 subgrids, corrections B0, B1 can be composed additively,

M−1 = B0 +B1, (6.15)

or multiplicatively,
M−1 = B0 +B1 −B1AB0. (6.16)

Figure 6.7 illustrates additive and multiplicative compositions in simple iteration (6.3). We
first compute the residual rk = b− Auk. Additive composition applies each Bi to r separately
(e.g., solves on Ωi by applying A−1

i ), and then adds the results to update the solution. Multi-
plicative composition computes one subspace correction B0r first, then updates the solution and
residual, then computes the other correction B1r, and then updates the solution. An easy com-
putation (Exercise 6.5) shows that, for p = 2 subgrids and simple iteration, this multiplicative
sequence yields (6.16).

Suppose that two subgrids Ω0,Ω1 overlap, and that we order the grid points so that those in
Ω0 \ Ω1 come first, then those in the overlap Ω0 ∩ Ω1, and then those in Ω1 \ Ω0. The additive
composition (6.15) can then be visualized as an overlapping sum of subgrid inverses,

B0 +B1 =

[
A−1

0 0
0 0

]
+

[
0 0
0 A−1

1

]
=

  , (6.17)
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A better Poisson code 143

showing how overlapping additive subgrid corrections generalize the block Jacobi method (Chap-
ter 2).

Compositions (6.15) and (6.16) extend straightforwardly to p subgrid corrections B0, . . . ,
Bp−1. The multiplicative composition needs an ordering of the subgrids, recalling the difference
between the classical Jacobi and GS iterations. In fact, additive/multiplicative composition gen-
eralizes the Jacobi/GS methods from individual entries to subgrids, respectively. Note that even
if subgrids are not overlapping, i.e., in block Jacobi, additive and multiplicative compositions are
usually different because the system matrix A generally couples the subgrids when computing
the intermediate residuals.

If A is SPD then the Bi are also SPD, so the additive composition may be used in symmetric
preconditioning (Chapter 2). Likewise, multiplicative composition can be modified to preserve
symmetry (Exercise 6.9).

Multiplicative composition computes residuals, i.e., it applies A to compute residuals, many
times as it computes the action ofM−1. By contrast, additive composition only computes a resid-
ual once per preconditioner application. This contrast suggests that the multiplicative approach
is likely to be a better preconditioner because it uses global (overlapped) information in A more
frequently. For DD preconditioning (below), for example, multiplicative composition requires
half as many iterations as additive, again recalling the Jacobi-versus-GS difference (Chapter 2).

On the other hand, the potential for parallelism when using additive composition M−1 =∑
iBi should be clear [134]. That is, in the additive case one does not wait for an update from

one subgrid before computing the correction for another. In fact, for parallel DD preconditioning
PETSC only implements the additive composition. However, multiplicative composition remains
conceptually and practically important in multigrid and fieldsplit preconditioning.

As a preview of things to come, suppose now that the subgrid is a coarse grid covering
the original domain. If RC is a restriction matrix for this coarse grid then AC = RCAR

>
C

would be a coarse-grid matrix. (We will call it a Galerkin coarse-grid matrix.) The matrix
BC = R>C(AC)−1RC , which acts on the original grid, is the coarse-grid correction. However,
we will see that a subgrid injection R, while appropriate to DD, gives a completely unhelpful
prolongation R> for multigrid purposes because it introduces high frequencies. Thus we will
consider new restriction and prolongation matrices for multigrid schemes. Nonetheless the con-
cepts and notation of subgrid matrices and corrections, and their compositions, apply to both DD
and multigrid methods.

A better Poisson code
The code in Chapter 3 already solves the problem, but here is another structured-grid FD Poisson
equation solver. This one works for 1, 2, or 3 dimensions, allows anisotropic coefficients, uses
SNES for easy extension to nonlinear elliptic problems, and, most importantly, can exploit DD
and GMG preconditioners. It is thus a much better basis for further developments. In fact, parts
of this code are reused in solvers for the nonlinear minimal-surface equation (Chapter 7) and for
an obstacle problem (Chapter 12).

The code is ch6/fish.c.24 In 3D it solves linear elliptic PDEs of the form

− cxuxx − cyuyy − czuzz = f(x, y, z), (6.18)

where cx, cy, cz are positive constants, subject to arbitrary nonhomogeneous Dirichlet boundary
conditions u = g on ∂Ω, where the domain is Ω = (0, Lx)× (0, Ly)× (0, Lz). In 1D and 2D it
solves the obvious restricted problems.

24Poisson in French is fish in English.
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144 Chapter 6. Preconditioners for PDEs

Code 6.1 shows main(). As expected from previous chapters, we create a DMDA for the
chosen dimension, defaulting to a 3 × 3 × 3 grid in 3D. The user can set options using prefix
-fsh_, including the dimension -fsh_dim. We set up a SNES object, supply it with both residual
and Jacobian call-backs, and set the default SNES type to KSPONLY type because the problem is
linear. The KSP inside the SNES is set to CG because the matrix is SPD. Then we choose an initial
iterate (not shown) and call SNESSolve() to solve the problem.

/ / create DMDA in chosen dimension
switch (dim) {

case 1:
DMDACreate1d(PETSC_COMM_WORLD,

DM_BOUNDARY_NONE,3 ,1 ,1 , NULL, &da) ;
break ;

case 2:
DMDACreate2d(PETSC_COMM_WORLD,

DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,
3 ,3 ,PETSC_DECIDE,PETSC_DECIDE,1 ,1 ,NULL,NULL,&da) ;

break ;
case 3:

DMDACreate3d(PETSC_COMM_WORLD,
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE,
DMDA_STENCIL_STAR,
3 ,3 ,3 ,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE,
1 ,1 ,NULL,NULL,NULL,&da) ;

break ;
default :

SETERRQ(PETSC_COMM_SELF,1 , " inva l id dim for DMDA creation \n" ) ;
}
DMSetApplicationContext (da,&user ) ;
DMSetFromOptions(da) ;
DMSetUp(da) ; / / c a l l BEFORE SetUniformCoordinates
DMDASetUniformCoordinates (da,0 .0 , user . Lx ,0 .0 , user . Ly ,0 .0 , user . Lz ) ;

/ / set SNES cal l −backs
SNESCreate(PETSC_COMM_WORLD,&snes) ;
SNESSetDM(snes ,da) ;
DMDASNESSetFunctionLocal(da ,INSERT_VALUES,

(DMDASNESFunction) ( res idual_ptr [ dim−1]) ,&user ) ;
DMDASNESSetJacobianLocal(da ,

(DMDASNESJacobian) ( jacobian_ptr [ dim−1]) ,&user ) ;

/ / defaul t to KSPONLY+CG because problem is l inear and SPD
SNESSetType(snes ,SNESKSPONLY) ;
SNESGetKSP(snes,&ksp ) ;
KSPSetType(ksp ,KSPCG) ;
SNESSetFromOptions(snes) ;

/ / set i n i t i a l i t e ra te and then solve
DMGetGlobalVector (da,& u _ i n i t i a l ) ;
I n i t i a l S t a t e (da , i n i t i a l , gonboundary , u _ i n i t i a l , &user ) ;
SNESSolve(snes ,NULL, u _ i n i t i a l ) ;

Code 6.1. c/ch6/fish.c, part I. main(): Create DMDA and SNES, and then solve.

Regarding a possible performance concern, note that DMDASetUniformCoords() does use
memory for a coordinate Vec; in 3D this consumes as much memory as three scalar Vecs. While
this could be avoided for any structured grid, by generating coordinates on the fly, the strategy
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A better Poisson code 145

here makes our code performance comparable to unstructured-mesh codes in which coordinate
storage is obligatory (Chapter 10).

Next is a subtle change relative to previous examples. As shown in Code 6.2, the grid coming
out of SNESSolve() could be different from the one going in. For that reason we get a new DMDA
(SNESGetDM()) and Vec (SNESGetSolution()) for the solution. Note that the exact solution is
also computed on the new grid when evaluating the numerical error.

/ / −snes_grid_sequence could change gr id resolut ion
DMRestoreGlobalVector (da,& u _ i n i t i a l ) ;
DMDestroy(&da) ;

/ / evaluate error and report
SNESGetSolution (snes,&u) ; / / SNES owns u ; do not destroy i t
SNESGetDM(snes,&da_after ) ; / / SNES owns da_after ; do not destroy i t
DMDAGetLocalInfo ( da_after ,& in fo ) ;
DMCreateGlobalVector ( da_after ,&u_exact ) ;
getuexact = getuexact_ptr [ dim−1];
( * getuexact ) (& info , u_exact ,&user ) ;
VecAXPY(u, −1.0 ,u_exact ) ; / / u <− u + ( −1.0) uexact
VecDestroy(&u_exact ) ; / / no longer needed
VecNorm(u ,NORM_INFINITY,& e r r i n f ) ;
VecNorm(u ,NORM_2,&err2h ) ;

Code 6.2. c/ch6/fish.c, part II. main(): After SNESSolve(), get the new grid and solution.

The “meat” of fish.c is, of course, in the residual and Jacobian call-backs. For code reuse
they are put in a separate file poissonfunctions.c, so we #include (not shown) the header
poissonfunctions.h into fish.c. The makefile links the compiled object file (not shown).
Arrays of function pointers (Code 6.3) are then used to manage the dimension-dependent call-
backs and exact solutions.

/ / arrays of pointers to funct ions
static DMDASNESFunction residual_ptr [ 3 ]

= { (DMDASNESFunction)&Poisson1DFunctionLocal ,
(DMDASNESFunction)&Poisson2DFunctionLocal ,
(DMDASNESFunction)&Poisson3DFunctionLocal } ;

static DMDASNESJacobian jacobian_ptr [ 3 ]
= { (DMDASNESJacobian)&Poisson1DJacobianLocal ,

(DMDASNESJacobian)&Poisson2DJacobianLocal ,
(DMDASNESJacobian)&Poisson3DJacobianLocal } ;

typedef PetscErrorCode ( * ExactFcnVec) (DMDALocalInfo* ,Vec , PoissonCtx * ) ;

static ExactFcnVec getuexact_ptr [ 3 ]
= {&Form1DUExact , &Form2DUExact, &Form3DUExact } ;

Code 6.3. c/ch6/fish.c, part III. Function pointers for each dimension.

An extract from the header (Code 6.4) includes a context struct declaring point-
ers to functions which evaluate f and g. These functions are regarded as having three
spatial inputs, the maximum dimension. The header also declares the residual-evaluation
functions PoissondDFunctionLocal(), which compute the discretized function F(u) =
σ (−cxuxx − cyuyy − czuzz − f), with a dimension-dependent scaling factor σ (see below).
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146 Chapter 6. Preconditioners for PDEs

typedef struct {
/ / domain dimensions
PetscReal Lx , Ly , Lz ;
/ / coe f f i c ien ts in − cx u_xx − cy u_yy − cz u_zz = f
PetscReal cx , cy , cz ;
/ / r igh t −hand−side f (x , y , z )
PetscReal ( * f_rhs ) (PetscReal x , PetscReal y , PetscReal z , void * ctx ) ;
/ / D i r i ch le t boundary condit ion g(x , y , z )
PetscReal ( * g_bdry ) (PetscReal x , PetscReal y , PetscReal z , void * ctx ) ;
/ / addi t ional context ; see example usage in ch7 / minimal . c
void *addctx ;

} PoissonCtx ;

PetscErrorCode Poisson1DFunctionLocal (DMDALocalInfo * info ,
PetscReal *au , PetscReal *aF, PoissonCtx *user ) ;

PetscErrorCode Poisson2DFunctionLocal (DMDALocalInfo * info ,
PetscReal **au , PetscReal **aF, PoissonCtx *user ) ;

PetscErrorCode Poisson3DFunctionLocal (DMDALocalInfo * info ,
PetscReal * * *au , PetscReal * * *aF, PoissonCtx *user ) ;

Code 6.4. c/ch6/poissonfunctions.h. Context and declarations.

The FD scheme in fish.c is the same as in ch3/poisson.c, so we only
show the 2D residual-evaluation function (Code 6.5), while Jacobian-evaluation functions
FormdDJacobianLocal() are not shown at all.

PetscErrorCode Poisson2DFunctionLocal (DMDALocalInfo * info , PetscReal **au ,
PetscReal **aF, PoissonCtx *user ) {

PetscInt i , j ;
PetscReal xymin [2 ] , xymax[2 ] , hx , hy , darea , scx , scy , scdiag , x , y ,

ue , uw, un , us ;
DMGetBoundingBox( info −>da , xymin ,xymax) ;
hx = (xymax[0 ] − xymin [ 0 ] ) / ( info −>mx − 1) ;
hy = (xymax[1 ] − xymin [ 1 ] ) / ( info −>my − 1) ;
darea = hx * hy ;
scx = user−>cx * hy / hx ;
scy = user−>cy * hx / hy ;
scdiag = 2.0 * ( scx + scy ) ; / / diagonal scal ing
for ( j = info −>ys ; j < info −>ys + info −>ym; j ++) {

y = xymin [1 ] + j * hy ;
for ( i = info −>xs ; i < info −>xs + info −>xm; i ++) {

x = xymin [0 ] + i * hx ;
i f ( i ==0 | | i ==info −>mx−1 | | j ==0 | | j ==info −>my−1) {

aF[ j ] [ i ] = au [ j ] [ i ] − user−>g_bdry (x , y ,0 .0 , user ) ;
aF[ j ] [ i ] *= scdiag ;

} else {
ue = ( i +1 == info −>mx−1) ? user−>g_bdry (x+hx , y ,0 .0 , user )

: au [ j ] [ i +1] ;
uw = ( i −1 == 0) ? user−>g_bdry (x−hx , y ,0 .0 , user )

: au [ j ] [ i −1] ;
un = ( j +1 == info −>my−1) ? user−>g_bdry (x , y+hy ,0 .0 , user )

: au [ j +1] [ i ] ;
us = ( j −1 == 0) ? user−>g_bdry (x , y−hy ,0 .0 , user )

: au [ j −1] [ i ] ;
aF[ j ] [ i ] = scdiag * au [ j ] [ i ]

− scx * (uw + ue) − scy * (us + un)
− darea * user−>f_rhs (x , y ,0 .0 , user ) ;
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Single-level domain decomposition 147

}
}

}
PetscLogFlops (11.0* info −>xm* info −>ym) ;
return 0;

}

Code 6.5. c/ch6/poissonfunctions.c. Residual evaluation in 2D.

A crucial idea, new in fish.c, is that we discretize the problem on the particular grid sup-
plied at call-back. This is needed to exploit the rediscretization form of GMG (below). The
call-back from SNES supplies a DMDALocalInfo object to describe the grid (Code 6.5), and
DMGetBoundingBox() gets domain dimensions for computing the mesh spacings hx, hy, hz;
this works because we called DMDASetUniformCoordinates() in main(). Notice that fish.c
does not save any grid-specific information in its context struct, as doing so would be incom-
patible with rediscretization.

In 2D the entries of the residual are scaled by the cell area hxhy so that all Jacobian entries
are O(1) in the cell spacing. For all dimensions, entries scale as they would in a Galerkin finite
element method (Chapters 9 and 10). For example, in the simplest case where cx = cy = cz = 1,
in 1D the diagonal entries are h(2/h2) = 2/h, in 2D they are hxhy2(1/h2

x + 1/h2
y), and in 3D

they are hxhyhz2(1/h2
x + 1/h2

y + 1/h2
z). The equations for Dirichlet boundary conditions are

also scaled so that the Jacobian has constant diagonal, thereby reducing its condition number. So
that the Jacobian is symmetric, the residual evaluation always uses the values of g at boundary
points to reduce the equations; see Chapter 3 on this point.

Compiling and checking for options gets us started:

$ cd c/ch6/ && make fish
$ ./fish -help | grep fsh_

Option -fsh_problem determines which exact solution is used. The default problem
manuexp, which requires cx = cy = cz = 1, is also solved in [134]. In 2D the PDE is
−∇2u = xey , with solution u(x, y) = −xey . In 1D we set f(x) = ex so u(x) = −ex,
while in 3D we set f(x, y, z) = 2xey+z so u(x, y, z) = −xey+z . Exact solution manupoly
solves the same 2D problem as in ch3/poisson.c, with versions for any dimension or coeffi-
cients, and thus codes ch3/poisson.c and ch6/fish.c compute the same result when applied
to the same problem:

$ (cd ../ch3/ && make poisson && ./poisson -ksp_converged_reason)
...
Linear solve converged due to CONVERGED_RTOL iterations 7
on 9 x 9 grid: error |u-uexact|_inf = 0.000763959
$ ./fish -fsh_problem manupoly -ksp_converged_reason -da_refine 2
Linear solve converged due to CONVERGED_RTOL iterations 7

problem manupoly on 9 x 9 point 2D grid:
error |u-uexact|_inf = 7.640e-04, |u-uexact|_h = 4.124e-04

The∞-norm errors are the same (Exercise 6.10) but fish.c also computes the h-weighted L2

norm of the error, analogous to the continuous L2 norm.

Single-level domain decomposition
We can now test subgrid-based preconditioners on the Poisson problem. First, domain de-
composition (DD) methods approximately solve PDEs by dividing the domain into (generally)
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148 Chapter 6. Preconditioners for PDEs

Figure 6.8. Subgrid decompositions of a 8×8 grid into p = 4 equal-sized subgrids with overlaps
of 0 (left), 1 (middle), and 2 (right) grid points.

overlapping subdomains, Ω = ∪Ωi, solving the corresponding problem on each subdomain, and
combining the results. In PETSC these methods are preconditioners for any finite-dimensional
linear systems based on grids and meshes [134]. An original grid, which generates the linear sys-
tem Au = b, is divided into p (generally) overlapping subgrids, as shown in Figure 6.8. Given
the subgrid restrictions R0, . . . , Rp−1, we then have subgrid matrices Ai = RiAR

>
i and correc-

tions Bi = R>i A
−1
i Ri. A preconditioner is chosen for each subgrid, M−1

i = P(Ai) ≈ A−1
i ,

which defines an approximate subgrid correction B̃i = R>i M
−1
i Ri. As usual, theM−1

i matrices
are never assembled; they represent pieces of code which solve systems Miy = c on each
subgrid.

The alternating Schwarz method [134], a grid-free iteration in which elliptic PDEs are (ex-
actly) solved on each subdomain Ωi in turn, dates back to 1870 and is the original DD algorithm.
The boundary values along ∂Ωi arise by evaluating (i.e., finding the trace [51] of) the solutions
on the other subdomains Ωj for j 6= i. Such a domainwise method can be implemented either
additively or multiplicatively. In the multiplicative implementation, for example, the subdomains
are ordered, and each subdomain solve uses the latest values from the other subdomains.

The methods in PETSC are, however, finite-dimensional and based on subgrids and/or sub-
sets of indices. The additive Schwarz method (ASM) preconditioner sums the corrections as in
(6.15):

M−1 =

p−1∑
i=0

R>i M
−1
i Ri. (6.19)

Other than in Exercises 6.14 and 6.15, we will only use ASM in this book. (In PETSC the
multiplicative Schwarz method [134] is only supported in serial.)

Basic ASM options are

-pc_type asm -pc_asm_overlap X -sub_pc_type Y

The default overlap is X = 1, and X = 0 is the same as block Jacobi (-pc_type bjacobi).
Any subdomain preconditioner Y can be chosen, including direct subdomain solves
(lu,cholesky,svd), their incomplete versions (ilu,icc), and so on.

By default, -pc_type asm assigns one subgrid to each MPI rank, thus the number of
processes equals the number of subgrids. However, one may increase the number of sub-
grids (blocks) per process above one with option -pc_asm_blocks, which sets the total
number of subgrids, indirectly determining the number of subgrids per process. (Option
-pc_asm_print_subdomains shows the decomposition.)

To reduce the amount of communication the subdomains should have relatively small bound-
aries. On DMDA structured grids, the number of processors should therefore be a composite
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Single-level domain decomposition 149

integer, and perfect squares in 2D or cubes in 3D are convenient. For example, the following
run divides a 65 × 65 grid into four equal-sized, overlapping 33 × 33 subgrids and solves by
CG+ASM+Cholesky:

$ mpiexec -n 4 ./fish -da_refine 5 -pc_type asm -sub_pc_type cholesky

If the subdomains are of significant size—much larger than a single point—and if the
-sub_pc_typemethod is direct or otherwise reasonably accurate, then many short- and medium-
range influences are resolved by a single ASM application. However, one application can only
propagate information from each subdomain to its overlapping neighbors, and long-range influ-
ences between variables must somehow be resolved if a Krylov iteration is to converge to the
solution of the PDE. Thus a preconditioner of the form

-pc_type asm -sub_pc_type lu|cholesky|svd

can be a robust parallel approach for difficult problems, but the number of Krylov iterations
will grow with the number of processors. On the other hand, as we will see below, a coarse
grid covering the original domain can generate a correction which communicates the long-range
influences and speeds convergence.

A first ASM performance question might ask how the amount of overlap relates to KSP iter-
ations. Consider these runs with overlaps of X = 0, 1, 2, 4 points:

$ mpiexec -n P ./fish -fsh_dim D -da_refine L -ksp_converged_reason \
-pc_type asm -sub_pc_type cholesky -pc_asm_overlap X

In 2D we use P = 4 processes (subdomains), while in 3D we use P = 8, so the subdomains are
geometrically similar to the original domain. In 2D we test refinement levels L = 3, 4, 5, 6, 7, but
in 3D only L = 3, 4, 5. The finer-grid 3D runs are quite slow, but Table 6.1 shows the result.

Table 6.1. Number of CG iterations from ASM runs of fish.c with P processes, equal to the
number of subdomains, and varying overlaps X. Grids are m×m in 2D and m×m×m in 3D.

Overlap X
m 0 1 2 4

2D 17 13 11 11 12
33 18 13 11 10

(P = 4) 65 25 18 15 12
129 33 21 19 15
257 44 28 23 20

3D 17 16 11 10 9
33 21 15 12 10

(P = 8) 65 29 20 16 12

Increasing overlap reduces the number of iterations, but a more subtle observation about
Table 6.1 is that the diagonals are roughly constant. For example, there are 18 iterations for a
65 × 65 grid with X = 1, 19 for a 129 × 129 grid with X = 2, and 20 for a 257 × 257 grid with
X = 4. This is evidence for one of the established properties of overlapping additive Schwarz
methods. Stating it precisely needs notation.

As shown in Figure 6.9, let h be the grid spacing, q the overlap in grid points, and δ = qh
the overlap as a distance. Assuming the domain Ω has O(1) side length, suppose that the grid
has m points along each side and that subdomains have side length H . Then h = O(1/m), and
in d dimensions there are md total grid points and (1/H)d subdomains. Note that h, δ,H are
distances while q,m are counts.
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150 Chapter 6. Preconditioners for PDEs

H

h = O(1/m)

δ

Ωi

Ωj

Figure 6.9. Notation for overlapping subdomains and subgrids.

Returning to Table 6.1, the overlap distance δ is constant along the diagonals (for X > 0).
That is, the subdomains and H are held fixed but q increases proportionally to m so δ = qh is
constant. With this form of refinement, the CG iterations are nearly constant, an indication that
the spectra of the preconditioned matrices have comparable clustering as the grid is refined.

For comparison, consider refining the grid while holding each subgrid to a fixed number
of points. For this experiment, Table 6.2 was generated by 2D runs as above, with grids of
m = 17, 33, 65 points on a side, corresponding to L = 3, 4, 5, but with a reduced accuracy
goal (-ksp_rtol 1.0e-3) to avoid the confusing effects of rounding error on CG iterations.
The number of processes P, equal to the number of subdomains, is set proportional to the total
number of grid points, i.e., P = O(m2). In this case H decreases at the same rate as h, namely
O(1/m). The number of grid points on each side of each subdomain, H/h, is constant. The
result in Table 6.2 shows that the number of iterations increases roughly as O(1/H) if overlap X
is fixed.

Table 6.2. Number of KSP iterations from 2D ASM runs of fish.c, on m × m grids, with P
processes (subdomains). The subgrid size is constant.

Overlap X
P m 0 1 2 4
4 17 10 6 6 6

16 33 18 11 12 14
64 65 33 20 26 24

The results in Tables 6.1 and 6.2 supply evidence for three general properties of overlapping
Schwarz methods [134]:

(i) convergence is poor for block Jacobi (no overlap) but improves with increasing overlap,

(ii) if distances δ and H are fixed then the number of iterations is bounded independently of
h, and

(iii) the number of iterations grows as 1/H , the number of subdomains along each side of the
domain.
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Single-level domain decomposition 151

The first point can be understood by considering A−1 as the discrete Green’s function of the
elliptic operator, the effect of which is dominated by short-range interactions. Approximating
a Green’s function by a finite kernel of positive range in the overlap directions is much better
than by one of zero range. Property (ii), which says that overlapping Schwarz methods have a
kind of good scaling as the grid is refined, is proved by showing that the condition number of the
preconditioned operator is bounded independently of h [134]. Regarding (iii), at each iteration
ASM can communicate information from each subdomain only to its neighbors. Thus O(1/H)
iterations, the number of subdomains along a side, are needed to communicate the influence of
boundary conditions and source terms from one side of Ω to the other.

Regarding the performance of ASM, results in Tables 6.1 and 6.2 already suggest that using
direct solvers on the subdomains is not a good strategy for 3D grids. Note that adding nested
dissection ordering (Chapter 2) to the Cholesky direct solver on each subgrid is a reasonably
efficient direct subgrid solver:

-pc_type asm -sub_pc_type cholesky -sub_pc_factor_mat_ordering_type nd

For the 33× 33× 33 grids in Table 6.1 this is more than ten times faster than the natural-ordered
solver, and the ratio increases for finer grids.

The above ASM+Cholesky solver scales much better than O(N3) both because of banding
and from variable reordering. Suppose we consider a refinement path of 3D runs from Table 6.1
with fixed overlap distance δ, i.e., the runs with fixed p = 8 subgrids and -da_refine 4|5|6
-pc_asm_overlap 1|2|4, respectively. For such runs, because of the general ASM properties
above, the KSP iterations are essentially constant. The amount of work, measured by the total
number of flops for the KSP solver stage (-log_view | grep KSPSolve), scales as O(N1.41).
When N increases by a factor of 8 (refinement by two in each direction) the work increases by a
factor of about 18, instead of 500 for an O(N3) algorithm. As the reader can confirm, however,
memory usage soon brings further refinements to a halt because the reordered Cholesky factors
fill-in a band of significant width around the diagonal. (The next refinement -da_refine 7
-pc_asm_overlap 8 runs out of memory on the author’s laptop.)

There is, however, no reason to only use direct solvers on the subgrids; the solve on each
subgrid is merely preconditioning anyway. Incomplete subgrid solvers, in particular, yield sig-
nificantly better overall memory usage and performance. Consider ICC subgrid solves:

-pc_type asm -sub_pc_type icc

We do the following 3D runs to test performance:

$ mpiexec -n 8 ./fish -fsh_dim 3 -da_refine L -ksp_converged_reason \
-pc_type asm -sub_pc_type icc -pc_asm_overlap X

Here L and X are again chosen to give constant overlap distance δ under refinement. Specifi-
cally, we do four runs with L = 4, 5, 6, 7 and X = 1, 2, 4, 8, respectively. The number of KSP
iterations grows, despite the fixed-distance overlaps, because the subgrid solves are no longer
exact. The work (i.e., flops) in these ASM+ICC runs scales as O(N1.30), a better rate than for
ASM+Cholesky, but the most significant improvement is the reduced memory usage from avoid-
ing fill-in, which also improves run time. In fact, the ASM+ICC run on a grid of N = 2573

points is about 10 times faster than the ASM+Cholesky run on the smaller N = 653 grid.
ASM-preconditioned Krylov iterations are thus important solvers, especially in the context

of parallel computations [134]. However, for 2D and 3D Poisson problems the DD solvers
considered so far cannot achieve O(N) work for N unknowns, the property called “optimality”
in Chapter 7. Actually, if optimality applied to the PC used on each subgrid then property (ii)
above would allow ASM to scale as O(N) if the number of blocks P and the overlap distance δ
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152 Chapter 6. Preconditioners for PDEs

were held fixed as the grid was refined. However, for elliptic PDEs in 2D and 3D we have, for
now, no candidate solver which is optimal on the subgrids.

To get significantly better preconditioning than our current best performers for the Pois-
son equation, namely -ksp_type cg -pc_type icc in serial (Chapter 3), and -ksp_type
cg -pc_type asm -sub_pc_type icc in parallel, we need to address the essential flaw in
single-level DD. This is point (iii) above: an ASM preconditioner is slow to communicate
long-range, low-frequency information about the solution. The key improvement is well known
[21, 26, 45, 49] and addressed next.

Coarse grids
Consider a structured grid Ωh covering the domain Ω with Nh total points and spacing h in each
direction. The coarse grid Ω2h ⊂ Ωh consists of every other point of Ωh, with spacing 2h, from
a coarsening factor of 2. In d dimensions the coarse grid has N2h ≈ Nh/2d total points. Now
that there is a coarse grid, Ωh is called the fine grid.

A few comments on this notation may help. We denote grid quantities using a grid-spacing
superscript. The precise number of points in Ωh or Ω2h depends on how the boundary is handled,
but the formula N2h = Nh/2d is exact if boundaries are periodic and the number of grid points
in each direction is even. Though a coarsening factor of 2 is the most common case, and the
default for DMDA, other ratios would not change the ideas below in any important way.

Restriction by injection Rinj takes a vector v of values on Ωh and extracts the values that live
on Ω2h. Though injection is a reasonable way to transfer a vector to the coarse grid, its transpose
R>inj should not be used as the prolongation. It puts zeros at those points of the fine grid which
are between the points of the coarse grid, and, considering vectors as piecewise-linear functions,
this maps smooth functions to very rough ones (Figure 6.10 and Exercise 6.8; compare Figure
6.5).

Rinj

R>inj

Ωh

Ω2h

Ωh

Rfw = cP>int

Pint

Figure 6.10. Left: The transpose of injection Rinj is useless as a prolongation because it intro-
duces high frequencies. Right: Linear interpolation Pint makes an effective prolongation, and its transpose
(full-weighting) works for restriction.

However, the operation of piecewise interpolation Pint makes a well-behaved prolongation
from Ω2h to Ωh. In 1D interpolation acts by averaging coarse-grid values to generate fine-grid
values between. The coarse-grid values themselves are unaltered, and it follows that ‖Pint‖∞ = 1
and that Pint has full rank N2h.

For 2D and 3D grids, various low-order piecewise-polynomial interpolation schemes might
generalize piecewise-linear interpolation in 1D. For example, on a DMDA structured grid the de-
fault operator Pint, in any dimension, is Q1 interpolation, with the same meaning as for the finite
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Coarse grids 153

element method of Chapter 9. Here we avoid the details in 2D and 3D, but show the 1D case
concretely.

Example 6.4. In 1D, on a grid Ωh with Nh = 9 points, with a coarse grid of N2h = 5 points,
linear interpolation is the 9× 5 matrix

Pint =



1
1/2 1/2

1
1/2 1/2

1
1/2 1/2

1
1/2 1/2

1


.

An example action of Pint appears in Figure 6.10.

By our definition, the transpose P>int is a restriction because it has nonnegative entries and
full row rank. If the column sums of Pint are used as row scalings then the resulting restriction
is called “full-weighting” [26]. Specifically, if diag(c) denotes the matrix with vector c on its
diagonal, full-weighting restriction is

Rfw = diag(c)P>int where cj =
1∑

i(Pint)ij
, (6.20)

which computes coarse-grid values by averaging. By construction, ‖Rfw‖∞ = 1.

Example 6.5. Continuing the above example,

Rfw =


2/3 1/3

1/4 1/2 1/4
1/4 1/2 1/4

1/4 1/2 1/4
1/3 2/3

 .
Figure 6.10 shows that Rfw is smoothing compared to injection Rinj.

Thus the multigrid algorithms used in this book, described in the next section, do not use
injection Rinj as the fine-to-coarse restriction operation. Instead either an interpolation (Pint) or
a smoothing restriction (e.g., Rfw or P>int) is formed as a Mat, and the sizes of this Mat indicate
to PETSC whether it is a prolongation or a restriction,25 and the transpose is used for the other
operation. All this occurs internally for DMDA-based structured grids and DMPlex unstructured
grids (Chapter 13) once the grid hierarchy is established.

Now, given the fine-grid matrix Ah, and supposing interpolation and restriction operators are
fixed, there are two ways to define the coarse-grid matrix:

• The Galerkin approach: Construct the subgrid matrix the same way as in DD. Use inter-
polation for prolongation and its transpose for restriction:

Â2h = P>intA
hPint. (6.21)

25The documentation for PCMGSetRestriction() and PCMGSetInterpolation() say “One can pass in the inter-
polation matrix or its transpose; PETSC figures out from the matrix size which one it is.”
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154 Chapter 6. Preconditioners for PDEs

• The rediscretization approach: Assume we already have code that converts a grid on Ω
into a discretization of the PDE problem. Apply this code on the coarse grid:

A2h is computed by applying our code on Ω2h. (6.22)

Formula (6.21), option -pc_mg_galerkin, is called “Galerkin” because it projects onto a
smaller space the same way a Galerkin finite element method (Chapters 9 and 10) projects a
PDE problem into a finite-dimensional subspace [49]. The formula used by PETSC’s geometric
multigrid (next section) is (6.21) and not RfwA

hPint, as the reader might expect, but this turns
out to be an unimportant difference because only the coarse grid correction must be scaled like
(Ah)−1. (See formula (6.23) below and Exercises 6.17 and 6.18.) Instead of applying the factors
in matrix-vector products, product (6.21) is multiplied out to generate a sparse matrix Â2h. Note
that Â2h uses 2d times less memory than Ah, and that a coarse-grid Mat is formed in both
approaches.

We will use rediscretization approach (6.22) most frequently. Typically our code in-
cludes a SNES call-back which generates the Jacobian, and, in structured-grid cases based on
DMDASNESSetJacobianLocal(), an argument to the call-back is a DMDALocalInfo struct
which describes the grid. The call-back never “knows” whether this grid is coarser than the
original fine grid, but it forms the Jacobian based on the provided grid information.

Regarding symmetry, the Galerkin matrix Â2h is symmetric ifAh is symmetric. On the other
hand, if user code generated a symmetric matrixAh for the original (fine) grid then it should also
produce a symmetric coarse grid matrix A2h.

Example 6.6. In 1D fish.c solves the Poisson equation −uxx = f(x) using the simple FD
scheme:

−uj−1 + 2uj − uj+1 = h2f(xj).

If Ωh is the 9-point grid with spacing h = 1/8 then the coarse grid Ω2h has 5 points and spacing
2h = 1/4. Using the Galerkin approach (6.21), and the prolongation Pint in Example 6.4, the
coarse-grid matrix is

Â2h =


20

8 −4
−4 8 −4

−4 8
20

 .
The coarse-grid matrix (6.22) from rediscretization differs only on the boundary:

A2h =


8

8 −4
−4 8 −4

−4 8
8

 .
The latter has a smaller condition number.

The Nh ×Nh coarse-grid correction matrix is

B2h = Pint(A
2h)−1P>int. (6.23)

We can use rediscretization A2h or Galerkin Â2h, but either way we denote the correction by
B2h from now on.
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Coarse grids 155

What does the result of applying B2h look like, relative to solving the problem by applying
(Ah)−1? The answer depends on the smoothness of the vector, and in this case “smooth” means
near the range of Pint, that is, like a piecewise-linear function on the coarse grid. As shown
in Figure 6.11, B2hr and (Ah)−1r are close to each other when r is smooth, but significantly
different otherwise. In the case shown, the relative difference ‖B2hr− (Ah)−1r‖2/‖(Ah)−1r‖2
is three times larger for the less smooth vector.

Figure 6.11. Given a smooth vector r on the fine grid (left), the result of applying B2h (solid)
is close to what we get from (Ah)−1 (dashed). For r with strong high frequencies (right) the results are
further apart.

Consider a step of the simple iteration

uk+1 = uk +B2h(b−Ahuk), (6.24)

computed as a sequence of steps:

r2h = P>int(b−Ahuk) restrict the fine-grid residual to the coarse grid,

A2he2h = r2h solve the coarse-grid error equation, and

uk+1 = uk + Pinte
2h interpolate the solution as a fine-grid update.

In other words, we move the residual to the coarse grid, solve the error equation there, and bring
back the result as a correction. Iteration (6.24) will be the key step in multigrid.

The first and last factors in a coarse-grid correction (6.23), namely local averaging (P>int) and
piecewise-polynomial interpolation (Pint), are O(Nh) operations with a small constant. Apply-
ing the middle factor (A2h)−1, i.e., solving the coarse-grid problem, can be done approximately
by a preconditioner M2h ≈ A2h. Relative to the fine grid, the number of unknowns has de-
creased by 2d, thus the coarse-grid solve should be fast. However, the benefits of a coarse-grid
correction are at risk if the solver is expensive (e.g., direct) or if parallelizing the coarse-grid solve
requires a large amount of communication [144]. (We return to the parallel implementation of
multigrid in the next chapter.)

The rank of B2h is at most N2h = rank(Pint) so the coarse-grid correction cannot be used
alone as a preconditioner M−1. To build a preconditioner we compose B2h with other correc-
tions. The best-known example is multigrid, which multiplicatively composes the coarse-grid
correction with smoothers; see the next section.

Another example is the additive two-level overlapping DD scheme of Dryja and Widlund
[45]. It adds a coarse-grid correction to the ASM corrections (6.19),

M−1 = Pint(M
2h)−1P>int +

p−1∑
i=0

R>i (Mi)
−1Ri. (6.25)
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156 Chapter 6. Preconditioners for PDEs

In a two-level scheme like (6.25) the coarsening factor is a free parameter. The coarse grid might
have spacing 2h, as in (6.25), and as demonstrated later in this chapter, but at the other extreme
the coarse grid might have only one grid point per ASM subdomain.

Two-level method (6.25) fixes a flaw of single-level DD. Suppose that the grid is refined
(h → 0) such that the number of grid points per subdomain is held fixed and the number of
subdomains increases (p→∞). Then the number of Krylov iterations grows as O(1/H), where
H is the size of the subdomains; see page 150. Dryja and Widlund [45, 134] showed that,
under reasonable conditions on the overlap, adding a coarse grid correction as in (6.25) causes
the condition number of the preconditioned operator M−1A, and thus the number of Krylov
iterations, to be bounded independently of H and h. However, the disadvantage of a two-level
scheme like (6.25) is that as the grid is refined either the coarse-grid solution or the subgrid
(subdomain) solutions become expensive. If we increase the number of subdomains (p → ∞)
but hold their number of points fixed (H/h fixed) then the size of the coarse-grid problem gets
large as h→ 0. On the other hand, if we keep the coarse-grid size fixed (p fixed) then the size of
the subgrid problems must get large (H/h→∞) as h→ 0.

However, if we can have two levels of grids then we can have many. Also, we should exploit
the smoothing property of classical iterations. Combining these ideas gives multigrid.

Geometric multigrid
Multigrid combines three conceptual threads which are now in hand:

(i) Inexpensive classical iterations like Jacobi, GS, SOR, and Chebyshev tend to smooth the
residual in a few iterations.

(ii) A coarse-grid correction does a good job of approximating the fine-grid solution when
acting on a smooth residual.

(iii) The restriction and prolongation parts of the coarse-grid correction are inexpensive.

These threads combine first into a preconditioner called the two-grid scheme; see [26, Chapter
3] or [144, section 2.23]. It approximately solves the fine-grid system Ahu = bh by multiplica-
tive composition of smoothing iterations and a coarse-grid correction, defining a fine-grid update
v = TWOGRID(Ah,bh,w):

function TWOGRID(A,b,w)
v← w
for k = 1, 2, . . . , ν1 pre-smoothing ν1 times

v← S1(A,b,v)

r2h ← P>int(b−Av) coarse-grid
solve A2hz2h = r2h correction
v← v + Pintz

2h (6.24)
for k = 1, 2, . . . , ν2

v← S2(A,b,v) post-smoothing ν2 times
return v

Note we suppress the “h” superscript on fine-grid quantities.
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Geometric multigrid 157

-mg_levels_3_

Ω(3)

-mg_levels_2_

Ω(2)

-mg_levels_1_

Ω(1)

-mg_coarse_

Ω(0)

Figure 6.12. The 2D grids used in ./fish -da_refine 3 -pc_type mg.

Functions S1 and S2 denote smoothers, possibly distinct, which combine a Krylov method
and a preconditioner. For example, the GS smoother (6.8) is a simple iteration (Chapter 2)

S(A,b,v) = v +M−1(b−Av) (6.26)

using M = D + L.
The reason for pre-smoothing (S1) is evident: the coarse-grid correction accurately solves

the fine-grid problem only if it acts on a smooth residual. However, the result of the coarse-grid
correction is an update Pintz

2h, in the image of Pint, which generally can benefit from smoothing
on the fine grid. Thus post-smoothing (S2) is also used in multigrid cycles in this chapter.

The two-grid scheme can be better understood by examining how it propagates error. Sup-
pose the smoothers are simple iterations (6.26), and let e = w− u and e′ = v− u be the errors
before and after the scheme is applied. If B2h denotes the coarse-grid correction (6.23) then
(Exercise 6.19)

e′ =
(
I −M−1

2 Ah
)ν2 (

I −B2hAh
) (
I −M−1

1 Ah
)ν1

e. (6.27)

One can see from this product, at least informally, why there is a decrease in error norm. Suppose
that the smoothers at least cause no norm increase, e.g., ‖

(
I −M−1

i Ah
)νi ‖ ≤ 1 in some matrix

norm, and that they map into the subspace of smooth vectors, specifically those vectors that are in
the range of Pint. Also suppose that the coarse-grid correction B2h nearly solves the problem for
smooth vectors in the sense that B2hAh ≈ I . In particular, assume ‖(I − B2hAh)w‖ ≤ δ‖w‖
for some δ < 1 and all w in the range of Pint. It follows that ‖e′‖ ≤ δ‖e‖.

Using Fourier analysis and specific smoothers one may prove for the Poisson equation that
δ is bounded below one, independently of the grid spacing h. For example, [144, section 2.1.3]
shows this for red-black GS. We will not pursue such analysis further, instead preferring demon-
strations with actual codes.

We have not addressed the cost of solving the linear system on the coarse grid. A direct solve
would be acceptable only if the coarse grid has few points. On the other hand, the modification
to the two-grid scheme needed to deal with large coarse grids is obvious: we apply a two-grid
scheme to the coarse-grid problem as well, continuing recursively until the coarse grid is ac-
ceptably small for a direct solve. This idea is geometric multigrid (GMG), the preconditioner
-pc_type mg.

Figure 6.12 shows the grids constructed when running fish.c with GMG and three levels
of coarsening:

$ ./fish -da_refine 3 -pc_type mg

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s
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Ω(3)

Ω(2)

Ω(1)

Ω(0)

-pc_mg_cycle_type v -pc_mg_cycle_type w

Figure 6.13. Four-level V- and W-cycles. Solid dots are the down-smoother (Sν11 ), circles are the
up-smoother (Sν22 ), and squares the coarse-grid solve.

The default method for recursively solving the coarse-grid problem is the V-cycle (Figure
6.13), which descends to the next-coarser grid once per level:

function VCYCLE(A,b,w, l)
if l == 0

solve Av = b, e.g., by a direct solver
else

v← Sν11 (w)
rC ← P>int(b−Av)
form AC

zC ← VCYCLE(AC , rC , 0, l − 1)
v← v + Pintz

C

v← Sν22 (v)
return v

Observe that VCYCLE(A, b,w, 1) = TWOGRID(A, b,w), and note that νi steps of smoothing
using Si are now denoted as powers. Also note that the total number of levels is l + 1.

One constructs a DMDA structured-grid hierarchy by defining a base grid and then refining a
certain number of times. The base grid is determined by parameters to DMDACreateXd(), but
these may be overridden by options -da_grid_x and -da_grid_y. The number of refinements
is from option -da_refine.

The number of grid levels used in multigrid is set by -pc_mg_levels, but it defaults to the
number of grids in the hierarchy. The value -pc_mg_levels determines how far we descend
from the fine grid. Thus the coarsest grid Ω(0) in the multigrid cycle is defined by descending
from the finest-constructed grid. It is common in multigrid usage for Ω(0) to not be the base grid
in the hierarchy.

In terms of 2D PETSC options,

-pc_type mg -da_grid_x MX -da_grid_y MY -da_refine Z -pc_mg_levels L

implies a hierarchy with a base grid of MX×MY points and a fine grid Ω(L) of 2Z MX×2Z MY points.
The GMG coarse grid Ω(0) has dimensions 2Z-L+1 MX×2Z-L+1 MY. By default, if -pc_mg_levels
is not specified then L=Z+1 and thus Ω(0) is the MX×MY base grid. Figure 6.12 shows an example
in which defaults are used for MX, MY, and L, and DMDACreate2d() was called with a 3× 3 base
grid. Note that grids can by viewed at run time by option -dm_view draw.

We have two choices for forming the matrix AC at each level. The Galerkin approach
(6.21) is option -pc_mg_galerkin, but the rediscretization approach (6.22) is the default. We
also have choices for solving the coarsest-grid problem. One may use any combination of
-mg_coarse_ksp_type and -mg_coarse_pc_type. In the examples in this chapter we only
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Multigrid cycle types and costs 159

consider direct solvers with KSP=preonly and PC=lu or PC=cholesky, but see the discussion
of parallel multigrid in the next chapter.

Multigrid cycle types and costs
However, one may instead apply a W-cycle (-pc_mg_cycle_type w) in which, after the finest
level, the algorithm descends to the next-coarser level twice (Figure 6.13 and Exercises 6.20 and
6.21). Also, one may apply two or more cycles as the preconditioner. Because the residual is
computed at each level, with correction from the next-coarser level, these are multiplicatively
composed actions, and thus V- and W-cycle preconditioners correspond to options

-pc_mg_cycle_type X -pc_mg_type multiplicative -pc_mg_multiplicative_cycles K

where X is v or w. However, the default number of cycles per preconditioner application is K = 1.
W-cycles are effective preconditioners but each one is more expensive than a V-cycle. It is

often the case that doing one extra V-cycle-preconditioned KSP iteration gives the same resid-
ual norm reduction as switching to W-cycles, but in less time [144]. Furthermore, in parallel
W-cycles are usually a bad idea because many returns to the coarse grid (Figure 6.13) require
copious communication between processes while doing little arithmetic. Thus V-cycles are the
default for -pc_type mg.

On the other hand, how much work is done in these cycles? We adopt a straightforward
model for computational cost from [144, section 2.4.3], as follows. Define

• γ is the cycle index, with γ = 1 for a V-cycle and γ = 2 for a W-cycle;

• Wl is the work, i.e., number of flops, from level l down;

• W k−1
k is the work done by smoothers at level k, and in restricting/interpolating to the next

coarser level k − 1, excluding the solution of the problem at level k − 1; and

• Nk is the number of unknowns at level k, i.e., |Ω(k)|.

The work of solving the coarsest-grid problem W0 will not be examined further here; it is a fixed
cost. Let us also assume that

• Nk = 2dNk−1 in dimension d, and

• there is C > 0 independent of k such that

W k−1
k ≤ CNk. (6.28)

Assumption (6.28) says that the work of smoother iterations and restriction/interpolation opera-
tions scales linearly with the number of points in the level k grid. (Note (6.28) implies that the
number νk of smoother iterations is bounded; νk ≤ 3 in most practical usage.)

From these definitions we can write W1 = W 0
1 + W0, and at finer levels Wk = W k−1

k +
γWk−1, from which it follows by induction that

Wl = γl−1W0 +

l∑
k=1

γl−kW k−1
k .

From our assumptions, Nl = (2d)l−kNk for the finest grid. Now using (6.28) and summing the
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Ω(3)

Ω(2)

Ω(1)

Ω(0)

-pc_mg_type full -pc_mg_type kaskade

Figure 6.14. One full (left) or Kaskade (right) cycle for a -da_refine 3 -pc_type mg run.
The initial coarsening phase only restricts the residuals.

geometric series gives (Exercise 6.22)

Wl ≤ γl−1W0 + CNl
2d

2d − γ
. (6.29)

Suppose we fix the coarsest grid and make Nl → ∞ by increasing the cycle depth l. For
V-cycles (γ = 1) inequality (6.29) says

Wl = O(Nl) as Nl →∞. (6.30)

That is, the work of a V-cycle is O(Nl) where Nl is the number of grid points in the fine grid.
Expression (6.29) reveals the difference between V- and W-cycles. In W-cycles with γ = 2,

from the leading term γl−1W0 = 2l−1W0 the number of returns to the coarsest grid is exponen-
tial in l. In most serial computations with d > 1, because W0 � W k−1

k for larger k (i.e., finer
levels in the cycle), the leading term can be ignored. However, if the cost W0 is large, including
the time needed to communicate in parallel (Chapter 7), then a W-cycle may be expensive.

Consider V-cycles in the case where W0 is negligible and assume W k−1
k = CNk. Then

this model implies Wl ≈ CNl2
d/(2d − 1). It follows that the cost of a V-cycle is very close

to the cost of the work on the finest level only. In 3D we have Wl ≈ (8/7)W l−1
l and in 2D

Wl ≈ (4/3)W l−1
l .

Multigrid V- and W-cycles each start at the finest grid and do smoothing steps before restrict-
ing the residual to coarser grids. A different strategy is to start at the coarsest grid, generate
an inexpensive “first guess” there, and then interpolate the solution itself upward to finer grids,
returning to coarser grids afterward to clean-up low frequency components of the error. This is
called grid sequencing, and in PETSC it applies to nonlinear (and linear) problems at the level
of the SNES solver, i.e., it is -snes_grid_sequence; see the next chapter.

On the other hand, in PETSC a multigrid cycle of the type considered here is a precondi-
tioner for the linear equations on the fine grid. Thus, for -pc_type mg one must first restrict
the fine-grid residual down to the coarsest grid before applying a “coarse-first” strategy. Two
GMG types apply this kind of cycle, namely -pc_mg_type full and -pc_mg_type kaskade
(Figure 6.14). These types work upward through finer grids in different ways. As it reaches each
next-finer grid, full does a single V-cycle to resolve low-frequency components of the error.
(One may add -pc_mg_cycle_type w to get a W-cycle.) The simpler upward-only version is
-pc_mg_type kaskade [41]. Note PETSC only uses the down-smoother (Sν11 ) in kaskade
(Exercise 6.21).

Controlling multigrid
Consider the following example with -pc_type mg and three levels of refinement starting from
the default 3× 3 grid in 2D (Figure 6.12):
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Controlling multigrid 161

$ ./fish -da_refine 3 -pc_type mg -ksp_converged_reason
Linear solve converged due to CONVERGED_RTOL iterations 4

problem manuexp on 17 x 17 point 2D grid:
error |u-uexact|_inf = 3.257e-05, |u-uexact|_h = 1.209e-05

This run solves the default Poisson problem using CG iteration and a GMG preconditioner with
these defaults:

• l = 4 levels (-pc_mg_levels 4), one more than -da_refine,

• multiplicative composition (-pc_mg_type multiplicative) of V-cycles
(-pc_mg_cycle_type v), applied once per PC application
(-pc_mg_multiplicative_cycles 1),

• a nested-dissection-ordered (-mg_coarse_pc_factor_mat_ordering_type nd) LU di-
rect solve (-mg_coarse_ksp_type preonly -mg_coarse_pc_type lu) on the coars-
est grid, and

• a Cheybshev smoother (-mg_levels_ksp_type chebyshev), applied twice
(-mg_levels_ksp_max_it 2; i.e., ν1 = ν2 = 2), using SSOR preconditioning
(-mg_levels_pc_type sor).

This list, while impressive already, is quite incomplete!
Exposure of solver structure is again obligatory for understanding. In fact, the rest of this

section depends on the reader having viewed the solver:

$ ./fish -da_refine 3 -pc_type mg -ksp_view

(Option -snes_view gives nearly the same view because the SNES type is ksponly.)
One may explore multigrid-relevant options by adding -help to a -pc_type mg run and

piping the result through grep, seeking one of the following prefixes: pc_mg_, mg_levels_
or mg_coarse_. Control at a particular grid level z uses option prefix -mg_levels_z_ (Fig-
ure 6.12), but to control all levels (except the coarsest) use -mg_levels_, and to control the
coarsest use -mg_coarse_. For example, a clear view of multigrid V-cycles is revealed here by
indentation:

$ ./fish -da_refine 3 -pc_type mg \
-ksp_monitor -mg_{levels,coarse}_ksp_converged_reason

... [four V-cycles snipped]
3 KSP Residual norm 1.000366698011e-03
Linear mg_levels_3_ solve converged due to CONVERGED_ITS iterations 2

Linear mg_levels_2_ solve converged due to CONVERGED_ITS iterations 2
Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 2
Linear mg_coarse_ solve converged due to CONVERGED_ITS iterations 1

Linear mg_levels_1_ solve converged due to CONVERGED_ITS iterations 2
Linear mg_levels_2_ solve converged due to CONVERGED_ITS iterations 2

Linear mg_levels_3_ solve converged due to CONVERGED_ITS iterations 2
4 KSP Residual norm 3.635434047456e-05

problem manuexp on 17 x 17 point 2D grid:
error |u-uexact|_inf = 3.257e-05, |u-uexact|_h = 1.209e-05

This reveals one V-cycle per preconditioner application, two smoother iterations per level, and
one iteration for the direct solve on the coarse grid. Recall that the number of smoother applica-
tions is fixed, and no norm-based test for convergence is applied, so we see CONVERGED_ITS for
the smoothers but CONVERGED_RTOL for the top-level KSP solver. Also, because we are using left
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162 Chapter 6. Preconditioners for PDEs

preconditioning, a V-cycle is applied before the first residual norm is reported. (Right precon-
ditioning is not supported for the CG method, but compare -ksp_type gmres -ksp_pc_side
right.)

One may also use X graphics to display the solution, i.e., the coarse-grid correction, at each
level in the multigrid hierarchy (Exercise 6.23).

Example 6.7. As an exercise in understanding PETSC multigrid options, suppose we want to
apply the following multigrid solver on an 81× 81 fine grid:

classical multigrid W-cycles, rediscretization on each grid, LU decomposition on the
coarse grid, ν1 = 1 and ν2 = 1 classical GS smoothing steps, and three coarsenings.

To build the grids, note that an 81 × 81 grid is 3 levels of refinement of an 11 ×
11 grid, so we start with -da_grid_x 11 -da_grid_y 11 -da_refine 3, and then
the default -pc_mg_levels 4 is what we want. We choose -ksp_type richardson
for classical multigrid (with -pc_type mg). Rediscretization is the default (versus
-pc_mg_galerkin) but we want -pc_mg_cycle_type w. The coarse grid solver defaults,
namely -mg_coarse_ksp_type preonly and -mg_coarse_pc_type lu, are what we want.
The default smoother is Chebyshev, so we switch to -mg_levels_ksp_type richardson
for the classical GS iteration, but the default for -mg_levels_pc_type sor is SSOR, so we
add -mg_levels_pc_sor_forward for GS. We set -mg_levels_ksp_max_it 1 to limit the
down- and up-smoothers to one iteration each. Here is the resulting command line:

$ ./fish -da_grid_x 11 -da_grid_y 11 -da_refine 3 -ksp_type richardson \
-pc_type mg -pc_mg_cycle_type w -mg_levels_ksp_type richardson \
-mg_levels_pc_sor_forward -mg_levels_ksp_max_it 1

To further clarify, add options -ksp_view, -ksp_monitor, or
-mg_{levels,coarse} _ksp_converged_reason.

This solver turns out to be a bit faster than the default mg solver for this problem. For example,
on a 1281×1281 fine grid (-da_refine 7) it is about twice as fast. It is an excellent solver, but
the defaults are good too.

Three further examples explore various -pc_type mg solvers, and they expose additional
run-time options.

Example 6.8. For the 3D Poisson equation we compare the initial residual norm reduction from
various multigrid types and cycles. To make it a relatively fair comparison we fix the number of
smoother sweeps on the finest grid in each case. We use a 129× 129× 129 grid of N ≈ 2× 106

points, and each (serial) run takes a few seconds.
Specifically we run

$ ./fish -fsh_dim 3 -da_refine 6 -fsh_initial_type INIT \
-ksp_type richardson -ksp_max_it 1 -ksp_monitor \
-ksp_norm_type unpreconditioned -pc_type mg MORE

with initial conditions INIT equal to either zeros or random. This is a single multigrid-precon-
ditioned Richardson iteration; there is no Krylov acceleration.

We compare six solvers by setting MORE as follows. First we try four V- or W-cycle solvers,
each with one or two smoother sweeps at each level and one or two cycles per preconditioner
application:

-pc_mg_cycle_type v -mg_levels_ksp_max_it 2 -pc_mg_multiplicative_cycles 1
-pc_mg_cycle_type v -mg_levels_ksp_max_it 1 -pc_mg_multiplicative_cycles 2
-pc_mg_cycle_type w -mg_levels_ksp_max_it 2 -pc_mg_multiplicative_cycles 1
-pc_mg_cycle_type w -mg_levels_ksp_max_it 1 -pc_mg_multiplicative_cycles 2
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Controlling multigrid 163

Table 6.3. Initial residual-norm ratios ‖r1‖2/‖r0‖2 for various multigrid types and cycles in
Example 6.8.

Multiplicative Full Kaskade
V 2 V W 2 W

zeros 0.034 0.033 0.025 0.025 0.046 0.118
random 0.052 0.052 0.008 0.008 0.052 0.069

We also compare two coarse-grid-first solvers, with MORE equal to

-pc_mg_type full -mg_levels_ksp_max_it 2
-pc_mg_type kaskade -mg_levels_ksp_max_it 4

Every one of the 12 combinations corresponds to exactly four smoother sweeps on the finest
grid, though with differing amounts of work on coarser grids. For each one we compute the ratio
‖r1‖2/‖r0‖2 of unpreconditioned (-ksp_norm_type unpreconditioned) residual norms for
a single simple iteration. The results in Table 6.3 show that, for this Poisson problem, W-cycles
are most effective and Kaskade iterations least so.

The zero initial condition yields an initial error (and residual) which is smooth. The random
initial condition, i.e., white noise, gives nonsmooth initial error. The W-cycles, which spend a
larger fraction of effort on coarser grids, are much more effective in the noisy case.

The above experiment used a fixed smoother, the default Chebyshev iteration. The next ex-
ample measures the effect of different smoothers on the multigrid convergence rate. Regarding
theory for this example, note that the smoothing factor of a relaxation scheme can be determined
from the coefficients of the operator, i.e., the leading-order symbol [21], at least for classical it-
erations and structured-grid discretizations of linear, constant-coefficient elliptic equations. That
is, see Exercises 6.26 and 6.27.

Example 6.9. We solve 2D cases of equation (6.18), namely

− cxuxx − cyuyy = f(x, y), (6.31)

on domain Ω = (0, 1)2, for cx = 1 and different values cy ≥ 1. The ratio cy/cx is a measure
of the anisotropy of the diffusion process, that is, of how the diffusion varies in different direc-
tions. When cy/cx is large then we expect that the error will retain significant oscillations in the
relatively undamped direction, namely the x direction if cy > 1 (Exercise 6.25). As the residual
is reduced the coarse-grid correction becomes inefficient because high-frequency error modes
remain after smoothing and the multigrid iteration stagnates.

We use four values of cy/cx and four different smoothers (below), so there are 16 cases. In
each case we do five classical V-cycles on a fixed 257 × 257 grid and compute the reductions
‖r5‖/‖r0‖:

$ ./fish -fsh_problem manupoly -fsh_initial_type random -da_refine 6 \
-ksp_type richardson -ksp_norm_type unpreconditioned \
-ksp_max_it 5 -ksp_rtol 0 -ksp_atol 0 -fsh_cy CY -pc_type mg SMOOTH

Here CY = 1, 10, 102, 103 and SMOOTH is from the following list:

• -mg_levels_ksp_type chebyshev -mg_levels_pc_type sor (the default),

• -mg_levels_ksp_type chebyshev -mg_levels_pc_type icc,
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Figure 6.15. When anisotropy cy/cx is strong in equation (6.31), multigrid performance de-
grades, though Chebyshev smoothing can adapt. Our best smoother for strong anisotropy uses ICC pre-
conditioning.

• classical SSOR: -mg_levels_ksp_type richardson -mg_levels_pc_type sor,

• classical GS: same plus -mg_levels_pc_sor_forward.

Note we turn off KSP convergence tests so that the number of iterations is fixed.
The result is in Figure 6.15. On the isotropic Poisson equation (cy = 1), classical SSOR and

GS are the best smoothers in multigrid V-cycles. (SSOR does two GS sweeps per iteration so
their efficiencies are comparable.) However, as the anisotropy grows the Chebyshev smoother
can adapt to the growing range of eigenvalues of the matrix. Thus it becomes the best smoother
for large anisotropy.

Switching to the goal of solving the equations fully, using option -ksp_monitor and show-
ing the first ten iterations, in the strong anisotropic case our best performance is from Cheby-
shev iteration with an ICC-preconditioned matrix (Figure 6.16). An incomplete factorization can
smooth the error effectively because it nearly solves the local interaction using the anisotropic
coefficients.

Our last example below returns to the two-level Dryja and Widlund scheme (6.25). We show
that with the addition of a coarse grid a domain decomposition method can have a bounded
number of Krylov iterations as the grid is refined. This example also hints at the many subgrid-
based preconditioners that can be composed at the PETSC command line.

Example 6.10. In equation (6.25) the coarse grid has spacing 2h, the original grid has spacing
h, and there are P subdomains. Suppose we solve the subdomain problems exactly by LU. The
multigrid interpretation of this choice is to have two levels, i.e., a fine grid and a coarse grid, but
then apply the additive Schwarz method on the fine grid as a smoother.

This is a parallel example because, by default, the number of ASM subdomains equals the
number of processes. Suppose we solve the coarse grid problem exactly, but redundantly, by
LU, so that each process solves the same coarse grid problem. (Note -mg_coarse_pc_type
redundant is the parallel default; see Chapters 7 and 8.)
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Figure 6.16. In the strong-anisotropy case with cy = 103, multigrid V-cycles are fastest with a
Chebyshev+ICC smoother.

We do the following runs:

$ mpiexec -n P ./fish -fsh_dim 2 -da_refine L -ksp_type gmres \
-ksp_rtol 1.0e-10 -pc_type mg -pc_mg_levels 2 -pc_mg_type additive \
-mg_levels_ksp_type preonly -mg_levels_pc_type asm \
-mg_levels_sub_pc_type lu -mg_coarse_ksp_type preonly \
-mg_coarse_pc_type redundant -mg_coarse_redundant_pc_type lu

We consider P = 4, 16, 64, 256 processes and L = 6, 7, 8, 9 refinement, respectively, so each
subgrid has fixed size 65 × 65 with N ≈ 4 × 103 points. For comparison we also do single-
level DD runs, namely -pc_type asm -sub_pc_type lu. Figure 6.17 shows the result. The
two-level method does a fixed number of KSP iterations while the iterations for ASM+LU grow
as O((1/H)1.37).

While the Dryja and Widlund two-level method (6.25) has grid-independent iterations, in the
form here it is not recommended because at high resolution it requires large direct solves either
on subgrids or on the coarse grid. A multigrid solver, by contrast, needs only low-cost smoothing
on all levels, except possibly on a coarsest grid of (fixed) small size.

Exercises
6.1. A scalar weight ω may be used to modify the Jacobi iteration (6.5). Given splitting (6.4)

this is written [64]

uk+1 = (1− ω)uk + ωD−1(b− (L+ U)uk). (6.32)

Show this is just simple iteration (6.3) with α = ω and M = D.
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Figure 6.17. The two-level method (6.25), which adds a coarse grid to single-level DD, has
constant KSP iteration counts under grid refinement.

6.2. Show that if limuk = u exists in the Jacobi method (6.5) then Au = b. Show that
if ρ(I − D−1A) < 1 then the method converges for all initial values u0. Show that if
ρ(I −D−1A) > 1 then it diverges for some u0.

6.3. Decompose the matrix as for the Gauss-Seidel iteration (6.8), namely A = D + L + U ,
and suppose thatD is invertible. Show that the linear system (D+L)y = c can be solved
by the forward substitution formula

y[i] =
1

aii
(c[i]− ai,0y[0]− · · · − ai,i−1y[i− 1]) .

Thereby explain the equivalence of (6.8) and (6.7). (Note that identifying the submatrices
L and U requires ordering the variables.)

6.4. For a demonstration of the oddity identified on page 133, use tri.c from Chapter 2:

$ ./tri -ksp_type richardson -pc_type sor -ksp_converged_reason

Then add -ksp_monitor and rerun. (Confirm a 1000-times difference in iterations!)
Note that one sets a maximum number of KSP iterations by -ksp_max_it.

6.5. Show that the right-hand actions in Figure 6.7 are equivalent to applyingM−1 from (6.16)
in simple iteration (6.3) with α = 1.

6.6. The difference between additive and multiplicative compositions can be seen in how they
propagate error. Let ek = uk − u where Au = b. Show that (6.15) implies

ek+1 = (I − (B0 +B1)A) ek

while (6.16) implies

ek+1 = (I −B1A) (I −B0A) ek.
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Exercises 167

6.7. Suppose Ri is a subgrid injection.

(a) Show that S = R>i Ri is an orthogonal projection [143] in the usual inner product
〈u,v〉 = u>v. That is, show S2 = S and S> = S.

(b) Show that if A is symmetric positive-definite, and if a subgrid correction matrix Bi
is defined by (6.13), then S = BiA is an orthogonal projection in the inner product
〈u,v〉A = u>Av.

6.8. Consider the injection R from a fine grid to a coarse grid (Figure 6.10). Let S = R>R
so that S is an orthogonal projection in the inner product u>v, with norm ‖S‖2 = 1
(previous exercise). Argue that if A is the discretization of an elliptic operator then S
nonetheless has large norm in the inner product u>Av, i.e., in energy norm.

6.9. Assume A is symmetric and suppose that the multiplicative composition in Figure 6.7
is followed by another residual update, then application of B0, and then a final solution
update, giving a three-step multiplicative composition [134]. Show that if the Bi are
symmetric then this results in a preconditioner with symmetric matrix

M−1 = B0 +B1 −B1AB0 −B0AB1 +B0AB1AB0.

6.10. Confirm that ch6/fish.c can do what ch3/poisson.c can do. For example, reproduce
the results in Figure 3.10 and Table 3.1.

6.11. Code fish.c generates an SPD matrixA. Check this using option -mat_is_symmetric.
Calculate its eigenvalues using options -pc_type none -ksp_view_eigenvalues.

6.12. In the text we demonstrate a factor-of-two difference in iteration count between classical
Jacobi and GS methods using a tridiagonal matrix. Confirm that the same factor can be
seen in iterations for this 3D Poisson problem:

$ ./fish -fsh_dim 3 -da_refine 4 -ksp_converged_reason \
-ksp_type richardson

(Recall that classical iterations correspond to adding -pc_type jacobi or -pc_type
sor -pc_sor_forward. You may want to do Exercise 6.4 first to avoid confusion.)

6.13. The ASM preconditioner does not require a DMDA. The decomposition can be done using
Vec indices. Experiment with this Chapter 2 example:

$ mpiexec -n P ./tri -tri_m M -ksp_type richardson -ksp_rtol 1.0e-12 \
-pc_type asm -sub_pc_type lu -pc_asm_overlap X

with various values of concurrency P, dimension M, and overlap X. Count KSP iterations
and confirm the results on overlap in the text. (However, in 2D and 3D PDE examples,
because of the variable ordering, one wants the ASM to use the parallel decomposition
generated by the DMDA.)

6.14. The parallel overlapping ASM method requires communication between processes. In
its classical form [134] the algorithm communicates overlap values of the residual before
applying the preconditioner and then it communicates and interpolates the result after the
application. (These communication stages correspond to column-wise and row-wise over-
lap in heuristic (6.17), respectively.) In PETSC this classical method is -pc_asm_type
basic, but it is not the default. The default type restrict avoids the second commu-
nication stage by ignoring the overlap values. There is also type interpolate which
avoids the first communication stage. Use fish.c to experiment and see why restrict
is the default.
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168 Chapter 6. Preconditioners for PDEs

6.15. The ASM preconditioner is formula (6.19). The multiplicative Schwarz method (MSM)
preconditioner, for p subgrids, is the following computation of v = M−1r for a given
vector r:

v← B0r

v← v +B1(r−Av)

...
v← v +Bp−1(r−Av).

PETSC supports this method in serial with options
-pc_type asm -pc_asm_blocks X -pc_asm_local_type multiplicative

(Classical MSM would also use -pc_asm_type basic; see Exercise 6.14.)
Using serial runs of fish.c, do your best to reproduce the first table of iteration counts

on page 27 of [134]. Note that fish.c is set up to solve the same Poisson problem
as in this table, but additional options -ksp_type gmres -ksp_gmres_restart 10
-sub_pc_type lu -ksp_rtol 1.0e-2 will be needed. Comment on remaining differ-
ences.

6.16. Table 6.1 reports KSP iterations for ASM preconditioning runs using CG iteration with
Cholesky direct solves on the subgrids. These are appropriate choices because A is sym-
metric (Exercise 6.11). Now compare results, including execution time, when you use
GMRES+ASM+LU for the same runs. Recall that nested-dissection (ND) reordering
is the default for PETSC’s LU direct solver, so compare -ksp_type cg -sub_pc_type
cholesky -sub_pc_factor_mat_ordering_type nd with -ksp_type gmres
-sub_pc_type lu. Show that for GMRES+ASM+LU our conclusions about overlap
are unaltered.

6.17. With fish.c we can check that formula (6.21), in which P>int is used for restriction, is
correct for the Galerkin coarse-grid matrix. Do
$ ./fish -fsh_dim 1 -da_refine 2 -pc_type mg -pc_mg_galerkin \

-mg_levels_1_ksp_view_mat ::ascii_dense

Compare the resulting 5 × 5 matrix with the one shown in the text. Then remove option
-pc_mg_galerkin and compare to (6.22).

6.18. Suppose Ah is the matrix on the fine grid Ωh and c is a positive vector of length N2h, the
size of the coarse grid Ω2h. Suppose P denotes some prolongation from Ω2h to Ωh and
define a restriction R = diag(c)P>. Show that P (RAhP )−1R = P (P>AhP )−1P>.
Thus the scalings c do not change the Galerkin coarse-grid correction B2h in (6.23),
though they do affect the Galerkin coarse-grid matrix Â2h in (6.21).

6.19. Show (6.27). (Recall Exercise 2.5.)
6.20. Write out a pseudocode for the W-cycle, based on Figure 6.13 and the V-cycle pseudo-

code.
6.21. By default the PETSC GMG post-smoother (up-smoother) S2 is the same KSP object

as the pre-smoother (down-smoother) S1. These can be separated by declaring the up-
smoother as distinct, but then one must control things carefully. Add the following options
to a GMG run of fish:

-pc_mg_distinct_smoothup -mg_levels_up_ksp_max_it 3 \
-mg_{levels,levels_up,coarse}_ksp_converged_reason

(Note -pc_mu_distinct_smoothup generates new options with postfix _up.) This will
show the GMG cycle structure rather clearly. Thereby show that the various solid dots
and circles in Figures 6.13 and 6.14 are correct.
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Exercises 169

6.22. Show (6.29).
6.23. The internal states of a multigrid solver can be visualized from the PETSC command

line. For example, to visualize the coarse grid solutions and the smoother iterates at all
grid levels, add the following options to a GMG run of fish:

-mg_coarse_ksp_view_solution draw -mg_levels_ksp_view_solution draw \
-draw_pause 0

6.24. The default smoother in PETSC is Chebyshev iteration with SSOR preconditioning.
Alternatives based on classical (weighted) Jacobi (6.32), GS (6.8), and SSOR (6.10)
iterations are worth comparing because they are ubiquitous in the multigrid literature
[26, 49, 144]. For 2D Poisson the recommended ω value for a weighted-Jacobi smoother
is ω = 4/5 [144].

Using GMG runs of fish.c, and various levels of refinement, compare numbers of
iterations using the following smoothers:

-mg_levels_ksp_type chebyshev -mg_levels_pc_type sor # default
-mg_levels_ksp_type richardson -mg_levels_pc_type jacobi
-mg_levels_ksp_type richardson -mg_levels_pc_type sor \

-mg_levels_pc_sor_forward
-mg_levels_ksp_type richardson -mg_levels_pc_type sor
-mg_levels_ksp_type richardson -mg_levels_pc_type jacobi \

-mg_levels_ksp_richardson_scale 0.8

6.25. In the runs which produced Figure 6.15 we only consider equation (6.31) with cy ≥ 1.
What about anisotropy with cy ≤ 1? It is actually equivalent to solving −cxuxx − uyy =
f(x, y) with cx ≥ 1, in the sense that in both cases the smoother becomes inefficient at
removing oscillations from the error in the y direction. Visualize this effect.

6.26. In the text we visualize the smoothing properties of the classical iterations but avoid analy-
sis. One may use Fourier analysis for 2D Gauss-Seidel iteration ([21, pp. 10–11] and [144,
Chapter 4]) as follows.

Consider the 2D and cx = 1 case of (6.18) with square cells h = hx = hy . Apply our
FD scheme, equation (3.5):

−(ui−1,j − 2uij + ui+1,j)− cy(ui,j−1 − 2uij + ui,j+1) = h2f(xi, yj).

Suppose we apply the GS iteration by traversing the grid in lexicographic order. If u(k)
ij is

the kth GS iterate, the errors v(k)
ij = u

(k)
ij − uij satisfy

− (v
(k+1)
i−1,j − 2v

(k+1)
ij + v

(k)
i+1,j)− cy(v

(k+1)
i,j−1 − 2v

(k+1)
ij + v

(k)
i,j+1) = 0. (6.33)

We expand the errors in a finite Fourier series using I =
√
−1:

v
(k)
ij =

∑
(s,t)

V
(k)
st eI(si+tj). (6.34)

This sum is over frequencies (s, t) which can be supported on a grid with spacing h =
1/m, thus over certain points in the square [−π, π)2. For example, s ∈ {2πq/m} where
q is an integer with |q| ≤ m/2, and similarly for t.

Combine equations (6.33) and (6.34) to show that the coefficients in the Fourier expan-
sion satisfy

(−e−Is − cye−It + 2 + 2cy)V
(k+1)
st + (−eIs − cyeIt)V (k)

st = 0.
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170 Chapter 6. Preconditioners for PDEs

Thus the amplification factors of the frequencies satisfy

µ(s, t) :=
|V (k+1)
st |
|V (k)
st |

=

∣∣∣∣ eIs + cye
It

2 + 2cy − e−Is − cye−It

∣∣∣∣ .
Observe that µ(s, t)→ 1 as (s, t)→ (0, 0).

6.27. (Continues Exercise 6.26.) Define a 2D frequency (s, t) to be high if either component is
above half the maximum frequency: max{|s|, |t|} ≥ π/2. The smoothing factor is the
worst amplification factor considering only high frequencies,

µ̄ = max
max{|s|,|t|}≥π/2

µ(s, t).

First, consider GS smoothing for the isotropic case of (6.18) with cx = cy = 1. Refer-
ence [21] claims a “simple calculation” shows that µ̄ = 0.5, attained at (π/2, arccos(4/5)).
Using the result of Exercise 6.26, confirm this, perhaps numerically via a contour map of
µ(s, t). A smoothing factor of 0.5 is satisfactory; a few smoothing sweeps generates
errors v(k)

ij which are well approximated on the next-coarsest grid.
Next, for anisotropic cases with cx = 1 and cy � 1 or cy � 1, generate additional

contour plots of µ(s, t). Confirm that µ(0, π/2) and µ(π/2, 0) are the maxima in these
cases, respectively, and that µ̄ ≈ 1, which is not so good.
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Interlude: Quadrature

In the chapters ahead we will need to numerically approximate integrals, i.e., do quadrature, in
planar regions. Here we pause to present a bit of code which computes integrals over reference
elements for the upcoming finite element (FE) methods, namely a square for Chapter 9 and a
triangle for Chapter 10. (Integrals over the square also make an appearance in Chapter 7.) While
the description here is deliberately basic and limited, the Firedrake library (Chapter 13) auto-
mates quadrature and extends these methods far beyond what is covered here. As this interlude
is really just calculus, readers can skip forward and return to it when needed.

Quadrature rules for one-dimensional integrals [67] are of the form

∫ 1

−1

f(x) dx ≈
n−1∑
r=0

wrf(ξr). (I.1)

Other intervals of integration are handled by a linear change of variable. Generally a nonnegative
weight function ρ(x) is allowed; the left side of (I.1) becomes

∫ 1

−1
f(x) ρ(x) dx, but the right side

is unchanged.
In Gaussian rules the nodes ξr and weights wr are chosen to maximize the degree of poly-

nomials f(x) for which the integral is exact, that is, to maximize the degree of the rule. The
trapezoid rule, Simpson’s rule, and other Newton-Cotes rules [125] are less accurate than Gauss-
ian rules, for a given number of function evaluations, because the nodes are equally spaced.

Gauss-Legendre quadrature is a Gaussian rule over interval [−1, 1] with ρ(x) = 1. The rules
with n = 1, 2, 3 points are given in Table I.1; the n = 1 case is simply the midpoint rule. The
elegant manner in which the nodes and weights are determined is left for the references (e.g.,
[67, 125]), but note that the degree of the n-point rule is 2n− 1 (Exercise I.1).

Table I.1. Nodes and weights for low-degree Gauss-Legendre quadrature.

n nodes ξr weights wr
1 0 2
2 − 1√

3
,+ 1√

3
1, 1

3 −
√

3
5 , 0,+

√
3
5

5
9 ,

8
9 ,

5
9

For now we merely record nodes and weights in a struct, defined in the C header
c/quadrature.h and displayed in Code I.1. A program using the n-point rule would include
this header file and then choose the rule:

#include "quadrature.h"
const Quad1D q = gausslegendre[n-1];
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172 Interlude: Quadrature

ξ

η

0, 0

ξ

η

0, 0

0, 1

1, 0

1, 1

ξ

η

0, 0

0, 1

0, 2

1, 0

1, 1

1, 2

2, 0

2, 1

2, 2

Figure I.1. Tensor product Gauss-Legendre rules (I.2) on the square �∗ for n = 1, 2, 3.

The calling program then uses values q.n, q.xi[r], q.w[r]. For examples see
c/ch7/minimal.c and c/ch9/phelm.c.

#define MAXPTS 3

typedef struct {
PetscInt n ; / / number of quadrature points fo r th i s ru le
PetscReal x i [MAXPTS] , / / locat ions in [ −1 ,1]

w[MAXPTS] ; / / weights (sum to 2)
} Quad1D;

static const Quad1D gausslegendre [3 ]
= { {1 ,

{0.0 , NAN, NAN} ,
{2.0 , NAN, NAN} } ,

{2 ,
{−0.577350269189626, 0.577350269189626, NAN} ,
{1.0 , 1.0 , NAN} } ,

{3 ,
{−0.774596669241483, 0.0 , 0.774596669241483},
{0.555555555555556, 0.888888888888889, 0.555555555555556}} } ;

Code I.1. c/quadrature.h, part I. Implementation of (I.1).

Formula (I.1) can be extended to integrals over the square �∗ = [−1, 1]× [−1, 1], the refer-
ence element for the Q1 FE method in Chapter 9:∫

�∗

v(ξ, η) dξ dη ≈
n−1∑
r=0

n−1∑
s=0

wrwsv(ξr, ξs). (I.2)

The n = 1, 2, 3 cases of this 2D rule are pictured in Figure I.1; it is simply the product (tensor
product [87]) of 1D rules.

For rectangles a change of variables transfers the integral to �∗ as follows. Suppose v(x, y)
is any integrable function on R = [a, b] × [c, d]. The linear map x(ξ, η) = a + 1

2 (b − a)(ξ +
1), y(ξ, η) = c + 1

2 (d − c)(η + 1) takes �∗ to R. The Jacobian of this map is the constant
(b− a)(c− d)/4, the ratio of areas, so∫

R

v(x, y) dx dy =
(b− a)(c− d)

4

∫
�∗

v(ξ, η) dξ dη, (I.3)

where v(ξ, η) = v(x(ξ, η), y(ξ, η)).
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Interlude: Quadrature 173

ξ

η

0

ξ

η

0 1

2

ξ

η

0
1 2

3

Figure I.2. Symmetric Gaussian quadrature rules on the reference triangle 4∗ for n = 1, 3, 4
points. Points (ξr, ηr) are indexed by r = 0, . . . , n− 1.

Integrals over triangles will be approximated using symmetric quadrature rules [46]. Here
the triangle4∗ with vertices (0, 0), (1, 0), (0, 1) is the reference element (Figure I.2) for the P 1

FE method in Chapter 10. For n quadrature points (ξr, ηr) ∈ 4∗ with weights wr we have

∫
4∗

f(ξ, η) dξ dη ≈
n−1∑
r=0

wrf(ξr, ηr). (I.4)

(Nonsymmetric rules based on tensor products of one-dimensional integrals are an alternative
[87].) Table I.2 shows the degree k = 1, 2, 3 rules with n = 1, 3, 4 points, respectively. Note that
the sum of the weights is 1/2 because |4∗| = 1/2 is the area of the triangle. The k = 3 rule has
a negative coefficient so its stability is suspect.

Table I.2. Symmetric Gaussian quadrature rules on the reference triangle4∗.

Degree k n Nodes (ξr, ηr) Weights wr
1 1 (1/3, 1/3) 1/2

2 3
(1/6, 1/6)
(2/3, 1/6)
(1/6, 2/3)

1/6
1/6
1/6

3 4

(1/3, 1/3)
(1/5, 1/5)
(3/5, 1/5)
(1/5, 3/5)

−27/96
25/96
25/96
25/96

We implement (I.4) similarly to the tensor product case, but now we have a single index r
for the quadrature points so we store the locations as pairs (Code I.2). An application program
would declare

#include "quadrature.h"
const Quad2DTri q = symmgauss[k-1];

then use values q.n, q.xi[r], q.eta[r], q.w[r]; see code c/ch10/unfem.c for an example.
Finally, as illustrated in Chapter 10, general triangles are easily handled using a linear change of
variables.
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174 Interlude: Quadrature

#define MAXPTS_TRI 4

typedef struct {
PetscInt n ; / / number of quad . points fo r th i s ru le
PetscReal x i [MAXPTS_TRI] , / / locat ions : ( xi , eta ) in re f . t r i ang le

eta [MAXPTS_TRI] , / / with ver t ices (0 ,0) , (1 ,0) , (0 ,1)
w[MAXPTS_TRI] ; / / weights (sum to 0.5)

} Quad2DTri ;

static const Quad2DTri symmgauss[3 ]
= { {1 ,

{1 .0 /3 .0 , NAN, NAN, NAN} ,
{1 .0 /3 .0 , NAN, NAN, NAN} ,
{1 .0 /2 .0 , NAN, NAN, NAN} } ,

{3 ,
{1 .0 /6 .0 , 2.0/3.0 , 1.0/6.0 , NAN} ,
{1 .0 /6 .0 , 1.0/6.0 , 2.0/3.0 , NAN} ,
{1 .0 /6 .0 , 1.0/6.0 , 1.0/6.0 , NAN} } ,

{4 ,
{1 .0 /3 .0 , 1.0/5.0 , 3.0/5.0 , 1 .0 /5 .0} ,
{1 .0 /3 .0 , 1.0/5.0 , 1.0/5.0 , 3 .0 /5 .0} ,
{ −27.0/96.0 , 25.0/96.0 , 25.0/96.0 , 25.0/96.0}} } ;

Code I.2. c/quadrature.h, part II. Implementation of (I.4).

Exercises
I.1 Write a short code using (I.2) to do the integrals∫

�∗

(1 + ξ)k + (1 + η)k dξ dη =
2k+3

k + 1

for k = 0, 1, . . . , 6. Confirm that the n = 1, 2, 3 Gauss-Legendre quadrature formulas
exactly integrate these degree 2n− 1 polynomials, but not degree 2n polynomials.

I.2 The claimed degree of accuracy k = 1, 2, 3 in Table I.2 can be checked by comparing to
the exact integral ∫

4∗
ξiηj dξdη =

i! j!

(i+ j + 2)!
.

Confirm exactness for all cases with 0 ≤ i+ j ≤ n, and inexactness for some cases with
i+ j = n+ 1.
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Chapter 7

Optimal solvers
for elliptic PDEs

Definition. A solution method for systems of equations inN real unknowns is said to be optimal
if it solves these problems in O(N) floating-point operations (flops) as N →∞ [109].

Because PDE problems are posed in infinite-dimensional spaces, but then discretized intoN -
variable algebraic systems in which N wants to be large, this definition should make sense as an
aspiration. In this chapter, on several elliptic PDE problems, we achieve it by using the multigrid
methods introduced in the last chapter. In fact, the rest of the book will demonstrate, or nearly
demonstrate, an optimal solver for each PDE problem. Note that while this chapter focuses
on flops, in the next chapter we take seriously actual run time, not to mention parallelization.
Because algorithms generally change slightly when run in parallel (see Chapter 8), here we only
consider the one-process case.

Solver complexity
We call the asymptotic growth rate of flops for a solution method the solver complexity. An opti-
mal solver has the lowest possible solver complexity because any method for solving nontrivial
equations for N unknowns must do at least O(N) operations of some kind.

In the above definition we should really refer to a “family of” systems of equations with
N → ∞, and furthermore N → ∞ asymptotics only make sense on a hypothetical computer
with infinite memory; in practice we will always be memory limited. Also, the phrase “solves
these problems” means that a residual norm is reduced to a predetermined tolerance which is
independent of N , so the definition depends on a choice of norm on RN .

Optimality is an impossible goal for families of linear systems with generic dense matrices
havingO(N2) nonzero entries. Any such method would need to do some operations on each non-
zero matrix entry. Polynomial or trigonometric spectral methods [142], for example, discretize
a PDE into nontrivial dense matrix equations, and solver complexity often exceeds O(N2) in
that case. However, spectral methods are extraordinarily effective in many cases—Chapter 13
includes an example—and optimality as we have defined it is not the relevant issue if the order of
the discretization error also grows with increasing N . Thus we will only use the adjective “opti-
mal” to describe a solution method for the discrete equations for finite difference/element/volume
methods if the discretization error order is O(hk) where k is fixed.

An easy but important class of optimal methods for linear algebraic equations are the LU and
Cholesky direct factorizations for tridiagonal or otherwise banded linear systems Au = b. For
systems, with bandwidth bounded independently of N , i.e., O(1) bandwidth as N → ∞, these
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176 Chapter 7. Optimal solvers for elliptic PDEs

direct methods are optimal as long as pivoting is not required for stability (see Chapter 2). Thus
optimal solvers often exist for the discretizations of so-called “two-point” problems, i.e., ODE
boundary value problems.

However, suppose we consider an FD discretization of the Poisson PDE on a d-dimensional
structured grid with N unknowns and m = O(N1/d) grid points in each dimension (Chapter 6).
This yields a matrix A with bandwidth which grows with N . In 2D, with the usual ordering of
the variables, the bandwidth is O(m) = O(N1/2) and in 3D it is O(m2) = O(N2/3). If A is
also symmetric positive definite (SPD) we can apply Cholesky decomposition and this (banded)
algorithm has solver complexity O(N2) in 2D and O(N7/3) in 3D [64]. While much better than
generic Gauss elimination at O(N3), such solvers are not optimal. More sophisticated variable
orderings—see discussion of nested-dissection ordering in Chapters 2 and 6—can substantially
reduce the solver complexity, but not to O(N) except in special cases.

In any case, FD and FE discretizations of linear elliptic PDEs generate sparse matrices A
with a bounded number of nonzeros per row, so these matrices have O(N) nonzero entries in
total. Multiplying a vector v by such a matrix, i.e., a single sparse “mat-vec” operation Av,
takes O(N) work. This is the starting point for seeking optimality in any “sparse method.”

A sketch of the good case where optimality is achieved goes like this. We suppose that
the preconditioner (Chapter 2) requires O(N) work per application of M−1, and we choose a
Krylov method for which the work in each iteration, usually including a few sparse mat-vecs
Av, is O(N). Then we suppose that the number of preconditioned Krylov iterations to achieve
a small residual norm is independent of N , that is, it is O(1). (Equivalently, the number of
iterations is O(1) as h → 0 if the problem comes from discretizing a PDE.) Then this solver
requires O(N) total work:

optimal:

number of
iterations

O(1)

(
preconditioner

application

O(N) +
Krylov step

O(N)

)
= O(N).

Many preconditioned-Krylov methods do not achieve optimality, under the above or any
other strategy, but at least the assumption of O(N) work for each Krylov step includes most KSP
types, including Richardson iteration, CG, MINRES, and bi-orthogonalization methods [66].
(See Chapter 11 for an example using -ksp_type bcgs.) It even includes restarted GMRES if
the restart count is fixed, but not the true GMRES iteration which has growing work and memory
for each iteration.

Critically, however, Krylov iteration counts are tied to the spectral properties of the precondi-
tioned matrix M−1A (Chapter 2), and this is the single most important barrier to optimality. The
preconditioned matrices must have spectra which are appropriately bounded—e.g., clustered into
disks away from the origin of the complex plane—independently of N . For discretized PDEs
this means that the spectral bounds on the preconditioned operators must be independent of the
mesh spacing h.

Our definition of optimality applies equally to nonlinear algebraic systems solved by
Newton-Krylov methods. Such a solver is optimal if a fixed number of Newton iterations, in-
dependent of N , gives the desired accuracy, and if each linear Newton step problem is solved
optimally. (As a detail, if the Newton iteration is implemented with a line search then the num-
ber of residual evaluations per line search must also be bounded independently of N .) For
example, the well-behaved nonlinear ODE boundary value problem in reaction.c in Chap-
ter 4 was solved optimally by a fixed number of Newton steps using a direct tridiagonal linear
solver.

For a large class of discretized PDE problems in 2D and 3D, multigrid preconditioning is the
key to constructing optimal solvers. In fact, a slightly stronger goal than optimal complexity is
sometimes sought for multigrid solvers. “Textbook multigrid efficiency” [4, 28, 140] means that
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An optimal solver for the Poisson equation 177

the solution method does at most the work of 10 residual evaluations, but in this book we usually
overlook the constant in “O(N).” Optimality, defined above, is our goal.

It is worth observing that standard explicit time-stepping schemes for advection equations
(Chapter 11), and generally the FD and FV methods used for hyperbolic time-dependent PDEs,
are also optimal in the following sense. In these cases the N unknowns of the problem are
understood to be all the points of a space-time grid. Because of CFL-type restrictions associated
to well-defined maximum wave speeds (Chapter 11), the grid refines at comparable rates in all
dimensions, but also O(1) operations suffice to compute the value at each space-time grid point.
While we do not want to press this perspective on the reader, it is one way of explaining the
dominance of explicit methods for hyperbolic PDEs.

This discussion is raising the bar quite high. Not every PDE has a known optimal solver.
However, on a variety of linear and nonlinear elliptic PDEs we will show clear evidence of
optimality, namely O(N) work for large N , by using multigrid-preconditioned Newton-Krylov
methods. In this chapter we demonstrate it for the 2D and 3D Poisson equation, the nonlinear
minimal surface equation, and the fourth-order biharmonic (plate) equation.

An optimal solver for the Poisson equation
We start by demonstrating the serial (single-process) optimality of geometric multigrid (GMG)
for the Poisson equation in 2D and 3D, using fish.c from the last chapter. Our primary measure
of solver complexity will be flops, as a function of the number of degrees of freedom, but we
demonstrate optimality in run time as well.

Consider these 2D runs using grid-refinement levels L = 3, . . . , 9, the CG method, and PC =
none,icc,mg:

$ cd c/ch6/
$ ./fish -ksp_monitor_singular_value -da_refine L -pc_type PC

Option -ksp_monitor_singular_value prints the ratio of maximum and minimum singular
values for the preconditioned matrices, i.e., the 2-norm condition number κ = κ(M−1A). In
the above runs, using the last κ value printed once the KSP has converged, we get the results in
Figure 7.1.

Now, Theorem 3.4 shows that if κ is bounded independently of h then the number of CG
iterations will be also, and the solution method will be optimal. For the GMG-preconditioned
matrix, κ is impressively constant, bounded by 1.2 as h decreases. This reflects that a multigrid
V-cycle nearly solves the Poisson problem, unassisted by the CG iteration. By contrast, for the
unpreconditioned matrices κ grows from 102 to 4×105. For ICC preconditioning κ grows at the
same rate, though it is an order of magnitude smaller.

Now consider these runs using default GMG settings:

$ ./fish -fsh_dim D -ksp_rtol 1.0e-10 -pc_type mg -da_refine L \
-ksp_converged_reason -log_view

For dimension D = 2 we use levels L = 5, . . . , 11, while for D = 3 we use L = 3, . . . , 7, so that
in each caseN , the total number degrees of freedom, spans more than three orders of magnitude.
The maximum refinement levels give N > 107, on grids of 40972 and 2573 points, respectively.
These finest-grid runs took less than a minute, but refining one more level generated “out-of-
memory” error messages on the author’s workstation; compare with Exercise 7.1. (In fact, with
regard to achieving high resolutions, a feature of optimal solution methods is that one can view
them as essentially memory limited, not run-time limited.)

To measure algorithmic work we can use either the flops or the wall clock time for the
SNESSolve event reported by -log_view. Note that inside PETSC solver kernels, and in the
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Figure 7.1. Condition numbers κ(M−1A) of preconditioned Poisson matrices. For GMG, it is
independent of h, and close to one.

residual/Jacobian evaluation routines in poissonfunctions.c, flops are counted through calls
to PetscLogFlops(). On the other hand, timings are noisier because they are subject to delays
from memory-hierarchy transfers (“cache misses”), and from competition with other jobs.

When we plot flops versus N for the above runs, optimality is very clear. Figure 7.2 shows
that flops = O(N1) to near perfection, reflecting the simplicity of the Poisson problem on a
square/cube and the power of a single GMG V-cycle to nearly solve the problem. While the 2D
and 3D results look rather the same, by plotting flops-per-N versus N as in Figure 7.3 we see
that the 3D computations are consistently more expensive. Each KSP iteration did a few hundred
flops per unknown in all cases. On the other hand, plotting time-per-N as in Figure 7.4 reveals
that this workstation needs about 3 microseconds per unknown for larger problem sizes.

There are too many possibilities to allow testing all GMG option combinations (Chapter 6),
but on the 3D Poisson problem we can also compare

• W-cycles (-pc_mg_cycle_type w),

• full multigrid cycles (-pc_mg_type full), and

• Galerkin coarse-grid operator construction (-pc_mg_galerkin).

In every case, the result is between 2400 and 3700 flops per degree of freedom across all of the
above grids (not shown). There is some variation between the methods, primarily because the
number of KSP iterations varies a little, but the evidence is clear that, on this clichéd Poisson
problem, all of these GMG solvers are optimal.

Parallel multigrid and the coarse-grid problem
Though our demonstrations have been serial so far, multigrid is parallelized in PETSC. This
assertion has at least two meanings:
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Figure 7.2. Measured by total flops versus N , GMG-preconditioned CG is clearly an optimal
solver for 2D and 3D structured-grid Poisson problems.
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Figure 7.3. Plotting flops-per-N gives a flat graph for an optimal solver. 3D solutions require
more work per degree of freedom.
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Figure 7.4. Wall clock time per degree of freedom gives a relatively flat graph.

• viability in parallel: Does the multigrid algorithm run on P > 1 MPI processes, and if so,
how? What are the PETSC options to control it?

• scaling in parallel: For a fixed number of processes P > 1 how does the work—flops or
run time—grow with the number of unknowns N? (Is it still O(N)?) What happens when
P increases or both P and N increase?

Parallel viability for the Poisson equation starts with understanding the coarse-grid solve, ad-
dressed here, while the question of scaling is deferred to Chapter 8.

On P > 1 processes and a structured (fine) grid of N points, what does the GMG solver
-pc_type mg actually do? Consider the 2D Poisson run

$ mpiexec -n P ./fish -pc_type mg -da_refine L

First DMDACreate2d() is called with arguments corresponding to a 3 × 3 coarsest grid Ω(0)

(Chapter 6),26 so -da_refine L will generate a fine grid Ω(L) with m = 2L+1 + 1 points in
each direction. The refinement process creates DMDA objects for each level of a grid hierarchy,
refining from Ω(0) to Ω(L) by repeatedly calling DMRefine(). Each level is partitioned into P
subgrids and distributed across the P processes. The number of points of each subgrid is not
perfectly balanced across processes, but we will assume that on the fine grid Ω(L) each process
owns roughly N/P unknowns. As the hierarchy is created, the rest of the PC is set up, as in
serial, with interpolation/restriction operators for each level.

Observe that the coarsest-grid problem depends globally on the fine-grid PDE data. For
example, in the above runs the Ω(0) problem has only one nontrivial equation, at the center of
the 3×3 grid. Through restriction of the residuals from finer grids, the right side of this equation
depends on all the data of the problem, namely the source function f on the whole domain and
the values of g along the entire boundary.

26In other words, corresponding to -da_grid_x 3 -da_grid_y 3.
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Parallel multigrid and the coarse-grid problem 181

By default the problem on the coarsest grid Ω(0) is solved exactly by LU decomposition.
However, noting PETSC only implements LU in serial (Chapter 2), the coarsest-grid problem is
copied to and solved redundantly, in serial on each process. That is, the above run includes these
implied defaults:

-mg_coarse_ksp_type preonly -mg_coarse_pc_type redundant \
-mg_coarse_redundant_ksp_type preonly -mg_coarse_redundant_pc_type lu

Note that redundant is a type of PC but it defines a communication pattern, not a computation
per se. An alternative approach would be to transfer the problem to the rank 0 process and only
solve it there, but the redundant approach saves a communication stage. That is, though it
would require all-to-all communication when copying the Ω(0) problem to each processor, the
redundant solution is available on each process without further communication.

However, the DMDA type requires each process to always own at least one grid point, including
on the coarsest grid, and this constrains GMG usage. For instance, while the above run succeeds
with P = 9, for P > 9 it fails with a “Partition ... is too fine!” message. By contrast,
the PETSC algebraic multigrid type -pc_type gamg (Chapter 10), which does not use a DM
object, permits a process to own zero degrees of freedom, as does the unstructured grid DM type
DMPlex (Chapter 13).

An obvious solution here, using DMDA, is to make the coarsest grid finer. For instance, con-
sider either of these equivalent formulations which set a 5× 5 coarsest grid:

$ mpiexec -n P ./fish -pc_type mg -da_grid_x 5 -da_grid_y 5 -da_refine L-1
$ mpiexec -n P ./fish -pc_type mg -da_refine L -pc_mg_levels L

These runs succeed with P = 10 or P = 25, for example, but fail whenever P > 25. (The prime
factorization of P determines which P ≤ 25 are in fact allowed.)

In other words, for any given coarsest grid, using redundant coarse-grid solves, PETSC’s
parallel implementation of GMG on a structured DMDA grid imposes an upper bound on P . As
P increases the user will need to increase the size of the coarsest grid, but doing so comes at a
cost. A coarser coarsest grid is more effective at removing low-frequency error components, and
making it finer degrades the performance of the solver in either of two ways (Exercise 7.2).

• If the coarsest-grid problem is solved accurately by a suboptimal direct method (LU,
Cholesky, SVD), for example, then the number of flops for each multigrid cycle will in-
crease as the cost of the coarsest-grid solve becomes dominant.

• If the coarsest-grid problem is solved inexactly, but by O(N) work, for example using a
fixed number of smoother iterations, then the convergence factor of the multigrid cycle
gets worse as the cycles become shallower and less effective at removing low-frequencies
in the error.

We introduce the telescope PC type [109], an alternative to redundant which transcends this
performance barrier, in Chapter 8. These considerations also imply that in parallel the W-cycle
must be treated with caution. Its many visits to the coarsest grid (Figure 6.13) require copious
interprocess communication while doing relatively little arithmetic. Thus V-cycles are the default
in PETSC.

In addition to the choice of solution method on the coarsest grid, GMG needs smoothing
and interpolation/restriction operations at each level. All of these components are based on Mat
objects “inside” the GMG PC object, which makes its structure quite complicated (Exercise 7.3).
Generally speaking, GMG components are implemented to have a high degree of parallelism
[144], at least for DM-based grids and meshes [10], but adjustments are made for the parallel
case:
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Figure 7.5. The work for parallel GMG scales as O(N) if we fix the number of processes. By
contrast, single-level DD (asm + icc) is far from optimal.

• SOR (e.g., Gauss-Seidel and SSOR) smoothers are, by default, modified to their “processor-
block” versions (page 133). The off-process entries of the matrix do not contribute to the
smoother, thus some smoother performance is sacrificed to avoid communication.

• Smoothers use a fixed number of iterations instead of a norm-based convergence test.
In fact this applies even in serial, but in parallel it is significant because it avoids
norm evaluations (global reductions) which require communication [72]. Thus in
-mg_levels_ksp_converged_reason output the smoother iterations always succeed
with a CONVERGED_ITS message.

Regarding the second point, one can completely avoid norm evaluations in multigrid smooth-
ers by choosing -mg_levels_ksp_type richardson. This may compromise the convergence
rate, for example if the coefficients in (6.31) are highly anisotropic, but richardson works well
in isotropic Poisson and advection-diffusion (Chapter 11) cases. In any case, parallel perfor-
mance analysis suggests that Chebyshev iteration (page 137) remains a good default choice in
parallel, at least for symmetric problems [3], even though eigenvalue estimation for the chebyshev
smoother requires norm evaluations.

Because of how the defaults work, the performance of our GMG method for the Poisson
equation is relatively independent of P , beyond the requirement that the coarse grid is large
enough for the given P values. In fact, Figure 7.5 shows the results from 3D Poisson runs with
concurrency P = 1, 8, 64. The runs use a 5× 5× 5 coarsest grid; 64 < 125 so Ω(0) has at least
one point per process. We consider L = 2, 3, 4, 5, 6 levels of grid refinement:

$ mpiexec -n P ./fish -fsh_dim 3 -da_grid_x 5 -da_grid_y 5 -da_grid_z 5 \
-ksp_rtol 1.0e-10 -da_refine L -pc_type mg
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The minimal surface equation 183

(The L = 6 grid is 257 × 257 × 257 with N = 1.7 × 107 unknowns.) The only significant P
dependence in the above runs is inside the smoother, which has a Chebyshev KSP and an SSOR
PC. Processor-block SSOR (Chapter 6) degrades as the number of degrees of freedom per process
becomes small.

Figure 7.5 shows the total flops per N as a function of N , compared to a single-level DD
solver (-pc_type asm -sub_pc_type icc). Parallel GMG does optimalO(N) work for each
fixed P on this easy example. In Chapter 8 such an analysis using fixed P and increasing N is
called a static scaling study.

The minimal surface equation
From calculus we know that the area of a differentiable surface z = v(x, y) on a domain Ω ⊂ R2

is
I[v] =

∫
Ω

√
1 + |∇v|2 dx dy. (7.1)

The minimal surface equation (MSE) [51] is the Euler-Lagrange equation of this functional, a
well-known nonlinear and elliptic PDE,

−∇ ·

(
∇u√

1 + |∇u|2

)
= 0. (7.2)

One derives (7.2) by computing the directional derivative of I at the minimizer u, in the direction
of a test function v, requiring this to be zero for all v (Exercise 7.4). A standard problem for (7.2),
well posed if Ω is convex [60], includes continuous Dirichlet boundary conditions u

∣∣
∂Ω

= g.
In zero gravity the function u would determine the shape of a soap film or elastic membrane
spanning the rigid wire frame at height g along ∂Ω [119]. Two such frames are shown in Figure
7.6. Note that the catenoid (left) provides an exact solution (Exercise 7.5).

x

y

x

y

H

Figure 7.6. Catenoid and tent wire frames, i.e., boundary conditions g.

Equation (7.2) is a quasilinear elliptic PDE [60] with solution-dependent coefficient (1 +
|∇u|2)−1/2 on the leading-order derivative. It is uniformly elliptic only if |∇u| is bounded above
on Ω; this depends on the particular boundary value problem. By contrast, the Liouville-Bratu
equation (Exercises 4.5 and 7.12), for example, is a uniformly elliptic semilinear PDE with only
a zeroth-order nonlinearity.

Our strategy for solving (7.2) is to discretize by finite differences on a structured grid (DMDA).
When solving such nonlinear PDE boundary value problems using Newton iterations (SNES),
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i− 1 i i+ 1

j − 1

j

j + 1

D(ww) D(we)

D(ws)

D(wn)

Figure 7.7. A BOX stencil FD scheme for equation (7.3).

multigrid (GMG or AMG) preconditioners can be applied to the linear systems for each step, so-
called Newton-multigrid methods [18, 26, 144]. When CG or GMRES is used as an accelerator
(Exercise 7.7), such methods could also be called “Newton-Krylov multigrid.” In any case, an
initial Newton iterate is needed. At first we will set all interior values to zero, but we have more
to say about this below.

Our residual-evaluation function will generalize (7.2) to the form

−∇ ·
(
D(|∇u|2)∇u

)
= 0. (7.3)

The diffusivity D is thus solution dependent, and we implement

D(w) = (1 + w)
q
. (7.4)

While q = −1/2 in (7.2), the q = 0 case allows testing on the Laplace (Poisson) equation.
Our centered FD scheme for (7.3) uses a structured grid with cell dimensions hx by hy . The

scheme is scaled the same way as (3.7) for the Poisson equation,

Fij(u) = −hx
hy

(D(we)(ui+1,j − ui,j)−D(ww)(ui,j − ui−1,j))

− hy
hx

(D(wn)(ui,j+1 − ui,j)−D(ws)(ui,j − ui,j−1)) ,

(7.5)

where subscripts e, w, n, s indicate cardinal directions (Figure 7.7). A centered scheme for a
linear diffusion equation −∇ · (D(x, y)∇u) = 0 would evaluate the diffusivity D(x, y) at the
same “staggered” points (open circles) as in the figure (Exercise 7.9). To maintain O(h2

x + h2
y)

local truncation error [115] the partial derivatives have FD approximations which are centered at
these staggered points. For example, at the “east” point (xi + hx

2 , yj) we compute

we =

(
ui+1,j − ui,j

hx

)2

+

(
ui,j+1 + ui+1,j+1 − ui,j − ui+1,j

4hy

)2

, (7.6)

and the other staggered points have similar formulas (Exercise 7.6). Note that this scheme re-
quires DMDA_STENCIL_BOX when calling DMDACreate2d().
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The minimal surface equation 185

If w = |∇u|2 is small then 1 + |∇u|2 ≈ 1 and (7.2) is nearly the Laplace equation. This
observation suggests that we may try reusing the Jacobian from the Poisson equation, namely
from ch6/poissonfunctions.h|c. In fact, in the absence of an exact Jacobian we should
choose between -snes_fd_color and -snes_mf_operator, and the latter can exploit an in-
exact Jacobian as a preconditioner in the matrix-free numerical derivative. As we will see, both
approaches work reasonably well though we will prefer the former. (Exercise 7.11 compares the
implementation of an exact Jacobian.)

The above ideas, and little else, go into a new code called minimal.c (not shown). Start by
compiling it and then looking at options from -help:

$ cd c/ch7/ && make minimal
$ ./minimal -help | grep ms_

A first concern is to demonstrate convergence in the default catenoid verification case.
Consider these runs on m×m grids for m = 9, 17, . . . , 129:

$ for LEV in 2 3 4 5 6; do
./minimal -snes_converged_reason -snes_fd_color -da_refine $LEV; done

On the finest grids LEV=5,6 this initial attempt fails with DIVERGED errors. The default initial
iterate seems to be outside of the domain of convergence of the Newton iteration in these cases.

Option -ms_exact_init allows us to initialize using the gridded values of the exact con-
tinuum solution. This is not the exact solution of the discrete system, but it should be close on
fine grids. Using this option results in convergence to default tolerances in two Newton iterations
on each grid. Furthermore the numerical errors ‖u − uexact‖∞ decrease by a factor of four at
each reduction of h by two (not shown), so we have good evidence for O(h2) convergence of the
scheme.

Note that the Jacobian is not symmetric in nonlinear cases q 6= 0, so GMRES may be a
good KSP choice. However, when q = 0 in (7.3) the problem is the Poisson equation and the
residual-evaluation code should generate a symmetric Jacobian. Testing this might find bugs in
the boundary condition implementation in particular, so we consider the runs

$ ./minimal -snes_fd_color -da_refine 5 -ms_q 0 -mat_is_symmetric TOL

with tolerances TOL = 10−6, 10−7, 10−8. These report “Matrix is symmetric,” but for tol-
erances 10−9, 10−10 the matrix is not symmetric, as expected for a finite-differenced Jacobian
only accurate to O(

√
ε) ≈ 10−8 (Chapter 4). At this point, based on the runs so far, we propose

that the residual evaluation in minimal.c is correct.
Regarding preconditioning the Newton steps, GMG is promising for performance on fine

grids, but for it to work the residual-evaluation code must be correctly rediscretized on the pro-
vided grid using the DMDALocalInfo input for FormFunctionLocal(). To check that this is
correctly done in any SNES- and DMDA-using code, note the solver combination -pc_type mg
-snes_fd_color should not throw an error. In fact, using -ms_exact_init we can confirm
that GMG generates three to six KSP iterations per Newton iteration in most cases solved by
minimal.c. By contrast, for -pc_type ilu the number of KSP iterations grows rapidly to over
100 (Exercise 7.8).

Thus we have only two significant convergence issues in solving this PDE problem:

1. The initial iterate u0 = 0 is not in the domain of quadratic convergence on fine grids.
Consider the runs

$ for LEV in 2 3 4 5 6 7; do
./minimal -snes_converged_reason -snes_fd_color -pc_type mg \

-da_refine $LEV -ms_problem PROBLEM; done
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186 Chapter 7. Optimal solvers for elliptic PDEs

For catenoid the three finest grids DIVERGE. All six tent runs CONVERGE, but the number
of Newton iterations grows rapidly. One might be tempted to code an ad hoc scheme for the
initial iterate, but an excellent and general-purpose approach is shown in the next section.

2. Newton convergence rates are slower when the solution is less smooth. Using the tent
problem to demonstrate, note that solution gradients (slopes) |∇u| are large near the tent
door if H is large (Figure 7.6). Thus the runs

$ for HH in 0.1 1 10 100; do
./minimal -da_refine 6 -snes_converged_reason -snes_fd_color \

-pc_type mg -ms_problem tent -ms_tent_H $HH; done

require increasing Newton iterations, 7, 11, 13, 15, respectively. While larger nonlineari-
ties are indeed intrinsically harder, these convergence rates are also improved by the next
idea.

Grid sequencing
Efficient solutions of nonlinear PDEs using Newton’s method require initial iterates within the
domain of convergence of the method. For a good initial iterate, quadratic convergence (Chapter
4) will set in immediately. Finding such a good initial iterate on a coarse grid is apparently much
easier than on a fine grid, a hint we now pursue.

With grid sequencing one starts on a coarse grid and solves the nonlinear problem to some
accuracy. The solution is interpolated to become the initial iterate on a finer grid. After solving
and interpolating we generate the initial iterate on a next finer grid, and so on. Like GMG, this
strategy needs a grid hierarchy, but grid sequencing is not multigrid. One uses coarse grids only
for initial iterates, not as a tool for removing components from the error.

We propose to use both grid sequencing and GMG preconditioning. This powerful strategy
could be called “grid-sequenced Newton-Krylov multigrid,” undoubtedly a flabby name. How-
ever, as it is comparable to full-cycle GMG preconditioning (-pc_mg_type full; Chapter 6)
we instead call it a nonlinear full multigrid cycle.

Grid sequencing in PETSC is an outer iteration executed by SNES. To exploit it, codes must
provide a DM for an initial coarsest grid or mesh, create a SNES, attach these with a call to
SNESSetDM(), and then call SNESSolve(). All of this is just as expected for GMG and DD
preconditioners, but the code must also be prepared to use a solution returned by SNESSolve()
which is on a finer grid than the original DM. As shown in Code 7.1, after the solve the code gets
the fine-grid DM and solution Vec by calls to SNESGetDM() and SNESGetSolution(), respec-
tively. (There is no need to restore or Destroy these objects.)

SNESSolve(snes ,NULL, u _ i n i t i a l ) ;
DMRestoreGlobalVector (da,& u _ i n i t i a l ) ;
DMDestroy(&da) ;
SNESGetDM(snes,&da) ;
SNESGetSolution (snes,&u) ;

Code 7.1. c/ch7/minimal.c. For grid sequencing a code must get the updated DM and solution
Vec after calling SNESSolve().

At the command line the key idea is that the new option -snes_grid_sequence replaces
-da_refine. More precisely, DMDA options like -da_refine and/or -da_grid_x determine
the initial, coarsest grid and then -snes_grid_sequence adds levels.
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Grid sequencing 187

Consider the following serial MSE solution which is better than any so far:

$ ./minimal -snes_fd_color -snes_converged_reason -pc_type mg -snes_grid_sequence 8
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE ... 5

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE ... 3
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
done on 513 x 513 grid and problem catenoid: error |u-uexact|_inf = 2.27604e-07

The initial DMDA holds a 3 × 3 grid. Five Newton iterations are needed there because the initial
iterate is poor, but the domain of convergence is large and forgiving, and this solve is fast because
the grid is so coarse. Then the SNES asks the DMDA for the next-finer grid (DMRefine), and an
interpolant of the current solution for use as the next initial iterate. This is repeated at each level.
That only three Newton iterations are needed on all of the finer levels shows that the interpolant
of the previous converged solution is a good initial iterate. Indented output displays the grid
sequencing. Adding

-mg_{levels,coarse}_ksp_converged_reason

gives the nonlinear full cycle indentation profile, similar to a linear full cycle (Figure 6.14), but
with control from both SNES and PC objects.

Before looking at optimality we should consider the smoothness of MSE solutions. Recalling
Figure 7.6, and based on Exercise 7.5, if c > 1 then the catenoid solution has bounded deriva-
tives of all orders on Ω = (0, 1)2. However, as c → 1 the maximum magnitude of the solution
gradient diverges. Problem tent is even worse. The parameter H controls the maximum size of
the gradient, but for any H the magnitude of second derivatives, such as |uyy| near the top of the
tent door, is unbounded on Ω.

The nonlinear full cycle strategy gives optimal complexity up to N ≈ 106, at least, if the
solution gradient is not too large. Consider runs of the form

$ ./minimal -snes_fd_color -pc_type mg -snes_grid_sequence LEV

for LEV = 5, 6, 7, 8, 9; the last has N = 1.05 × 106. Using -log_view output to count flops,
Figure 7.8 shows the flops-per-N result for cases c = 1.1, 1.01, 1.0001 for catenoid and H =
0.1, 1, 10 for tent. For these parameter ranges, measured solver complexity is no worse than
O(N1.03) for catenoid, but it increases from O(N1.00) to O(N1.58) for tent as H grows.
Evidently, a lack of smoothness can have a performance impact.

In terms of the two convergence issues listed above (page 185), we have addressed the first
by grid sequencing. We will not make further progress with the second, but one approach would
use adaptive mesh refinement [19, 24, 144] (AMR) near locations of large gradients. Note that
while Chapters 10, 13, and 14 consider unstructured meshes, AMR itself is outside the scope of
this book.

Regarding parallel runs, this nonlinear full cycle approach has similar parallel performance
to that already seen from CG+GMG solvers for the linear Poisson equation. We will address the
parallel performance of minimal.c at higher resolution in the next chapter.

As a final note let us return to the Jacobian. Instead of using -snes_fd_color we may apply
preconditioned Jacobian-free Newton-Krylov (JFNK) using option -snes_mf_operator. The
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188 Chapter 7. Optimal solvers for elliptic PDEs

104 105 106

N = degrees of freedom

104

105

106

flo
ps

 / 
N

H=0.1 (tent)
H=1
H=10
c=1.1 (catenoid)
c=1.01
c=1.0001

Figure 7.8. For the minimal surface equation, a nonlinear full cycle solver, i.e., grid-sequenced
Newton-Krylov multigrid, has optimal or near-optimal complexity except when unbounded second deriva-
tives degrade performance.

assembled analytic Jacobian for the Poisson equation is used as preconditioner material. There
is, however, a large performance difference between these approaches. For example, the runs

$ ./minimal -pc_type mg -{snes,ksp}_converged_reason \
-snes_grid_sequence 9 JAC

with JAC = -snes_fd_color,-snes_mf_operator each converge in three Newton iterations
on the finest grid. With -snes_mf_operator there are substantially more KSP iterations at each
Newton step so that the run time is about four times longer. A custom monitor, described next,
helps to more precisely diagnose the difficulties of JFNK on this example.

A SNES monitor for the minimal surface equation
Equation (7.2) determines the surface of minimal area spanning a given wire frame, so it would
be nice to see the surface area decrease during the Newton iteration. Also, to address the second
convergence issue in our list on page 185, we want to compute bounds on the solution-dependent
diffusivity D(|∇v|2) = (1 + |∇v|2)−1/2.

To compute solution area and diffusivity bounds at every SNES iteration we need to treat each
Newton iterate vk as a function v(x, y) on Ω with a well-defined gradient. A disadvantage of the
FD paradigm is that functions are only represented by their grid values, but, looking forward, the
next chapter introduces a Q1 finite element (FE) method in which vk represents a function. We
exploit this idea in the monitor code as follows.

Let
�ij = [xi−1, xi]× [yj−1, yj ]

be a rectangular cell with dimensions hx and hy . If v ∈ RN corresponds to grid values vi,j then
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The biharmonic equation as a coupled system 189

the interpolant

v(x, y) = vi,j
(x− xi−1)(y − yj−1)

hxhy
+ vi−1,j

(xi − x)(y − yj−1)

hxhy

+ vi−1,j−1
(xi − x)(yj − y)

hxhy
+ vi,j−1

(x− xi−1)(y − yj−1)

hxhy

(7.7)

is a smooth function on �ij with the given values at the corners. One may then compute partial
derivatives ∂v/∂x, ∂v/∂x (Exercise 7.10) to get an expression for |∇v|2 on �ij . The vector
v ∈ RN corresponds to a function on Ω̄ = [0, 1]2 which is continuous and piecewise smooth,
with bounded, but discontinuous, gradient.

Next, each integral in the sum

I[v] =
∑
i,j

∫
�ij

√
1 + |∇v|2 dx dy

is evaluated accurately by Gauss-Legendre quadrature, namely formulas (I.2) and (I.3) from the
Interlude (page 171).

The above formulas go into a function MSEMonitor() (not shown), and a call-back via
SNESMonitorSet() is set by option -ms_monitor. (Compare with TSMonitorSet() in Chap-
ter 5.) The result looks like the following on the tent problem and a 129× 129 grid:

$ ./minimal -ms_problem tent -da_refine 6 -pc_type mg -snes_fd_color \
-snes_converged_reason -ms_monitor

area = 1.49258333; 0.0078 <= D <= 1.0000
area = 1.34061346; 0.0125 <= D <= 1.0000
...
area = 1.32348541; 0.0279 <= D <= 1.0000
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 11
done on 129 x 129 grid and problem tent ...

Note that the surface areas decrease monotonically. Replacing -da_refine with
-snes_grid_sequence shows that in the nonlinear full multigrid cycles the initial states on
each grid level also become close to the final solution in surface area.

The bounds on diffusivity D = (1 + |∇v|2)−1/2 range over almost two orders of magnitude
in the above case. It follows that the constant-coefficient Laplace operator, i.e., the matrix used
with -snes_mf_operator, does not match the spectrum of the true Jacobian at all well; the
preconditioned operator is not close to the identity. Adding -ksp_view_singularvalues, with
either -snes_fd_color or -snes_mf_operator, confirms that the preconditioned operator for
JFNK has large condition number. Among other conclusions, it follows that adding code for an
exact Jacobian is reasonably justified (Exercise 7.11).

In summary, we have resolved our MSE convergence issues identified earlier—or at least
understood them better. On the other hand, the parallel scaling of the solver remains unexplored;
see Chapter 8.

The biharmonic equation as a coupled system
We have not yet applied one of the preconditioning strategies mentioned in Chapter 6, namely
-pc_type fieldsplit (Figure 6.4). To introduce it we use the fourth-order biharmonic equa-
tion:

∇4u = uxxxx + 2uxxyy + uyyyy = f. (7.8)

Note that the biharmonic operator∇4 = (−∇2)2 is nonnegative.
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190 Chapter 7. Optimal solvers for elliptic PDEs

Equation (7.8) is a model for small deflections of thin plates under distributed loads f
[24, 36]. We consider homogeneous boundary conditions such that the edge of the plate is
“simply supported” at height zero, with no resistance to bending along the direction normal to
the boundary:

u = 0 and ∇2u = 0 on ∂Ω. (7.9)

Consider also the problem which combines (7.8) with boundary conditions u = 0 and∇2u+
(1− ν)uττ = 0, where uττ is the second derivative of u taken tangentially to the boundary ∂Ω.
The weak form of this problem is well posed for 0 < ν < 1 [24, section 5.9]. For boundary
conditions (7.9) on the unit square Ω = (0, 1)2, u = 0 along ∂Ω implies uττ = 0 along ∂Ω
almost everywhere. Thus, at least in the case we actually solve, conditions (7.9) are also well
posed.

If an FD method is applied directly to (7.8), via an approximation of fourth-order derivatives,
then the stencil is large and the implementation of boundary conditions requires thought. While
this can certainly be done—Exercise 7.13 requests the 1D version—we may instead replace
(7.8) with a coupled system of two second-order equations [135]. In fact, with the substitution
v = −∇2u the system has triangular block form:

(7.8) ⇐⇒ −∇2v = f
−∇2u = v

⇐⇒
[
−∇2 0
−I −∇2

] [
v
u

]
=

[
f
0

]
. (7.10)

The boundary conditions are Dirichlet for both components, u = 0 and v = 0 on ∂Ω, so this
approach is easy to implement.

Our implementation of system (7.10) in a SNES-based code ch7/biharm.c is straightforward
and not shown. We manufacture an exact solution u(x, y) = c(x)c(y), where c(x) is a 6th-degree
polynomial which satisfies boundary conditions (7.9). Then we create a 2D DMDA structured grid
with dof = 2. Calling DMDASetFieldName() allows us to refer to components by names “u”
and “v” in fieldsplit usage below. The Vecs associated to this DM, including the solution, are
stored in interleaved form v0,0, u0,0, v1,0, u1,0, . . . . Local evaluation routines use

typedef struct {
double v, u;

} Field;

to refer to vi,j as W[j][i].v, for example, where W has type Field**; compare with pattern.c
in Chapter 5. The residual evaluation FormFunctionLocal() (not shown) computes scalar
residuals F[j][i].v ≈ −∇2v − f and F[j][i].u ≈ −v − ∇2u at each interior grid point
(xi, yj). Trivial equations apply at each boundary point and we scale the rows just as we did in
Chapter 6.

The familiar five-point stencil FD discretization of the scalar Laplacian −∇2 (Chapter 3)
generates block A, an SPD matrix, in the system

Tw = g where T =

[
A 0
−I A

]
, w =

[
v
u

]
, g =

[
f
0

]
. (7.11)

The matrix T is nonsymmetric so we set the default KSP type to GMRES; we also set the SNES
type to KSPONLY because the problem is linear. Note that option -ksp_view_mat displays a
sparsity pattern shown on the left in Figure 7.9, reflecting the interleaved storage order.

Because the DMDA allocates ten nonzeros per (generic) row in the discrete system (7.11), i.e.,
based on dof = 2 and a star stencil with (half-)width one, the cost of a single -snes_fd_color
Jacobian approximation (Chapter 4) is more than 10 residual evaluations. It follows that
programmer effort to implement an analytical Jacobian implementation, as we have done
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Block-structured preconditioning 191

Figure 7.9. Sparsity of T in the original, interleaved form (left) and reordered into blocks (right;
equation (7.11)) with scalar Laplacians on the diagonal.

(FormJacobianLocal(); not shown), is justified. Performance profiling of flops or time also
justifies this.

When using the exact solution for verification, norm errors are somewhat larger for the u
component than for the v component, though both converge at the expected rate. In fact, adding
-ksp_rtol 1.0e-10, to runs on grids of 332 up to 20492 points, yields rates ‖v − vexact‖∞ =
O(h2.0002) and ‖u− uexact‖∞ = O(h2.0004) (not shown).

Block-structured preconditioning
Our purpose in building a biharmonic equation solver is to introduce -pc_type fieldsplit.
This preconditioner type exploits information from a DM, namely that dof = 2 in this case. The
matrix T in (7.11) has block size two so, in the interleaved storage form, 2×2 blocks are allocated
in the same pattern as the nonzeros of the scalar Laplacian. However, fieldsplit permits us
to view T blockwise as in equation (7.10) and the right side of Figure 7.9. No memory needs to
be copied or moved for this interpretation, but run-time control of fieldsplit is based on this
blockwise view.

For an example of the kind of high-level, blockwise action made possible by fieldsplit,
consider the following calculation to invert T :[

I 0
0 A−1

] [
I 0
I I

] [
A−1 0

0 I

]
︸ ︷︷ ︸

T−1

[
A 0
−I A

]
︸ ︷︷ ︸

T

=

[
I 0
0 I

]
. (7.12)

One may regard this either as blockwise forward substitution to solve a lower triangular system
or as a single step of blockwise Gauss-Seidel.

If we compute the action of A−1 by a direct LU solver then the following command line
implements (7.12) to solve the PDE problem (7.10) on a 33× 33 grid:

$ ./biharm -da_refine 4 -pc_type fieldsplit \
-fieldsplit_v_pc_type lu -fieldsplit_u_pc_type lu

This is a direct solution method, composed from a step of 2× 2 block Gauss-Seidel, because the
default fieldsplit type is multiplicative (below), plus direct factorization on the blocks,
thus M−1T = I . This solver does not (yet) have good complexity as N →∞, however.
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192 Chapter 7. Optimal solvers for elliptic PDEs

It is important to identify some unstated defaults in the above command line. First, the default
KSP type is GMRES, but one may check with -ksp_monitor that in one iteration the residual
norm is reduced by a factor of 1016, so this is indeed a direct solver; -ksp_type preonly gives
the same solver without norm checks. Second, there are both KSP and PC objects for each field
component, but the default is to precondition only; options -fieldsplit_{v,u}_ksp_type
preonly are implied.

An analogy from Chapter 6, regarding composition of corrections, applies here tofieldsplit
types. Namely, Jacobi ∼ additive and Gauss-Seidel ∼ multiplicative. In fact, only three
choices of fieldsplit type are considered in this book:

-pc_fieldsplit_type multiplicative|additive|schur

The third type schur is critical to solving the Stokes equations in Chapter 14, but it does not
make sense here because the diagonal blocks are invertible; we are in the easier case here.

If option -pc_fieldsplit_type additive is added to the above run, along with
-ksp_monitor, we see that the method takes exactly two iterations of GMRES, and the same
is true with -ksp_type richardson. That is, multiplicative gives a direct solver but
additive is apparently also a direct solver when one takes an additional iteration. The reason
for this is worth pursuing, in part because a related idea will precondition the Stokes equations
in Chapter 14.

The following calculation, assuming that the blocks are inverted exactly, shows the action of
-pc_fieldsplit_type additive:

M−1T =

[
A−1 0

0 A−1

] [
A 0
−I A

]
=

[
I 0

−A−1 I

]
. (7.13)

We have not solved the system with this one preconditioner application, because M−1T is not
yet the identity, but now the preconditioned matrix has only a single eigenvalue λ = 1. In fact,

(M−1T − I)2 =

[
0 0

−A−1 0

]2

= 0, (7.14)

so M−1T has a minimal polynomial of degree two. In terms of equation (7.11), and given initial
iterate w0 = 0 and Richardson iteration, we would compute w1 = M−1g and then (7.14)
implies Tw2 = g (Exercise 7.14).

Such on-paper calculations apply A−1 on each block, but in fact we use a preconditioned
iteration, denoted ksp(A,P ), to approximate the action of A−1. (Recall that a KSP holds
two potentially different matrices A and P , with P denoting the preconditioner material. See
Chapter 6.) Thus the correct description of the matrix action of -pc_fieldsplit_type
multiplicative, in the special case where the system matrix is T =

[
A 0
−I A

]
, is

M−1 =

[
I 0
0 ksp(A,P )

] [
I 0
I I

] [
ksp(A,P ) 0

0 I

]
,

while type additive is

M−1 =

[
ksp(A,P ) 0

0 ksp(A,P )

]
.

For the general case see [10].
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Block-structured preconditioning 193
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Figure 7.10. Measured by work per degree of freedom, all three GMG solvers are optimal, with
advantage to the fieldsplit methods.

Using direct solvers on the blocks will yield poor solver-complexity asymptotics. We
can, however, construct optimal solvers by switching to GMG preconditioners. Consider this
GMRES+GMG solver using the default multiplicative-type fieldsplit:

$ ./biharm -da_refine X -pc_type fieldsplit \
-fieldsplit_v_pc_type mg -fieldsplit_u_pc_type mg \
-fieldsplit_v_pc_mg_levels LEV -fieldsplit_u_pc_mg_levels LEV \
-fieldsplit_v_pc_mg_galerkin -fieldsplit_u_pc_mg_galerkin

This nontrivially composed preconditioner does a V-cycle on the v block, then (nearly) eliminates
the v variables, and then does a V-cycle on the u block. (Note that fieldsplit currently only
allows Galerkin coarsening (Chapter 6) on the blocks, and that the number of levels on the blocks
must be set explicitly.) If a V-cycle were the exact inverse A−1 then this multiplicative solver
would converge in one iteration. In reality each V-cycle reduces the residual norm by a factor of
102 to 103, so just a few iterations are needed.

If we were to change to -pc_fieldsplit_type additive then the first iteration makes
much less progress. However, at the second iteration there is a large drop in residual norm.

On the other hand, an alternative to fieldsplit is to apply GMG to the whole system,
essentially disregarding the block structure. We call this the monolithic [27] GMG choice:

$ ./biharm -da_refine X -pc_type mg -pc_mg_levels LEV

Now we have three GMG-based solvers of the biharmonic problem: multiplicative
fieldsplit, additive fieldsplit, and monolithic. On 332 to 20492 grids, with N = 103

to N = 107 degrees of freedom, respectively, these solvers all converge in two or three KSP iter-
ations using the default -ksp_rtol 1.0e-5 (not shown). Figure 7.10 reveals that their work per
degree of freedom is very steady across this 104 increase in N . The advantage is to -pc_type
fieldsplit, but all three are optimal solvers. Algebraic multigrid (AMG; Chapter 10) also
generates (nearly) optimal solvers in the same three modes (Exercise 7.15).
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194 Chapter 7. Optimal solvers for elliptic PDEs

Exercises
7.1. Reproduce the runs in Figures 7.2–7.4. (Note that fish.c is in ch6/, use a

�with-debugging=0 configuration, and watch memory usage on the finest grids.) Then
replace -pc_type mg with simpler preconditioners like Jacobi and ICC to feel how much
it hurts the convergence rate for the finer grids.

7.2. Consider the following serial V-cycle runs for a 3D Poisson problem, in which the coarsest
grid problem is solved directly by LU with nested-dissection ordering (Chapter 2):
$ ./fish -fsh_dim 3 -ksp_rtol 1.0e-10 \

-pc_type mg -da_refine LEV -pc_mg_levels DEPTH

Note that the coarsest grid is 3× 3× 3 if DEPTH = LEV +1, but otherwise it is finer, with
33, 53, 93, . . . points as DEPTH decreases. Alternatively we could add options such as

-mg_coarse_ksp_type cg -mg_coarse_pc_type jacobi \
-mg_coarse_ksp_max_it 2 -mg_coarse_ksp_convergence_test skip

so that two steps of Jacobi-preconditioned CG are used to (inexactly) solve the coarse
problem. Use the above runs to demonstrate, in serial, the two modes of degradation of
performance, as DEPTH decreases, described in the discussion of parallel multigrid. For
example, if you use LEV = 6 for a 129 × 129 × 129 grid then try DEPTH = 7, 6, 5, 4, 3.
Graph flops and KSP iterations.

7.3. When run in parallel, the variety of Mats inside a GMG PC is remarkable. For example,
the run
$ mpiexec -n 4 ./fish -pc_type mg -da_refine 2

generates a very modest grid hierarchy: Ω(0) is 3 × 3, Ω(1) is 5 × 5, and Ω(2) is 9 × 9.
Add -dm_view to the above run to see the way the grids Ω(i) are distributed. Now add
-info to the above run and pipe the output through grep "Matrix size" to see the
many sequential (i.e., process-owned) Mat sizes. Some of these are the diagonal blocks of
the matrices A(l) but others are for interpolation or for the coarse grid problem. Identify
as many of these Mats as you can.

7.4. For this problem you will show that (7.2) follows if u minimizes I[·] in (7.1). Assume
that u is a smooth function on Ω with boundary values g, and assume that v is a smooth
function with zero boundary values. Follow these steps:

(i) For ε ∈ R, compute I[u + εv] − I[u] and simplify, using the binomial theorem for
(1 + z)1/2, to

I[u+ εv]− I[u] = ε

∫
Ω

∇u · ∇v√
1 + |∇u|2

+O(ε2).

(ii) Integrate by parts to conclude that, for all v,

I ′[u](v) = lim
ε→0

I[u+ εv]− I[u]

ε
= −

∫
Ω

∇ ·

(
∇u√

1 + |∇u|2

)
v.

(iii) Conclude that (7.2) applies at all points in the open set Ω.

The same kind of calculation is done at the beginning of Chapter 9.
7.5. For any c ≥ 1, a catenoid surface on Ω = (0, 1)2 is given by the formula

u(x, y) = c cosh
(x
c

)
sin

(
arccos

(
y

c cosh(x/c)

))
. (7.15)
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Figure 7.11. Newton-Krylov solutions of (7.2) exhibit quadratic convergence (both). ILU(0)
preconditioning stagnates (left) while GMG is fast (right).

(The restriction of u to ∂Ω is shown in Figure 7.6, for c = 1.1.) Show that u satisfies
(7.2), and that if c = 1 then |∇u| is unbounded on Ω.

7.6. Write down the finite difference formulas analogous to formula (7.6) for the other (car-
dinal) staggered-grid points. Show that these formulas, combined with (7.5), give a
O(h2

x + h2
y) scheme for (7.3).

7.7. If multigrid tools are used effectively then the Krylov accelerator is often unimportant.
For example, the runs
$ ./minimal -snes_fd_color -pc_type mg \

-snes_grid_sequence LEV -ksp_type KSP

give results relatively independent of the KSP choice, at least among GMRES, CG, and
Richardson. (Note that Richardson corresponds to Newton-multigrid, i.e., without accel-
eration.) What are the differences? Add -snes_monitor -ksp_converged_reason
and explain.

7.8. When working to diagnose Newton-Krylov performance, or bugs, the option combination
-snes_monitor -ksp_monitor_true_residual

is often useful. This prints, using comparable norms, both nonlinear residual norms
‖F(uk)‖ in the outer iteration and linear residual norms ‖b−As(j)‖, where b = −F(uk)
and A = J(uk), in the inner iteration.

The script c/sneskspplot.py visualizes these numbers. For example, consider these
runs of minimal.c using X=ilu,mg:
$ ./minimal -ms_problem tent -da_refine 5 -snes_fd_color \

-snes_monitor -ksp_monitor_true_residual -pc_type X >& X.txt

What the numbers show is that the ILU(0) preconditioner is causing stagnation of the
GMRES iteration, while GMG is not—it generates constant residual norm reductions. In
both cases the Newton iteration exhibits quadratic convergence (Chapter 4). Generate
graphs like Figure 7.11:
$ ../sneskspplot.py --ksptrue -o X.pdf X.txt

7.9. Write a code diffusion.c for the linear 2D equation

−∇ · (D(x, y)∇u) = f(x, y), (7.16)
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196 Chapter 7. Optimal solvers for elliptic PDEs

with Dirichlet boundary conditions g(x, y), on a rectangle. The following strategy is
recommended:

(i) Start from fish.c. Implement a new residual evaluation by reusing the FD scheme
(7.5) for the MSE; see Figure 7.7.

(ii) Test for correctness in the case D(x, y) = 1, using the same domain and boundary
conditions as in fish -fsh_problem manuexp, and recover existing convergence
results. Then test on a discontinuous diffusivity such as

D(x, y) =

{
α, (x− 1/2)2 + (y − 1/2)2 < (1/4)2,

1 otherwise.

Using -ksp_monitor_solution draw, visualize the solution for α = 1, 10. (Ad-
ditional testing might use a manufactured solution.)

(iii) For runs with -snes_fd_color and -snes_mf_operator—the latter reusing the
Jacobian from the Poisson equation—do you observe optimality of the solver?

(iv) Implement a Jacobian. Was your labor justified?

7.10. Verify that (7.7) defines v(x, y) so that v(xk, yl) = vk,l. Then compute expressions for
∂v/∂x, ∂v/∂y. Check the correctness of MSEMonitor() in minimal.c.

7.11. (This exercise requires a nontrivial amount of error-prone work.) Extend minimal.c
by implementing an exact Jacobian for FD scheme (7.5). Compare performance with
-snes_fd_color.

7.12. (Compare Exercise 4.5.) The Liouville-Bratu equation in 2D is

−∇2u− λeu = 0 (7.17)

for λ > 0 [23, 106]. This semilinear [51] elliptic PDE can be solved by the same strategies
we used for equation (7.2).

(i) Start a new code called bratu2D.c, based on minimal.c. Suppose Ω = (0, 1)2

and implement only the minimum, namely a residual-evaluation function for (7.17)
based on the obvious FD approximations. Again reuse the Poisson Jacobian. Allow
arbitrary Dirichlet boundary conditions u = g(x, y) along ∂Ω.

(ii) The expected critical parameter is λ̃ ≈ 6.81 if g(x, y) = 0 [144]. Confirm this by
demonstrating convergence of the Newton iteration for λ < λ̃, and divergence for
λ > λ̃, on sufficiently fine grids. Test with multiple Jacobian strategies:
-snes_fd_color, the Poisson Jacobian used as preconditioner material
(-snes_mf_operator), or the Poisson Jacobian used as-is. (Which yield quadratic
convergence?)

(iii) Using -pc_type mg and some of the above Jacobian strategies, demonstrate opti-
mal O(N) scaling.

(iv) One should be careful to solve the PDE correctly. An exact solution can be built by
manufacturing a solution, i.e., adding a right-hand side to (7.17). However, if you
are Joseph Liouville in 1853 [106] then you just write down an infinite family of
exact solutions to equation (7.17) itself. For example, let

ω(x, y) =
x2 + y2

(x2 + y2)2 + 1)2
.
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Exercises 197

Show this function satisfies∇2(logω) = −32ω and thereby show that

u(x, y) = log (32ω(x+ 1, y + 1))

is a smooth exact solution of (7.17) in the case λ = 1. Use this exact solution to
verify bratu2D.c.

7.13. Construct a SNES-based code biharm1.c which uses a five-point central difference
scheme

u′′′′(x) =
u(x− 2h)− 4u(x− h) + 6u(x)− 4u(x+ h) + u(x+ 2h)

h4
+O(h2)

directly on the boundary value problem

u′′′′ = f, u(0) = u(1) = u′′(0) = u′′(1).

If correctly implemented, the system matrix will be pentadiagonal and SPD. Find an exact
solution suitable for testing, and demonstrate using very fine grids that both a direct linear
algebra method and a multigrid-preconditioned Krylov method are optimal solvers.

7.14. Show that if w0 = 0 then in exact arithmetic the second iterate w2 from
$ ./biharm -da_refine LEV -ksp_type richardson \

-pc_type fieldsplit -pc_fieldsplit_type additive \
-fieldsplit_v_pc_type lu -fieldsplit_u_pc_type lu

solves Tw = g, i.e., equation (7.10). (That is, fill in the details of the argument following
(7.14).) Then confirm this in practice for modest settings of LEV; note -ksp_view says
“initial guess is zero.”

7.15. Replace GMG with AMG, i.e., use gamg or hypre, in the three solvers which produced
Figure 7.10, and generate the corresponding figure. You will find that AMG is nearly
as fast as GMG for this simple, linear problem in which we are discretizing the usual
Laplacian operator.
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Chapter 8

Parallel scaling

Many users arrive at PETSC wanting to do large-scale parallel computations, knowing that the
mathematical concepts in this library can lead to high performance parallel solutions of nonlinear
PDEs and multiphysics models. Thus we need a vocabulary for quantifying parallel performance,
and this chapter defines several measures of how solver performance scales as the number of
processes increases. However, the scaling of algorithmic work done by the solver, as the number
of degrees of freedom increases, i.e., the solver complexity (Chapter 7), is at least as important
and will remain prominent.

High performance computing (HPC) as a subject is not really covered here, however. For ex-
ample, only MPI parallelism [72] is considered at all, so texts on HPC, such as [35, 48, 75], are
the place to learn about threads, OpenMP, GPUs, CUDA, and so on. Indeed, our model of paral-
lel computation in this chapter is very basic. We will run examples in parallel with only minimal
consideration of the physical processors they live on, and the actual design of supercomputers
(clusters) is not taken seriously. Practical batch-system commands—e.g., how to request re-
sources or observe the state of jobs on clusters—are not addressed. Finally, we only explore par-
allel scaling at modest levels of concurrency. Nonetheless, well-written PETSC codes will run in
parallel with little effort, and experiments with parallel scaling are straightforward when HPC re-
sources allow. In later chapters, when our focus returns to the mathematics and numerical analy-
sis of interesting PDE problems, parallel performance measurements appear in several cases.

Consumable resources on clusters
How much does a numerical PDE solution cost? The programmer hours spent learning the
mathematics and writing the code are often the dominant cost, but, after the code is debugged,
processor time gets consumed in “production runs” for a given engineering or scientific purpose.
For PETSC codes, such runs should be done in a configuration with compiler optimizations
turned on and without debugging symbols, that is, timing measurements should only occur in a
�with-debugging=0 configuration.

Consider a production run to solve a PDE on a given grid or mesh, seeking a given accu-
racy, namely some specified level of residual norm reduction relative to that of the initial iterate.
Setting up such a computation will determine the following two variables:

Definition.

• N , the problem size, the number of real degrees of freedom.

• P , the concurrency, the number of MPI processes.

199
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200 Chapter 8. Parallel scaling

Precise operational meanings of these variables are appropriate. Since all of our solvers
use PETSC SNES, we may define N as the result of applying VecGetSize() to the input Vec
of the residual function. In simple cases on a grid or mesh with n nodes, and for a solution
with values in Rd, N = nd is expected. However, more generally, N may have a complicated
relationship to the mesh, for example, in higher-order FE discretizations on unstructured meshes.
The concurrency P is set by the command “mpiexec -n P.” For the examples in this book it is
also the result of calling MPI_Comm_size() on PETSC_COMM_WORLD (Chapter 1).

We now focus on two “consumable” quantities, regarded as functions of N and P , which we
would want to minimize when designing a solver.

Definition.

• The flops f(N,P ) are the total number of floating-point operations counted during the run.
It is the last number (Total column) returned by

mpiexec -n P ./program ... -log_view | grep "Flop: "

• The run time t(N,P ) is the maximum wall clock time used by any of the processes. It is
the first number (Max column) from

mpiexec -n P ./program ... -log_view | grep "Time (sec):"

The other numbers in the “Flop:” line of -log_view output are the maximum flops over the
various ranks, the imbalance ratio, the average flops f(N,P )/P , and the total flops f(N,P ).
Observe that we use plural “flops” as a number of operations, but other sources use the same
word for what we call the flops rate f(N,P )/t(N,P ), or flops per second.

Given that all of the code examples in this book correspond to deterministic algorithms, the
flops f(N,P ) is a repeatable measurement. However, the run time t(N,P ) should be understood
as a random variable from a distribution. The spread of this distribution depends on the other
activities on the machine, so t(N,P ) might best be redefined as the expected value. In any case,
it is natural to rerun timing measurements several times to get a sense of t(N,P ) as an average
or even as a confidence interval.

Before discussing other consumables, we must acknowledge the nontrivial architecture of
supercomputers. Actually we will say “cluster” instead of “supercomputer”; a cluster is any
machine of a certain architecture, whether small or big, and Figure 8.1 shows this architecture
in simplified form. Compute nodes, typically blades in a rack with a common power supply and
cooling system, communicate via an interconnect, the details of which are beyond our scope.
Each compute node has a small number of CPU sockets,27 each with a chip (die) containing
multiple cores, the actual processors. In our simplified view, at most one MPI process can be
running at any time on one core. (This view ignores the instruction-level parallelism of modern
processors, e.g., pipelining, branch prediction, and hyperthreading [48].) The notional cluster in
the figure can run at most P = 8 processes simultaneously on each compute node. For such an
intranode run, MPI messages are passed between processes via the shared memory on that node.
At most P = 32 processes can run simultaneously on the whole cluster, with messages between
distinct nodes passing through the interconnect.

However, to acknowledge even more complications, the vague “memory” blobs in the figure
actually consist of nontrivial levels of cache [48] and main memory, details of which will in-
deed affect the reader’s achievable performance, but which are also beyond our scope. (Modern
architectures involve some degree of nonuniform memory access (NUMA) [48].) A key idea is

27Other processor sockets may exist on a node, such as graphics processing unit (GPU) sockets [10, 48].
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Consumable resources on clusters 201
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Figure 8.1. A notional, simplified cluster with four compute nodes and an interconnect. Each
compute node has two sockets holding 4-core processors and a shared memory.

that cores on a compute node compete for access to memory, and the latency and bandwidth of
a memory access will depend on how “close” a core is to the memory being accessed. Compe-
tition with other memory requests accessing the same cache and memory channels complicates
all realistic performance analyses.

Thus a parallel run on a cluster is subject to the following overlapping and nontrivial perfor-
mance concerns:

• the latency of the interconnect,

• variable-speed access to memory depending on cache levels, and

• competition between cores for access to shared memory.

Furthermore, all of these issues relate to process placement, that is, to the user’s ability, via the
installed MPI library and/or batch scheduler, to determine which processes are bound to which
cores, sockets, or nodes. (See the section “Maximizing Memory Bandwidth” of the PETSc Users
Manual [10] for further information.) For this chapter we often lump these important HPC issues
into a nebulous source of uncertainty in run times.

Flops and run time are by no means the only consumables. For example, the watts consumed
or, equivalently, the heat dissipated by the cluster’s cooling system, might be the important con-
sumable for a conscientious modern user, but it is not easily measured with command-line tools.
Certainly the maximum amount of memory which each process can allocate is a critical con-
sumable, or at least it imposes a limit on capability. In fact the amount of memory available on
each compute node is often the limiting factor which stops further solution improvement (further
increases in problem size N ). Note that when a program issues a request too large for memory
it will be killed by the operating system or become slow through disk swapping, so one should
leave a margin between the total memory on a compute node and the amount needed by the run.

Memory usage of PETSC programs can be extracted from -log_view output, but the option
-memory_view gives a convenient summary. A Unix utility, such as top, or a graphical system
activity monitor, will show memory usage for each process and/or total memory usage in a
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202 Chapter 8. Parallel scaling

dynamic manner, but these tools require user attention or sampling, and they may not be easy to
use on a cluster. The valgrind utility will also measure total memory (heap) usage, but it may
not scale to large, parallel jobs. Because of these various complications, and though it would be
natural to add total memory to our discussion of (N,P )-dependent consumables, it is impractical
to do this precisely, and we forgo such analysis.

The number of bytes transferred (BT) to the processor from the fastest level of cache, and,
more generally, the bytes transferred between levels of cache and memory, are important con-
sumables. Measuring BT involves, for example, counting cache misses, a detail which is not
included in -log_view output. The arithmetic intensity [48] of an algorithm is the ratio of flops
over bytes transferred, f(N,P )/BT, and this quantity will help determine whether the algo-
rithm’s performance is limited by the cores’ peak flops rate or by the memory bandwidth to
those cores [155]. Arithmetic intensity is one of a three-quantity “spectrum” proposed by [33]
for evaluating the performance of parallel PDE-solving algorithms; the others are the run time
t(N,P ) and the computational rate N/t(N,P ), namely the degrees of freedom per time.

As already mentioned, the capacity of the interconnect, both latency and bandwidth, is a
consumable. Measuring this capacity is made complicated by different modes for passing MPI
messages (above), and it is outside our scope.

Finally, regarding consumables generally see the “Profiling” and “Hints for performance
tuning” sections of the PETSc Users Manual [10], including “Interpreting -log_view Output:
Parallel Performance.”

The streams benchmark
The streams benchmark [110] measures sustained bandwidth for transferring data from main
memory to the CPU, while doing minimal arithmetic on this data. The reported rates, in bytes
per second, are the speed at which the machine can add two relatively large vectors which fit
into the main memory. Of course such jobs are part of any PDE solution, and a PETSC solver is
often limited by memory-channel bandwidth rather than the flops rate of the available cores. The
concurrency at which best streams performance occurs is often the best concurrency for solver
applications. In particular, the reported streams bandwidth multiplied by the solution run time
is an upper limit on bytes transferred (BT) for a solver.

PETSC makes it easy to run streams. On the author’s laptop (2.2 GHz Intel Core i7-
4770HQ) with four physical cores,

$ cd $PETSC_DIR
$ make streams NPMAX=4
Running streams with ’mpiexec ’ using ’NPMAX=4’
1 19582.3939 Rate (MB/s)
2 31048.5553 Rate (MB/s) 1.58553
3 26754.7595 Rate (MB/s) 1.36627
4 17390.6227 Rate (MB/s) 0.888074

When we go from P = 1 to P = 2 the bandwidth increases by less than 60%, but increasing the
concurrency further actually reduces the rate. While plenty of parallel algorithm development
can (and does) occur on this machine, production runs with P > 2 are not worthwhile.

Compared to a laptop, clusters are built with CPUs designed for higher concurrency, e.g.,
Intel Xeon instead of Core i7. Also, deliberate process placement can improve performance fur-
ther on clusters. The user can, and often should, ask mpiexec or the batch system to either bind
processes to cores or impose limits on the number of cores per compute node (and/or socket), so
as to get better memory bandwidth.
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Figure 8.2. Strong, weak, and static scaling, as well as serial solver complexity, are directions to
infinity in the (N,P ) plane.

For example, suppose we run streams on three compute nodes of a cluster,28 each with two
12-core Intel Xeon processors (2.6 GHz E5-2685 v3), but imposing a limit of four MPI processes
on each node:

$ make streams NPMAX=12
Running streams with ’mpiexec ’ using ’NPMAX=12’
1 14209.5910 Rate (MB/s)
2 26424.4449 Rate (MB/s) 1.85962
3 38519.8476 Rate (MB/s) 2.71083
...
11 141210.8168 Rate (MB/s) 9.93771
12 154423.6243 Rate (MB/s) 10.8676

(See Exercise 8.1 and the SLURM option �tasks-per-node.) That is, with P = 12 processes
there is an almost 11 times increase in streams bandwidth. This is a configuration for which it
is worthwhile to develop a parallel PDE solver and ask how it scales with P .

The classic language of speedup
Each computation is a point in the (N,P ) plane of Figure 8.2. On the other hand, we regard a
scaling analysis as the asymptotics of the consumables defined above, as N → ∞, P → ∞,
or both—hence the arrows in the figure. One such analysis, strong scaling, measures perfor-
mance for fixed problem size as the concurrency increases, that is, it supposes a sequence of
computations with increasing P and fixed N .

28Chinook, at the Geophysical Institute, University of Alaska Fairbanks. See www.gi.alaska.edu/services/
research-computing-systems.
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204 Chapter 8. Parallel scaling

Definition. [47, 74] Fix the problem size N .

• The parallel speedup is relative to the run time using one process:

sN (P ) =
t(N, 1)

t(N,P )
.

• The parallel efficiency is the actual speedup relative to the desired speedup:

eN (P ) =
sN (P )

P
=

t(N, 1)

P t(N,P )
.

The expected ranges are 1 ≤ sN (P ) ≤ P and 0 ≤ eN (P ) ≤ 1. That is, it is natural to
assume that a job of fixed size divided among P workers can, at best, be done in (1/P )th the
time. However, sN (P ) > P can occur, and the explanation is that there will be some first value
of P such that theN/P unknowns on each process can fit into fast cache memory (of some level).
At that concurrency the time t(N,P ) drops more than it otherwise would, so SN (P ) exceeds P
if the speedup is already good. The fact that sN (P ) > P , “superlinear speedup,” is even possible
reminds us that t(N,P ) includes the time for data to transit from memory to the processor, not
just for arithmetic. In this regard flops are simpler than run time. For the algorithms in this book,
if N is fixed then the flops f(N,P ) increase monotonically with P . In particular, our parallel
algorithms do at least as much arithmetic as their serial counterparts.

A fundamental assumption in the classic language of speedup is that the algorithm is the
same for different P , since N is fixed, but this assumption is violated for most PDE solvers. For
example, it fails for the basic CG+GMG solver for the Poisson equation (Chapters 6 and 7):

mpiexec -n P ./fish -da_refine LEV -pc_type mg

The serial smoother here is symmetric Gauss-Seidel (GS), which changes to processor-block GS
for P > 1, so as P increases the smoother uses fewer off-diagonal elements. The resulting loss
of smoothing efficiency can increase the KSP iteration and flops counts.

Despite such violations, parallel speedup and efficiency are worth considering. A solver is
regarded as strong scaling if the speedup is close to P or, equivalently, if the efficiency is close
to one. For example, if the study reveals that there is a small δ > 0 so that eN (P ) ≥ 1 − δ for
large P then the solver has good strong scaling.

A key idea for parallel PDE solutions is that the number of degrees of freedom per process
N/P must remain large enough so that the processes are doing significant work. For instance,
N/P ≥ 105 might be needed for reasonable results. In fact, the serially optimal solvers in this
book have good strong-scaling performance when N/P ≥ 105.

Example. Consider minimal.c (Chapter 7) which solves the nonlinear minimal surface
equation for the shape of a soap film. Fix a 4097 × 4097 grid with N = 1.6 × 107 degrees of
freedom. Our solver combines Newton iteration, a finite-differenced Jacobian, GMRES, V-cycle
GMG, and grid sequencing starting with an initial solution on a 33× 33 grid, namely

$ mpiexec -n P ./minimal -da_grid_x 33 -da_grid_y 33 \
-snes_fd_color -snes_grid_sequence 7 -pc_type mg

for P = 1, 2, 4, . . . , 128. We add monitoring options (e.g., -log_view) and do each run twice
to observe variability in run time. The raw timing and flops data, shown in Figure 8.3, reveal a
fundamental success: the P = 1 job takes 453 seconds, the P = 128 job takes about 8 seconds,
and parallel computation is effective!

For this solver the total flops f(N,P ) increase only slightly as P increases (Figure 8.3)
because the algorithmic changes are small, so strong scaling is a reasonable goal. Note that the
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Figure 8.3. Run times t(N,P ) and flops f(N,P ) for a minimal surface equation (see Chapter
7) solution with N = 1.6× 107.
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Figure 8.4. For the same runs as in Figure 8.3, speed-up is close to ideal up to P = 32.

job must fit in memory for P = 1; otherwise, t(N, 1) and SN (P ) cannot be evaluated. Also,
N/P = 1.3× 105 when P = 128; it would make little sense to run this job with P = 1000.

A typical strong-scaling analysis for these runs might display the results as in Figures 8.4 and
8.5. The observed speedup is close to ideal (the dashed line) up to roughly P = 32. However,
efficiency shows noticeable drops at P = 2 and P = 4. These drops are explained by memory
contention issues. That is, we have used at most 32 compute nodes, limiting the processes per
node to four (for streams benchmark reasons; see above), but the P = 1 and P = 2 jobs live
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Figure 8.5. Plotting efficiency shows more detail, including drops at low concurrency and at
P = 64 (with different explanations; see text).

on a single node and thus they are a little faster. The efficiency relative to the P = 4 case is close
to the ideal up to P = 32.

But what speedup is even possible for a nontrivial solver? A classic theoretical answer is
Amdahl’s law [6, 48], a simple performance model as follows. Suppose the algorithm has serial
run time t(N, 1) and that a certain fraction 0 ≤ fs ≤ 1 of this time is spent in code that is not
parallelizable. The remainder of the code is assumed to have perfect speedup, so Amdahl models
the run time as

t(N,P ) = fs t(N, 1) + (1− fs)
t(N, 1)

P
. (8.1)

In terms of the speedup SN (P ) there is then a limiting upper bound (Exercise 8.3),

SN (P ) =
P

fs(P − 1) + 1
→ 1

fs
as P →∞.

(Efficiency goes to zero in the same limit.) In other words, Amdahl’s law is a model for “dimin-
ishing returns” at large concurrency.

Example. Consider an abstract computation governed by Amdahl’s law. Supposing fs = 0.1,
P = 10 processors yields SN (10) = 5.2. While this is useful speedup, higher concurrency is not
worthwhile: P = 100 and P = 1000 yield speedups of 9.2, 9.9, respectively, and SN (P ) < 10
for all P .

An appreciable amount of nonparallelizable code surely exists in any PETSC program. For
example, operations such as opening files occur only on rank 0. More significantly, many op-
erations, such as handling options or computing the Chebyshev polynomial coefficients in a
smoother (Chapter 2), are both collective and identical across all ranks; they do not become
faster with more processes, and thus they are serial in the sense of Amdahl.

The time used for communication between processes, such as in a global reduction to com-
pute a norm, or the all-to-all communication in solving the coarse grid problem in multigrid, can
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Weak and static scaling 207

be regarded as another “nonparallelizable” part of the algorithm; the time does not decrease to
zero as P → ∞. Alternatively, the average waiting time for these synchronization events could
be modeled by adding a (possibly) N - and P -independent communication time tc [48, section
2.3.3.1] to Amdahl’s law (Exercise 8.5).

Identifying all nonparallelizable portions of a nontrivial code would be an unpleasant task.
However, we may fit the Amdahl model to timing data. Doing so with the P ≥ 16 portion of the
above data yields the dotted curve in Figure 8.4; this data supports a serial fraction fs = 0.0089
(Exercise 8.4). Small-P values are excluded from the fit because such a 1% serial fraction will
be undetectable given the noise in the run times. Note that 1% of N , in this computation, is
about 105. Thus Amdahl’s law substantially explains the folk wisdom that each process should
be given an adequate amount of work.

Fact 14. Strong scaling requires that each process be kept busy on a problem of substantial size.
For a parallel PDE solver with N total degrees of freedom shared over P processes, something
like N/P > 105 is suggested.

A precise fit to Amdahl’s law would require an algorithm that was invariant with P , but that
would limit us to suboptimal PDE solvers (Exercises 8.2 and 8.4). In this context, Gustafson’s
law [74, 48] attempts to address this shortcoming. However, instead of fiddling with strong-
scaling models we prefer to reconsider directions in the (N,P ) plane (Figure 8.2).

Weak and static scaling
Problem size N is not fixed when numerically solving a PDE problem. Indeed, such solutions
want N → ∞, and a user’s perception of practical values for N will likely grow to fill the
available HPC resources. While large problem sizes N are limited by available memory, overall
resource and budget constraints tend to limit the number of compute nodes and P . User patience,
budgets, and batch-system constraints all limit the allowed run time t(N,P ).

One might make a parable for this situation:

Pharaoh has 104 workers and an unbounded supply of limestone blocks, but only ten
years to live. To glorify the dead and intimidate the living, Pharaoh asks the chief
engineer, “How big a pyramid can my workers build in 10 years?”

Asking the chief engineer the strong-scaling question “how fast can P workers build this partic-
ular pyramid design using N blocks?” is less natural. Thus we define new scaling modes.

Definition. Consider a study of consumables over a sequence of runs {(Ni, Pi)}.

• A static-scaling [33] study fixes Pi = P and increases Ni.

• A weak-scaling (e.g., [48]) study fixes the degrees of freedom per process,

α =
Ni
Pi

is fixed,

and increases both Ni and Pi.

Static-scaling studies are especially relevant when the user is up against a hard concurrency
limit with an algorithm which is not yet using all available memory. Then one has the same
solver-complexity goal as in serial: optimality. That is, one wants t(N,P ) = O(N) as N →∞.
On the other hand, the coefficient in “O(N)” definitely matters. For example, a solver could
satisfy this relationship, notionally “good static scaling at P ,” with a coefficient which does not
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Figure 8.6. Continuing from Figure 8.2, we observe that practical and achievable computations
(stars) must respect cluster limitations.

decrease in P , a parallelization disaster. Such considerations motivate both weak scaling and the
“ideal” scaling discussed in the next section.

When solving a PDE on a domain Ω ⊂ Rd, a weak-scaling study increases the number
of grid/mesh points simultaneously with the concurrency. As P increases, each process sees a
smaller fraction of Ω but an unchanging number of grid points. For structured grids, where it is
convenient to refine grids by (linear) factors of two, it is common to have Ni+1 = 2dNi.

One may give a practical argument for weak-scaling studies as follows: A user solving PDEs
in parallel, not even conscious of scaling concerns, might run a sequence of computations like
the stars in Figure 8.6, first gaining confidence in serial solver complexity and then debugging
parallel runs at low concurrency. Then the desire for performance—to meet a predetermined
accuracy goal or to impress colleagues—drives up both N and P . Concurrency might hit a limit
first, either from the actual available number of processors or because the batch scheduler causes
large-P jobs to wait on a queue. However, as problem sizes get bigger the user also becomes
aware of the limited memory on each node. Perhaps an irritating out-of-memory error leads to
more-deliberate choices forN/P ; now runs might be designed aroundN/P ≈ 106, for example.
In other words, practical limits constrain the abstract (N,P ) plane, leading to N/P ∼ α habits
as more compute nodes become available (Figure 8.6).

Example. How good is the weak-scaling performance of our preferred ch7/minimal.c solver?
Consider these runs, essentially the same as those for the strong-scaling study earlier:

$ mpiexec -n P ./minimal -da_grid_x 33 -da_grid_y 33 \
-snes_fd_color -pc_type mg -snes_grid_sequence LEV

We set P = 1, 4, 16, 64 and LEV = 5, 6, 7, 8, respectively, so each process owns a 1024 × 1024
grid and N/P ≈ 106. At least two runs are done for each value of P . At P = 64 we are solving
on a 8193× 8193 grid with N = 6.7× 107 degrees of freedom.
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Figure 8.7. Run time t(N,P ) and average flops f(N,P )/P in a weak-scaling study of ch7/minimal.c.

Figure 8.7 shows the result. The run time increases by a factor of only about 2 as N and
P increase by a factor of 64, though we might like to see better weak scaling. It is not clear
if t(N,P ) will remain bounded as the job gets bigger along this N/P = α path. A partial
explanation of imperfect weak scaling is already clear in average flops f(N,P )/P , shown in the
same figure. The amount of work per process is going up even though N/P is fixed. Namely,
the number of linear iterations on the finest grid is increasing. To be more precise, each run ends
on a finest grid on which the algorithm does a certain number of Newton iterations, each with
inner KSP iterations. Under grid sequencing, only two Newton iterations occur for P = 1, 4, 16
and just one for P = 64, so the nonlinear Newton iteration is not struggling. Instead, the total
number of GMG-preconditioned GMRES iterations on the finest grid grows with N ; the values
are 14, 18, 43, 104 for P = 1, 4, 16, 64.

Why are the iterations increasing? The reason must be that the preconditioned Jacobian
M−1J has a difficult spectrum, in the sense that polynomials which are small on σ(M−1J)
have high degree; see Chapters 2 and 6. (To confirm this understanding we can measure the
condition numbers with -ksp_view_singularvalues.) Fundamentally, only spectral reasons
cause increasing GMRES iterations, but different effects might spread the spectrum of M−1J :

• As described in Chapter 7, the catenoid solution has large derivatives, especially near a
corner of the domain. At high concurrency certain processes are seeing a harder problem,
and (for instance) processor-block SSOR might struggle to resolve them. Determining the
spectrum of the local (diagonal block) matrices would confirm this hypothesis.

• Perhaps the -snes_fd_color Jacobian is spreading the spectrum at high resolution. One
could test this hypothesis by implementing an exact Jacobian or switching to a software
framework where a symbolic Jacobian is easily available (Chapters 13 and 14).

One might instead try to transcend the Newton-Krylov paradigm. For example, recent work
by PETSC developers [29] describes how to modify a PETSC code to use full-approximation-
scheme multigrid with a nonlinear smoother and/or a nonlinear Richardson iteration, approaches
which are beyond our scope. In any case our weak-scaling difficulties seem to originate in the
mathematics of the PDE itself, and so we stop here.
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210 Chapter 8. Parallel scaling

Examples like this for nonlinear PDE problems generally suggest that weak scaling is more
challenging than strong scaling because increasing problem size invokes increasing detail in the
PDE itself.

Toward ideal scaling
We inevitably ask parallel PDE solvers for the largest accessible problem sizes (N ), and thus we
are interested in theirN →∞ behavior. Our demand for largeN occurs whether the concurrency
(P ) increases along with N (weak scaling) or is fixed at a value we can afford (static scaling).
Such considerations motivate the following simple theory.

Definition. Suppose t(N,P ) is the solver run time for N degrees of freedom on P processes.
For fixed α > 0, consider a sequence of computations with N/P = α but N,P →∞.

• A solver is weak bounded for these computations, with bound τ = τ(α), if

t(N,P ) ≤ τ.

• A solver has weak efficiency for these computations, with bound ε = ε(α) > 0, if

EN (P ) =
t(N, 1)

Pt(N,P )
≥ ε.

Claims in the literature that a code has good weak scaling should generally be interpreted as
claims of weak boundedness (e.g., [28, 126]).

Lemma.

(i) A weak-bounded solver which is not magic in serial, i.e., for which there exists c > 0 such
that t(N, 1) ≥ cN , has weak efficiency.

(ii) A serially optimal solver with weak efficiency is weak bounded.

(iii) A serially optimal solver with weak efficiency is optimal in static scaling, and the coeffi-
cient is O(P−1). That is, t(N,P ) = O(N/P ).

Proof. These are straightforward inequalities. For (i) let ε = cα/τ > 0 and note that

t(N, 1)

Pt(N,P )
≥ cN

Pτ
= ε.

For (ii), by the definition of serial optimality (Chapter 7), namely t(N, 1) ≤ CN ,

t(N,P ) =
Pt(N,P )

t(N, 1)

t(N, 1)

P
≤ 1

ε

CN

P
=
Cα

ε
,

so let τ = Cα/ε. Finally, for (iii) the proof of (ii) already shows t(N,P ) = O(N/P ).
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Toward ideal scaling 211

This theory allows one to move around the (N,P ) plane, using serial optimality and weak
scaling to connect different points in the plane. For example, a demonstration of both se-
rial optimality and weak boundedness, for a significant range of N and P values, represents
a high standard for scaling because weak efficiency and static scaling optimality both follow.
Therefore, in later chapters we will demonstrate serial optimality and weak boundedness when
possible.

However, one may look at scaling in a more holistic way. The best solver is highly paral-
lelizable, e.g., with fs ≈ 0 in the Amdahl’s law sense, and weak scaling (weak bounded and/or
efficient), and optimal at each P . That is, we want our solvers to have optimal complexity in
static-scaling studies, but with a constant which depends on P in the right way.

Definition. A solver has ideal scaling if

t(N,P ) ∼ N

P
(8.2)

in a region of the (N,P ) plane defined by bounded-below degrees of freedom per process.

This definition means that there exist constants C2 ≥ C1 > 0, and c > 0, so that C1N/P ≤
t(N,P ) ≤ C2N/P for all P ≥ 1 and N such that N/P ≥ c. As with serial optimality (Chapter
7), this definition assumes infinite memory because N →∞.

An advantage of ideal scaling as a development and testing goal is that, instead of doing runs
limited to a particular N/P value, as in a weak-scaling study, or limited to a fixed P in a strong-
scaling study, one may simply do some computations for various points (Ni, Pi) and measure
the degree to which they do not satisfy the ideal t(N,P ) = γN/P . To make such an analysis
quantitative we use a new term which means “inability to scale.”

Definition. Choose a reference serial computation with N0 degrees of freedom. For a collection
of computations (Ni, Pi)

k
i=1 the (observed) dyscalia is the dimensionless number

ω = max
i

{
t(Ni, Pi)PiN0

t(N0, 1)Ni

}
. (8.3)

That is, ω is the worst observed value of the obvious ratio when ideal scaling (8.2) is the
goal, namely t(Ni, Pi)/(Ni/Pi), relative to its serial reference value, namely t(N0, 1)/N0. Said
a different way, ω is the worst total processor time per degree of freedom (Pit(Ni, Pi)/Ni)
relative to the processor time per degree of freedom in the reference case (t(N0, 1)/N0). In any
case note that ω ≥ 1 and that adding more data generally increases ω; it is a measure of observed
performance only.

The ideal solver satisfying t(N,P ) = γN/P exactly would have all run times on a line with
slope γ in the time-versus-N/P plane. Plotting time versus N/P on log-log axes would give a
line with slope one for this ideal. On such a plot the points (computations) live in a band above
the line of slope one which goes through the reference computation, and dyscalia ω measures the
size of this band.

For example, using our preferred solver of the minimal surface equation (Chapter 7), we
collect the previous strong- and weak-scaling runs into Figure 8.8. The band shown in this figure
has dyscalia ω = 2.5. The figure also shows concurrency P by marker size. An advantage of
this kind of plot is that it shows actual run times.

There are limits in how far the band in such a plot can extend to the left and right. Amdahl’s
law can be interpreted as a “N/P ≥ 105 for good performance” bound, for example, a limit on
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Figure 8.8. A holistic scaling view of scaling for ch7/minimal.c: t(N,P ) versus N/P on
log-log axes. The observed dyscalia ω = 2.5, from (8.3), measures the failure of ideal scaling (8.2).

the left side. On the right side the actual amount of memory per compute node will impose an
upper bound on N/P . When showing results such as in Figure 8.8 it is reasonable to declare a
range A ≤ N/P ≤ B in advance.

Caveats
No matter how we display parallel scaling, whether in strong-scaling plots like Figures 8.4 and
8.5, a weak-scaling plot like Figure 8.7, or using the new style of Figure 8.8, note we have been
measuring run time of the whole code. We might instead time the PCSetup and KSPSolve events
separately, for example. Indeed, if we want good overall parallel scaling then both set-up and
solve events need to scale. In particular, PCSetup needs to be parallel. If this event is part of the
serial fraction then weak scaling is impossible. For example, preconditioned Krylov iterations
generally involve assembling a sparse matrix, and this must be done in parallel.

Fact 15. Parallel efficiency requires assembling matrices using the same distribution as the solver
[134]. The vast majority of matrix entries should be generated on the process where they will be
used most. Do not expect much benefit from setting up a big system elsewhere and then reading
it into PETSC to “solve it in parallel.”

The DMDA object makes PCSetup weak-scalable without user attention. In fact, the parallel
examples in this book either use DMDA structured grids or call Firedrake (Chapter 13) for par-
allel assembly via DMPlex. DM objects are designed, to, among other things, facilitate scalable
PCSetup stages [109]. (Compare the serial-only unstructured-grid code in Chapter 10.)

On the other hand, because weak scaling can be “gamed,” it is important to measure and
analyze performance of serial runs and justify how flops are being used in serial cases. This is a
prerequisite before considering parallel scaling.
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Parallel multigrid with PCTelescope 213

Fact 16. The easiest way to make software scalable is to make it sequentially inefficient [73].
Both deliberate and accidental attempts to “game” weak scaling come down to wasting time on
each process, relative to the performance of the best solution method in serial.

Finally, theN,P scaling considerations above, for evaluating the performance of PDE solvers
by examining flops and run time, are subject to the criticism that the accuracy at which the PDE
is solved does not enter into these performance measurements. Furthermore, changing to a dif-
ferent discretization could yield much smaller numerical error for the same problem sizeN . (The
h/p finite element method demonstration in Chapter 13 is an example.) With such concerns in
mind, Chang and others [32] propose a time-accuracy-size performance “spectrum,” modifying
a static-scaling analysis by incorporating the numerical error.

Parallel multigrid with PCTelescope
Parallel-distributed DMDA structured grids have a restriction: each process must own at least one
degree of freedom. On the other hand, multigrid is essential for optimality (Chapters 6), so this
restriction hurts weak and/or ideal scaling because spectral effectiveness in multigrid requires
coarse grids with few points, potentially fewer than the concurrency P . For example, the coarsest
grid is chosen to be large (33×33) in the runs in the current chapter to allow the coarse-grid solve
to occur in parallel with P in the hundreds. As explained in Chapter 7, this solve is redundant
across all processes and managed by the redundant PC type.

The telescope PC type [109] is designed to resolve this practical DMDA restriction and,
more generally, to give better parallel GMG performance. It allows GMG to have deeper, more
spectrally effective V-cycles while still using high concurrency (large P ) on the finer grids. It
generalizes the redundant type by distributing and solving the coarser grid problems over a
subset of processes, while in redundant the coarse-grid problem is solved on each process.

To describe telescope further we assume that our GMG solver has L levels and a fine grid
Ω(L)—see notation in Chapter 6—distributed over an MPI communicator C of large sizeP = |C|.
For solver efficiency we want a small coarsest grid with |Ω(0)| < P points. The telescope
type uses “agglomeration” [144, subsection 6.3.2] to transfer the coarser-grid problems to fewer
processors, i.e., to a smaller MPI communicator C′.

Understanding command-line telescope usage requires slightly more detail. The user must
choose a reduction factor r > 1 and an intermediate level 0 < L′ < L at which the transfer
will occur. At the setup stage telescope generates an MPI communicator with |C′| = |C|/r
processes, presumably so that 1 ≤ |C′| < P , and then, during each multigrid cycle, at the L′

level telescope transfers (VecScatters) the problem from C to C′ and back. In fact, starting
from Ω(L), a V-cycle descends k1 levels on C, with (down-)smoothing and restriction, to an
intermediate grid Ω(L−k1+1). On this intermediate grid, telescope scatters to C′. Then we
descend through k2 = L − k1 + 2 additional levels to the coarsest grid Ω(0). At Ω(0) the
redundant PC, and usually a direct solver, solves the coarsest-grid problem over C′. To complete
the V-cycle we go up k2 levels on C′ to the intermediate grid, scatter back, and then go up k1

levels on C. The user is in charge of arranging that Ω(0) can be partitioned on C′, i.e., |Ω(0)| ≥
|C′| is still required for DMDA. Because one counts the levels including the finest and coarsest,
k1 + k2 = L+ 2. Consider also adding these options for monitoring and cycle visualization:

-ksp_monitor_short -mg_{levels,coarse}_ksp_converged_reason \
-mg_coarse_telescope_mg_{levels,coarse}_ksp_converged_reason

The -ksp_view of the solver is also worth seeing.
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214 Chapter 8. Parallel scaling

Ω(4)

Ω(3)

Ω(2)

Ω(1)

Ω(0)

|C| = 16 |C′| = 4 |C′| = 4 |C′| = 4 |C| = 16

33× 33

17× 17

9× 9

33× 33

17× 17

9× 99× 9

5× 5

3× 3 3× 3

direct solve

9× 9

5× 5

3× 3

telescope

redundant

telescope

Figure 8.9. By scattering (horizontal arrows) to a smaller communicator at some intermediate
level, telescope allows parallel V-cycles to use a coarse grid Ω(0).

For example, as illustrated in Figure 8.9, the following run has L = 4, P = |C| = 16, r = 4,
k1 = 3, and k2 = 3:

$ mpiexec -n 16 ./fish -da_refine 4 -pc_type mg -pc_mg_levels 3 \
-mg_coarse_pc_type telescope -mg_coarse_pc_telescope_reduction_factor 4 \
-mg_coarse_telescope_pc_type mg -mg_coarse_telescope_pc_mg_levels 3

See Exercise 8.7.
The native algebraic multigrid (AMG; Chapter 10) solver in PETSC, namely -pc_type

gamg, is more flexible regarding parallel distribution of coarse grids than is GMG over a
DMDA structured grid. (Likewise, DMPlex is more flexible; see Chapter 13.) The gamg type
permits a process to own zero degrees of freedom, and therefore telescope may not be as
necessary. Note that one may also use telescope to switch from GMG to AMG for the
coarser grids. Furthermore, one may use telescope in other ways than a single reduction
at a mid-level [109], and one may also switch to Galerkin coarse grid operators (6.21) using
-mg_coarse_telescope_pc_mg_galerkin.

Parallel nondeterminacy
A final, and occasionally important, observation about parallel computations arises from the fact
that floating-point arithmetic is not exactly associative [63]. Furthermore, the total order in a
parallel sum, such as in the inner product reduction operations in CG and other Krylov methods
(Chapter 2), is not predetermined [121]. For example, the MPI standard [72] allows terms of a
MPI_Reduce() sum to be accumulated on the rank 0 process as they arrive.

Consider a slowly converging sum (Exercise 8.8). Suppose there are many processes com-
puting parts of the sum, and suppose that there is significant “noise” in the interconnect in the
sense that the order in which processes report their partial sums is not predictable. Then the
bits of the resulting sum are not exactly repeatable. Though backward-stable algorithms [143],
including sums and inner products, will not suffer large output changes, it is a fact of life that
sufficiently complicated parallel solvers are (bitwise) nondeterministic. This is one justification
for using -snes_monitor_short and/or -ksp_monitor_short when doing regression testing
on codes, for example.
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Exercises 215

Fact 17. Parallel reductions are nondeterministic at the bit level. Because floating-point arith-
metic is not exactly associative, different orders of arrival during reductions will affect results.

Exercises
8.1. (a) Modify the script ch8/cluster.sh to make it run on the batch system on your

hardware. Consider starting with P ≤ 20, for example, and look for interactive
queues/partitions suitable for parallel development. See your system documentation
or seek assistance from your system administrator.

(b) What are the streams rates? Can you improve bandwidth by adjusting batch set-
tings?

(c) Choose one the several PDE solutions illustrated in the script. Increase the resolu-
tion and concurrency up to limits imposed by your hardware and/or account limits.
Note that long run times are undesirable; solve the PDE near the highest achievable
resolution while imposing a limit of t(N,P ) ≤ 15 minutes or similar.

(d) With this solver, redo the strong-, weak-, and ideal-scaling analyses shown in this
chapter.

8.2. Consider this ch6/fish.c run using GMG:

$ mpiexec -n P ./fish -fsh_dim 3 -da_refine 6 -pc_type mg

In what ways does the algorithm change when going from serial to parallel? By reviewing
the discussion of GMG in Chapters 6 and 7, choose a smoother that will remove much
(or all) of the P dependence. What is the coarse-grid solver like? What will change or
not change with P , and what will be limited to a range of P ? Choose a coarse-grid solver
which is nearly independent of P (for a modest range of P ) and measure strong-scaling
performance.

8.3. Starting from Amdahl’s law in (8.1), confirm that SN (P ) ≤ 1/fs, SN (P ) → 1/fs as
P →∞, and EN (P )→ 0 as P →∞.

8.4. (a) Redo the strong-scaling ch7/minimal.c runs which generated Figures 8.3–8.5. (Or
use another PDE solver.) Then, using Amdahl’s law (8.1), estimate the serial fraction
fs by linear regression to your timing data. For instance, (8.1) implies that y∗ =
t(N,P )− t(N, 1)/P should be proportional to x∗ = t(N, 1)(1−1/P ): y∗ = fsx∗.
Thus one might fit a line through the origin to the (x∗, y∗) data.

(b) Precise use of Amdahl’s law requires a method that is invariant with P , though this
only occurs with suboptimal PDE solvers. For example,

$ mpiexec -n P ./fish -fsh_dim 3 -da_refine 6 -pc_type jacobi

is independent of P and also converges in a reasonable time. Confirm for P =
1, 2, 4, 16, 64 that the number of KSP iterations is P independent. Using such runs,
redo the analysis in part (a). Is Amdahl’s law a better fit here?

8.5. The law in section 2.3.3.1 of [48] says

t(N,P ) = fs t(N, 1) + (1− fs)
t(N, 1)

P
+ tc.

Continue Exercise 8.4 above by fitting the data, in an appropriate manner, to this model.
Interpret your results.
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216 Chapter 8. Parallel scaling

8.6. In a figure like Figure 8.8, showing t(N,P ) versusN/P on log-log axes, what will strong-
scaling, static-scaling, and weak-scaling studies with good results look like? Find the
strong-scaling (Figure 8.3) and weak-scaling (Figure 8.7) data points in Figure 8.8.

8.7. Suppose we want to solve the Poisson equation using GMG and large concurrency. For
example, fix the number of MPI processes P > 9 at some convenient level on your
machine and do
$ mpiexec -n P ./fish -da_refine L -pc_type mg

This run should give an error message for any value of L because the coarsest grid is too
small; the one-degree-of-freedom-per-process restriction is active.

Now, for some attainable levelL, compare the efficiency of redundant and telescope
approaches by measuring the total flops and run time. First, use redundant and
-pc_mg_levels K where K < L + 1. Vary K from less than L/2 up to the highest
value that runs without error (which depends on P ). Second, use the telescope options
given in the text. Compare reduction factors r and intermediate levels k1 ≥ 2; set k2 so
that k1 + k2 = L + 2. (It might be wise to reread the section on parallel multigrid in
Chapter 7 before interpreting results.)

8.8. To demonstrate that the order of summation can affect the result, first write a function
which permutes the order of the elements stored in a one-dimensional C array, that is, im-
plement a random shuffle algorithm. (One might use a PETSC random number generator
seeded by the wall clock time.) Now modify e.c from Chapter 2 to create lntwo.c which
does an N -term partial sum of the slowly converging infinite series

∞∑
n=1

(−1)n+1

n
= ln 2. (8.4)

Do the finite sum by putting all the terms into an array, then randomly permuting it using
your shuffle function, and then summing by any convenient loop. Show nondeterminacy
of the least-significant digits using runs with N = 1000 terms.
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Part II

Constructions
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Chapter 9

Finite element method I:
Nonlinear optimization

The elliptic PDE problem in this chapter introduces a structured-grid finite element (FE) method,
an easy transition from the FD schemes used so far. The problem is to minimize an objective
functional in a function space, so we initially try to solve the discrete form by direct numerical
minimization without gradient-evaluation code. This direct approach is, however, limited to very
coarse grids, so we next add code to compute the gradient. The weak form of the PDE states that
this gradient is zero, and this is the traditional starting point for FE presentations. Preconditioned
Newton-Krylov methods can solve the resulting nonlinear algebraic equations, and, by using
multigrid preconditioning, we achieve nearly optimal solver complexity in fine-grid cases.

A p-Helmholtz equation as minimization
Let Ω be a domain in R2 with well-behaved boundary, such as a polygon, and suppose f is a
continuous function on Ω̄. For p > 1 define

I[u] =

∫
Ω

1

p
|∇u|p +

1

2
u2 − fu. (9.1)

This nonlinear functional is well defined and continuous on a space of functions with integrable
gradient, namely the Sobolev space

W 1,p(Ω) =

{
w :

∫
Ω

|w|p <∞ &

∫
Ω

|∇w|p <∞
}

(9.2)

(see, e.g., [51, Chapter 5] or [60, Chapter 7]), a Banach space with norm

‖w‖W 1,p =

(∫
Ω

|w|p +

∫
Ω

|∇w|p
)1/p

.

Figure 9.1 visualizes a function which is analogous to I[u] but defined on R2 instead of the
Banach space W 1,p(Ω) (Exercise 9.1).

The functional (9.1) has two significant properties. First, I[u] is coercive in the sense that if
the input is large in norm then the output is large:

lim
‖u‖W1,p→+∞

I[u] = +∞. (9.3)

Second it is convex, meaning that if u, v ∈W 1,p(Ω) and 0 ≤ λ ≤ 1 then

I[λu+ (1− λ)v] ≤ λI[u] + (1− λ)I[v] (9.4)

219
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220 Chapter 9. Finite element method I: Nonlinear optimization

Figure 9.1. If p = 4 then the functional I[u] in (9.1) is analogous to a convex function like this surface.

(Exercise 9.2). In fact, because p > 1, I[u] is strictly convex: if ‖u− v‖W 1,p > 0 and 0 < λ < 1
then strict inequality applies in (9.4).

A standard theorem from the calculus of variations [51, Theorem 8.2.2] shows that coercivity
and strict convexity of I[u] imply that our problem

min
w∈W 1,p(Ω)

I[w] (9.5)

has a unique solution u. The proof follows the familiar story that a continuous, real-valued
function on a compact set achieves its extrema. Compactness arises from coercivity in the sense
that sets of the form {w : I[w] ≤ L}, which are bounded and closed, are compact in a certain
topology on W 1,p(Ω), namely the weak topology. Convexity implies that I[u] is adequately
continuous, i.e., in the weak topology (section 8.2 of [51]), and finally strict convexity is used to
show uniqueness.

Being good calculus students, we solve a minimization problem like (9.5) by taking the
derivative and setting it to zero. Because p > 1 the functional I[u] does indeed have a gradient,
and thus a minimizer also solves a nonlinear PDE. In fact, suppose ε ∈ R and u, v ∈ W 1,p(Ω).
The binomial theorem implies

I[u+ εv]− I[u] =

∫
Ω

1

p
(|∇u+ ε∇v|p − |∇u|p) +

1

2

(
(u+ εv)2 − u2

)
− εfv

= ε

(∫
Ω

|∇u|p−2∇u · ∇v + uv − fv
)

+ o(ε),

so the directional derivative is

∇I[u](v) = lim
ε→0

I[u+ εv]− I[u]

ε
=

∫
Ω

|∇u|p−2∇u · ∇v + uv − fv. (9.6)

For each u ∈W 1,p(Ω), (9.6) defines a linear and continuous map, the gradient∇I[u] : W 1,p(Ω)
→ R. Thus if u ∈W 1,p(Ω) solves (9.5) then ∇I[u](v) = 0 or∫

Ω

|∇u|p−2∇u · ∇v + uv − fv = 0 (9.7)

for all v ∈W 1,p(Ω). The converse is also true (by convexity).
Equation (9.7) is the weak form of the p-Helmholtz equation, and it is also the variational or

Euler-Lagrange equation of minimization problem (9.5). If the solution of (9.5) and/or (9.7) is
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Structured Q1 finite elements 221

smooth enough, for instance if it has continuous second derivatives, then we can derive a strong
form PDE as follows. (Sufficient smoothness actually does hold when the domain Ω and data f
are well behaved [51].) Assuming such smoothness, an integration by parts of (9.7) gives∫

Ω

[
−∇ ·

(
|∇u|p−2∇u

)
+ u− f

]
v +

∫
∂Ω

v|∇u|p−2∇u · n = 0. (9.8)

Using functions v ∈ W 1,p(Ω) which are zero along ∂Ω shows that the term in square brackets
is zero. Applying v which are only nonzero along and near ∂Ω, so the first integral can be made
arbitrarily small, it follows that ∇u · n = ∂u/∂n = 0 on ∂Ω. Thus if u solves (9.7) and is
smooth then

−∇ ·
(
|∇u|p−2∇u

)
+ u = f on Ω and

∂u

∂n
= 0 on ∂Ω, (9.9)

that is, the problem has homogeneous Neumann boundary conditions. If p = 2 then (9.9) reduces
to a linear Helmholtz equation −∇2u+ u = f .

In summary, problem (9.5) is equivalent to weak form (9.7), which can be converted to strong
form, if the solution u is smooth, thus the p-Helmholtz PDE (9.9) arises from minimization.
The differential operator in (9.9) is the p-Laplacian 4pu = ∇ ·

(
|∇u|p−2∇u

)
. This operator

appears in applications including non-Newtonian fluids [30, 61] and differential games [50, 124].
Because the leading-order nonlinearity in p-Laplacian equations is more challenging than many
zeroth-order nonlinearities, like those in Liouville-Bratu equation (Chapters 4 and 7), the p-
Laplacian is also common in model problems for testing numerical methods for nonlinear elliptic
PDEs [14, 18, 29, 36].

The coefficient D = |∇u|p−2 is regarded as a nonlinear diffusivity; compare Exercise 7.9.
In singular p < 2 cases the diffusivity becomes unbounded as |∇u| → 0, while for p > 2 it
degenerates to zero as |∇u| → 0. After we address the easy p = 2 case, we will solve several
p 6= 2 cases.

Specific diffusion interpretations of the p-Laplacian apply in the extremes. If p = 1 then
4p computes the mean curvature of level surfaces (curves) of u, and thus it models isotropic
diffusion within the level surfaces, with no diffusion between them [50]. The dual p = ∞ case
has diffusion along the gradient of u, but none in the level surfaces. Each extreme case thus
allows nonsmooth solutions, even for bounded sources f , and we will not attempt numerical
solutions. However, for 1 < p < ∞ the p-Laplacian can be written as an interpolation between
p = 1,∞ [124] (Exercise 9.4), so these extremes may aid intuition.

Before any numerical considerations we choose test problems. An exact solution is easy
when f(x, y) = 1; we observe that u(x, y) = 1 trivially solves−4pu+u = 1 and the Neumann
boundary condition. This problem is called constant below. For a more interesting solution on
the unit square Ω = (0, 1)2 we manufacture a solution, called cosines below, which satisfies
homogeneneous Neumann boundary conditions:

u(x, y) = cos(πx) cos(πy). (9.10)

The source function f(x, y) is computed by hand using (9.9), but note that |∇u| → 0 as (x, y)
approaches a corner of Ω. For p 6= 2 the calculation is error prone, but at least by-hand errors are
not always correlated with coding mistakes, so agreement may reflect correctness.

Structured Q1 finite elements
Our FE method approximates the solution u by a piecewise-polynomial function on a structured
grid of rectangles. In contrast to FD methods in Chapters 3–7, the gridded unknowns determine
a function from the same space W 1,p(Ω) in which we seek the continuum solution.
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222 Chapter 9. Finite element method I: Nonlinear optimization

x

y

�ij

(xi, yj)

hx

hy

i = 0 i = mx−1
j = 0

j = my−1

Figure 9.2. The mx × my grid divides the unit square into elements �ij of area hxhy , each
indexed by its upper-right corner.

Let Ω = (0, 1)2 and consider the structured grid in Figure 9.2. For integers mx ≥ 2,my ≥ 2
let hx = 1/(mx − 1) and hy = 1/(my − 1). There are N = mxmy total nodes at locations
xi = ihx, yj = jhy . The grid has K = (mx−1)(my−1) rectangular elements indexed by their
upper-right corners:

�ij = [xi−1, xi]× [yj−1, yj ].

These choices determine a DMDA structured-grid object (Chapter 3):

DMDACreate2d(COMM,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DMDA_STENCIL_BOX,
2,2,PETSC_DECIDE,PETSC_DECIDE,1,1,NULL,NULL,&da)

We use a box stencil because the contributions from the four elements incident to a given node
(xi, yj) will depend on all nine nodal values. The default grid, with mx = my = 2, N = 4, and
K = 1, is as small as possible.

Functional (9.1) can be computed element by element,

I[u] =

mx−1∑
i=1

my−1∑
j=1

∫
�ij

1

p
|∇u|p +

1

2
u2 − fu, (9.11)

but how should we approximate u ∈ W 1,p(Ω) on each element? A simple choice is the bilinear
interpolant uh

∣∣
�ij

= a + bx + cy + dxy. Requiring uh to be continuous on the whole domain

Ω then determines uh from its nodal values uij = uh(xi, yj) [49]. In fact, there is a linear
isomorphism between nodal values in RN and the space

Sh =
{
v ∈ C(Ω)

∣∣∣ v|�ij is bilinear
}
⊂W 1,p(Ω). (9.12)

Because the elements are quadrilaterals and the polynomial degree is one, i.e., in x and y sepa-
rately, Sh is called the Q1 finite element space.

The next step is to build a basis for Sh. We do this by constructing bilinear functions on a
reference element (Figure 9.3)

�∗ = [−1, 1]× [−1, 1].
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x

y

�ij

xi

yj

ξ

η

1−1

1

−1

�∗

` = 0` = 1

` = 2 ` = 3

Figure 9.3. Each element �ij is the image under map (9.16) of a reference element �∗ in ξ, η space.

In fact the use of a reference element is avoidable here, because our elements are congruent
rectangles, but we are also thinking ahead toward unstructured meshes in Chapters 10, 13, and
14 where the strategy is advantageous. If v is bilinear on �∗ then v(ξ, η) = a+ b ξ+ c η+ d ξη,
but the monomial basis {1, ξ, η, ξη} is not convenient when manipulating nodal values. Instead
we number the vertices of �∗ by ` = 0, 1, 2, 3 (Figure 9.3),

(ξ0, η0) = (+1,+1), (ξ1, η1) = (−1,+1),

(ξ2, η2) = (−1,−1), (ξ3, η3) = (+1,−1),
(9.13)

and define four functions

χ`(ξ, η) =
1

4
(1 + ξ`ξ) (1 + η`η) . (9.14)

The χ` form a basis of bilinear functions on �∗ and, because χ`(ξ`′ , η`′) = δ``′ , coefficients in
this basis equal the nodal values on the reference element:

v(ξ, η) =

3∑
`=0

v(ξ`, η`)χ`(ξ, η). (9.15)

The element map �∗ → �ij can then be written using basis functions:

x(ξ, η) =

3∑
`=0

x`χ`(ξ, η) = xi +
hx
2

(ξ − 1),

y(ξ, η) =

3∑
`=0

y`χ`(ξ, η) = yj +
hy
2

(η − 1).

(9.16)

The Jacobian determinant of the map, used in integrals below, is a constant equal to the ratio of
the areas of �ij and �∗: ∣∣∣∣det

∂(x, y)

∂(ξ, η)

∣∣∣∣ = det

[hx
2 0

0
hy
2

]
=
hxhy

4
. (9.17)
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224 Chapter 9. Finite element method I: Nonlinear optimization

ψp,q(xp, yq) = 1

ψp,q(xr, ys) = 0 (other nodes)
xp

yq

Figure 9.4. A hat function ψp,q ∈ Sh.

For each node (xp, yq) in the grid there is a continuous, piecewise-bilinear hat function
ψp,q ∈ Sh, defined on all of Ω and illustrated in Figure 9.4, which is equal to one on that
node and zero at all others,

ψp,q(xr, ys) = δprδqs. (9.18)

Hat functions form a basis of Sh:

v(x, y) =

mx−1∑
i=0

my−1∑
j=0

vijψij(x, y). (9.19)

Observe that ψp,q is identically zero on any element not incident to node (xp, yq). Furthermore,
when restricted to a particular element and then pulled back to the reference element �∗, the hat
function ψp,q is either identically zero or it is equal to one of the basis functions χ` in (9.14).
Indeed, if corner (ξ`, η`) ∈ �∗ corresponds to node (xp, yq) ∈ Ω then

ψp,q(x(ξ, η), y(ξ, η)) = χ`(ξ, η). (9.20)

Approximating I[u] in (9.11) also requires gradients (Exercise 9.5):

(∇x,yψp,q)(x(ξ, η), y(ξ, η)) =

〈
2

hx

∂χ`
∂ξ

,
2

hy

∂χ`
∂η

〉
; (9.21)

note that derivatives ∂χ`/∂ξ and ∂χ`/∂η can be found from formula (9.14).
We do not plan to compute the integrals in (9.11) exactly. (For p 6= 2 it would be challeng-

ing to exactly integrate |∇u|p.) Instead, using tensor product quadrature with n points in each
direction, formulas (I.2) and (I.3) from the Interlude (page 171) yield∫

�ij

v(x, y) dx dy ≈ hxhy
4

n−1∑
r=0

n−1∑
s=0

wrwsv(ξr, ξs). (9.22)

(Note v(ξ, η) = v(x(ξ, η), y(ξ, η)).)
Finally, on the reference element we define

Gij(u, ξ, η) =

[
1

p
|∇u|p +

1

2
u2 − fu

]
�∗

(9.23)
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Objective only: Implementation 225

user code

objective
gradient

(residual)

Hessian
(Jacobian)

SNES
nonlinear solver

KSP
linear solver

PC
preconditioner

DMDA
structured grid

Vecs
solution, other fields

Mat
Hessian

Figure 9.5. The PETSC stack for a structured-grid, minimization-type PDE problem, here with-
out a Hessian (Jacobian) implementation; arrows mean “user code acts directly on.” Compare Figures
3.13 and 4.4.

using the nodal values of u and f on element �ij (Exercise 9.6). Now formulas (9.19), (9.21),
(9.22), and (9.23) combine to approximate (9.11) by the following sum:

Ih[u] =
hxhy

4

mx−1∑
i=1

my−1∑
j=1︸ ︷︷ ︸

elements

n−1∑
r=0

n−1∑
s=0︸ ︷︷ ︸

quadrature points

wrwsGij(u, ξr, ξs). (9.24)

This is enough detail for an initial implementation.

Objective only: Implementation
Figure 9.5 shows the PETSC components we will use. Initially we only implement the objec-
tive function Ih[u], namely equation (9.24), because numerical minimization algorithms can use
finite-difference approximations for the gradient. Though we delay its use until later, gradient-
evaluation code will, in fact, be needed because our objective-only approach only works on very
coarse grids. However, we never do implement an analytical Jacobian, i.e., we never write code
to provide the Hessian of the objective.

Note that in an optimization context as here, “gradient” and “residual” refer to the same
vector-valued function, and “Hessian” and “Jacobian” to the same matrix-valued function. They
are the first and second derivatives of the objective, respectively. (See Exercises 9.11 and 9.12.)

Two snippets of our program phelm.c are shown, Codes 9.1 and 9.2. The first shows FE
tools generic to any 2D Q1 method based on a reference element. These tools evaluate basis
functions χ` at points (ξ, η) ∈ �∗, implement formulas (9.14) and (9.15), and evaluate partial
derivatives of χ`. Note that formula (9.21) generates a vector, the components of the gradient
at a point, which is stored in a two-entry struct. Two additional functions compute pointwise
inner products∇u · ∇v and powers |∇u|q from nodal values.
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226 Chapter 9. Finite element method I: Nonlinear optimization

static PetscReal xiL [4 ] = { 1.0 , −1.0 , −1.0 , 1.0} ,
etaL [4 ] = { 1.0 , 1.0 , −1.0 , −1.0};

static PetscReal chi ( PetscInt L , PetscReal xi , PetscReal eta ) {
return 0.25 * (1.0 + xiL [L ] * x i ) * (1.0 + etaL [L ] * eta ) ;

}

/ / evaluate v ( xi , eta ) on reference element using loca l node numbering
static PetscReal eval (const PetscReal v [4 ] , PetscReal xi , PetscReal eta ) {

return v [0 ] * chi (0 , xi , eta ) + v [1 ] * chi (1 , xi , eta )
+ v [2 ] * chi (2 , xi , eta ) + v [3 ] * chi (3 , xi , eta ) ;

}

typedef struct {
PetscReal xi , eta ;

} gradRef ;

static gradRef dchi ( PetscInt L , PetscReal xi , PetscReal eta ) {
const gradRef resu l t = {0.25 * xiL [L ] * (1.0 + etaL [L ] * eta ) ,

0.25 * etaL [L ] * (1.0 + xiL [L ] * x i ) } ;
return resu l t ;

}

/ / evaluate p a r t i a l derivs of v ( xi , eta ) on reference element
static gradRef deval (const PetscReal v [4 ] , PetscReal xi , PetscReal eta ) {

gradRef sum = {0.0 ,0 .0} , tmp ;
PetscInt L ;
for (L=0; L<4; L++) {

tmp = dchi (L , xi , eta ) ;
sum. x i += v [L ] * tmp . x i ; sum. eta += v [L ] * tmp . eta ;

}
return sum;

}

static PetscReal GradInnerProd (PetscReal hx , PetscReal hy ,
gradRef du , gradRef dv) {

const PetscReal cx = 4.0 / (hx * hx) , cy = 4.0 / (hy * hy) ;
return cx * du . x i * dv . x i + cy * du . eta * dv . eta ;

}

static PetscReal GradPow(PetscReal hx , PetscReal hy ,
gradRef du , PetscReal P, PetscReal eps) {

return PetscPowScalar ( GradInnerProd (hx , hy ,du ,du) + eps*eps , P/2 .0 ) ;
}

Code 9.1. c/ch9/phelm.c, part I. Tools for 2D Q1 FE methods.

Code 9.2 shows the parallel evaluation of Ih[u]. The first function implements pointwise
integrand function Gij(ξ, η) from (9.23). In the second function each MPI rank accumulates its
portion of the sum over elements (9.24) into a variable lobj using the quadrature weights and
nodes:

lobj += q.w[r] * q.w[s] * ObjIntegrandRef(info,f,u,q.xi[r],q.xi[s],user);

The local contributions lobj are then summed across the MPI communicator (i.e., reduced) into
the global value obj = Ih[u]:

MPI_Allreduce(&lobj,obj,1,MPIU_REAL,MPIU_SUM,com);
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Objective only: Implementation 227

static PetscReal ObjIntegrandRef (DMDALocalInfo * info ,
const PetscReal f f [ 4 ] , const PetscReal uu [4 ] ,
PetscReal xi , PetscReal eta , PHelmCtx *user ) {

const gradRef du = deval (uu , xi , eta ) ;
const PetscReal hx = 1.0 / ( info −>mx−1) , hy = 1.0 / ( info −>my−1) ,

u = eval (uu , xi , eta ) ;
return GradPow(hx , hy ,du , user−>p,0 .0 ) / user−>p + 0.5 * u * u

− eval ( f f , x i , eta ) * u ;
}

PetscErrorCode FormObjectiveLocal (DMDALocalInfo * info , PetscReal **au ,
PetscReal * obj , PHelmCtx *user ) {

PetscErrorCode i e r r ;
const PetscReal hx = 1.0 / ( info −>mx−1) , hy = 1.0 / ( info −>my−1) ;
const Quad1D q = gausslegendre [ user−>quadpts −1];
PetscReal x , y , l ob j = 0.0;
PetscInt i , j , r , s ;
MPI_Comm com;

/ / loop over a l l elements
for ( j = info −>ys ; j < info −>ys + info −>ym; j ++) {

i f ( j == 0)
continue ;

y = j * hy ;
for ( i = info −>xs ; i < info −>xs + info −>xm; i ++) {

i f ( i == 0)
continue ;

x = i * hx ;
const PetscReal f f [ 4 ] = { user−>f (x , y , user−>p , user−>eps) ,

user−>f (x−hx , y , user−>p , user−>eps) ,
user−>f (x−hx , y−hy , user−>p , user−>eps) ,
user−>f (x , y−hy , user−>p , user−>eps) } ;

const PetscReal uu [4 ] = {au [ j ] [ i ] , au [ j ] [ i −1] ,
au [ j −1] [ i −1] ,au [ j −1] [ i ] } ;

/ / loop over quadrature points on th i s element
for ( r = 0; r < q .n ; r ++) {

for ( s = 0; s < q .n ; s++) {
lob j += q .w[ r ] * q .w[ s ]

* ObjIntegrandRef ( info , f f , uu ,
q . x i [ r ] , q . x i [ s ] , user ) ;

}
}

}
}
l ob j *= hx * hy / 4.0; / / from change of variables formula
PetscObjectGetComm ( ( PetscObject ) ( info −>da) ,&com) ;
MPI_Allreduce(& lobj , obj ,1 ,MPIU_REAL,MPIU_SUM,com) ;
PetscLogFlops(129* info −>xm* info −>ym) ;
return 0;

}

Code 9.2. c/ch9/phelm.c, part II. Implementation of (9.24).

Computing Ih[u] in parallel requires clarity on the distribution of nodes and elements. To do
sum (9.24) we assign ownership of each element to a unique rank. Figure 9.6 shows the case of
four MPI processes. The DMDA object distributes the nodes (Chapter 3), but here we make the
additional decision that a rank owns an element if it is down or left from an owned node.

The main() function (not shown) sets options (prefix ph_) and then sets up a DMDA and a
SNES. The SNES is told to use FormObjectiveLocal() by the call

DMDASNESSetObjectiveLocal(da,(DMDASNESObjective)FormObjectiveLocal,&user)
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228 Chapter 9. Finite element method I: Nonlinear optimization

i = 0 mx−1

j = 0

my−1

0 1

2 3

node ownership

i = 0 mx−1

j = 0

my−1

0 1

2 3

element ownership

Figure 9.6. Parallel ownership of nodes (left) with four MPI processes. In evaluating the objec-
tive we must assign unique element ownership (right).

Then main() calls SNESSolve(), computes the numerical error, and destroys all the objects at
the end.

There are two exact solution cases, -ph_problem constant with f(x, y) = 1 and
-ph_problem cosines with f(x, y) manufactured from (9.10). An initial iterate u(x, y) = 0.5
is the default, but there is also an option to use the exact solution as the initial iterate. Other
default values include p = 2 for the exponent and n = 2 for quadrature.

Objective only: Solvers
To run phelm.c in objective-only mode requires option -ph_no_gradient to turn off the gra-
dient code in Code 9.3 below. The following is in the default case where Ih[u] is quadratic and
PDE (9.9) is linear:

$ cd c/ch9/ && make phelm
$ ./phelm -da_refine 2 -snes_converged_reason \

-ph_no_gradient -snes_fd_function -snes_fd_color
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 9
done on 5 x 5 grid with p=2.000 ...
numerical error: |u-u_exact|_inf = 4.749e-02

Option -snes_fd_function asks SNES to do finite differencing on the objective functional
Ih[u] to generate a function which evaluates the gradient/residual F(u) = ∇Ih[u]. Then one
of -snes_fd, -snes_fd_color, -snes_mf, or -snes_mf_operator will compute the entries
or action of the Hessian, i.e., the Jacobian of the residual, also by finite differencing, for each
Newton step. On this structured grid we try -snes_fd_color for efficiency.

However, the disadvantages of this approach are likely clear. The computed Hessian must be
a terrible approximation because it is doubly finite differenced. If ε is machine precision then we
expect O(ε1/4) rounding error and thus only a few correct digits even with double precision,
thus the computed search directions are far too “noisy.” For example, with -da_refine 5 the
above run reports CONVERGED_SNORM_RELATIVE, but the putative solution has low accuracy.

The approach is also very slow. First, finite differencing requires at least N + 1 evaluations
of the objective function to compute one gradient (residual), where N is the total number of
degrees of freedom. (Because of the way SNESObjectiveComputeFunctionDefaultFD() is
implemented, the true number is more than 3N evaluations.) Then finite differencing using
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Objective only: Solvers 229

coloring yields the Hessian in nine gradient evaluations, because of the box stencil. Additional
objective evaluations are needed in the line search and in checking the convergence tolerance.
In summary, about 30N objective evaluations are needed per Newton step. Such an approach
produces unsustainable O(N2) scaling as N → ∞, because each objective evaluation does
O(N) flops.

One may count actual evaluations by adding -log_view | grep Eval to the run above.
On the 5 × 5 grid (-da_refine 2) the objective is evaluated more than 9000 times, rising to
1.2× 105 times for the 17× 17 grid (-da_refine 4).

However, there exist other algorithms which avoid such direct dependence on a noisy Hessian
in determining the search direction. The following options can replace -snes_fd_color in the
above run:

(i) Preconditioned Jacobian-free Newton-Krylov with the noisy Hessian used only for pre-
conditioning:

-snes_fd_color -snes_mf_operator

Like the run above, this approach uses -snes_type newtonls.

(ii) The limited-memory BFGS method [118], a quasi-Newton (QN) method, which replaces
the Hessian with increasing-rank approximations, as the iteration proceeds, computed from
outer products of gradients:

-snes_type qn

(iii) Nonlinear conjugate gradients (NCG) [118]. This extends the linear CG method (Chapter
2) to a minimization method suitable for not-necessarily quadratic functionals like our
p-Helmholtz functional:

-snes_type ncg

The TAO library, distributed with PETSC, has additional nongradient methods such as Nelder-
Mead [118], but none are expected to give improved scaling.

The above methods all use the same approximated gradient, namely the finite differenced
result from -snes_fd_function, but they avoid generating Newton steps directly from the
doubly-differenced Hessian. Note that in (ii) the default line-search type also changes from bt
to cp (Chapter 4; compare [29]). Even with smooth gradients, however, quadratic convergence
would not be expected in (ii) or (iii). In fact, while BFGS can exhibit superlinear convergence,
NCG generally has linear convergence [118].

To compare these solvers note that the finite differenced residual has O(ε1/2) accuracy so in
double precision the default -snes_rtol 1.0e-8 may be asking too much. Resetting this to
10−6, in Table 9.1 we compare the methods by number of SNES iterations. (The run times—not
shown—are horrible, but solver convergence is the concern here.)

Table 9.1. Number of SNES iterations on various grids, DIVERGED errors, for objective-only
solver methods. The asterisk indicates a low-accuracy solution.

2× 2 3× 3 5× 5 9× 9 17× 17 33× 33
original 5 5 7 7 8 3∗

(i) MF 4 5 5 8 DIVERGED DIVERGED

(ii) QN 2 4 9 20 37 68
(iii) NCG 2 4 9 20 37 68
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230 Chapter 9. Finite element method I: Nonlinear optimization

QN and NCG methods are preferred when running objective only, because the solver con-
verges, including on finer grids (not shown), to discretization accuracy. The coincidence of their
iterations is because the objective function is quadratic (Exercise 9.7; see [54]); for general ob-
jective functions QN and NCG do not generate the same search directions.

Given that we have an exact solution, we also want to see numerical convergence on these
coarse grids. Using numerical errors from the QN/NCG runs, and excluding data from the two
coarsest grids, we find a convergence rate O(h1.99)—see Figure 9.7 below—suggesting we have
correctly implemented the objective functional.

In summary, our 2D Helmholtz equation arises from minimization in a function space and
it is solvable using PETSC’s ability to minimize an objective functional via a finite differenced
gradient. Performance is poor using any of the above approaches; the large number of objective
evaluations limits these methods to very coarse grids.

Using a gradient function
Writing gradient code is now well motivated. Recall that the weak form (9.7) says∇I[u](v) = 0
for all v ∈W 1,p(Ω). The hat functions, which form a basis of Sh, then generate a finite nonlinear
system F(u) = 0 with one equation per node; we require u ∈ Sh to satisfy∫

Ω

|∇u|p−2∇u · ∇ψpq − fψpq = 0 (9.25)

for each node (xp, yq). Expanding this integral over elements,

mx∑
i=0

my∑
j=0

∫
�ij

|∇u|p−2∇u · ∇ψpq − fψpq = 0, (9.26)

observe that at most four distinct hat functions ψpq are nonzero on any element �ij . Therefore
we define the integrand on the reference element,

H`
ij(u, ξ, η) =

[
|∇u|p−2∇u · ∇ψpq − fψpq

]
�∗
, (9.27)

with the understanding that on �ij an index pair (p, q) corresponds to local index ` under map
(9.20). Note that the gradient in (9.27) is in the (x, y) variables, so chain rule (9.21) applies
(Exercise 9.8).

To determine equation Fpq(u) = 0 for node (xp, yq), the four nonzero element integrals in
(9.26) are each approximated using quadrature (9.22). These are assembled from the element
�ij contributions of those ψpq which have value one at the `th corner of the reference element:

Fpq(u) +=
hxhy

4

n−1∑
r=0

n−1∑
s=0

wrwsH
`
ij(u, ξr, ξs). (9.28)

The resulting system F(u) = 0 should determine all N nodal values uij .
Code 9.3 shows FormFunctionLocal() which implements (9.28) and IntegrandRef()

which implements (9.27) on the reference element using tools from Code 9.1. As with FD
examples in previous chapters, we access a ghosted local Vec via an array (PetscReal **au).
In parallel, where ownership of nodes follows Figure 9.6, constructing certain equations requires
nodal values owned by neighboring processes.
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static PetscReal IntegrandRef (DMDALocalInfo * info , PetscInt L ,
const PetscReal f f [ 4 ] , const PetscReal uu [4 ] ,
PetscReal xi , PetscReal eta , PHelmCtx *user ) {

const gradRef du = deval (uu , xi , eta ) ,
dchiL = dchi (L , xi , eta ) ;

const PetscReal hx = 1.0 / ( info −>mx−1) , hy = 1.0 / ( info −>my−1) ;
return GradPow(hx , hy ,du , user−>p − 2.0 ,user−>eps)

* GradInnerProd (hx , hy ,du , dchiL )
+ ( eval (uu , xi , eta ) − eval ( f f , x i , eta ) ) * chi (L , xi , eta ) ;

}

PetscErrorCode FormFunctionLocal (DMDALocalInfo * info , PetscReal **au ,
PetscReal **FF, PHelmCtx *user ) {

const PetscReal hx = 1.0 / ( info −>mx−1) , hy = 1.0 / ( info −>my−1) ;
const Quad1D q = gausslegendre [ user−>quadpts −1];
const PetscInt l i [ 4 ] = {0 , −1 , −1 ,0} , l j [ 4 ] = {0 ,0 , −1 , −1};
PetscReal x , y ;
PetscInt i , j , l , r , s ,PP,QQ;

/ / c lear residuals
for ( j = info −>ys ; j < info −>ys + info −>ym; j ++)

for ( i = info −>xs ; i < info −>xs + info −>xm; i ++)
FF[ j ] [ i ] = 0.0;

/ / loop over a l l elements
for ( j = info −>ys ; j <= info −>ys + info −>ym; j ++) {

i f ( ( j == 0) | | ( j > info −>my−1) )
continue ;

y = j * hy ;
for ( i = info −>xs ; i <= info −>xs + info −>xm; i ++) {

i f ( ( i == 0) | | ( i > info −>mx−1) )
continue ;

x = i * hx ;
const PetscReal f f [ 4 ] = { user−>f (x , y , user−>p , user−>eps) ,

user−>f (x−hx , y , user−>p , user−>eps) ,
user−>f (x−hx , y−hy , user−>p , user−>eps) ,
user−>f (x , y−hy , user−>p , user−>eps) } ;

const PetscReal uu [4 ] = {au [ j ] [ i ] , au [ j ] [ i −1] ,
au [ j −1] [ i −1] ,au [ j −1] [ i ] } ;

/ / loop over corners of element i , j
for ( l = 0; l < 4; l ++) {

PP = i + l i [ l ] ;
QQ = j + l j [ l ] ;
/ / only update residual i f we own node
i f (PP >= info −>xs && PP < info −>xs + info −>xm

&& QQ >= info −>ys && QQ < info −>ys + info −>ym) {
/ / loop over quadrature points
for ( r = 0; r < q .n ; r ++) {

for ( s = 0; s < q .n ; s++) {
FF[QQ] [PP]

+= 0.25 * hx * hy * q .w[ r ] * q .w[ s ]
* IntegrandRef ( info , l , f f , uu ,

q . x i [ r ] , q . x i [ s ] , user ) ;
}

}
}

}
}

}
PetscLogFlops((5+q .n*q .n*149) * ( info −>xm+1) * ( info −>ym+1) ) ;
return 0;

}

Code 9.3. c/ch9/phelm.c, part III. Gradient F(u) = ∇Ih[u] from (9.26).
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232 Chapter 9. Finite element method I: Nonlinear optimization
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Figure 9.7. Convergence for the p = 2 Helmholtz problem. Objective-only results agree on
coarse grids (circled). Midpoint quadrature with n = 1 (squares) generates somewhat larger errors than
default n = 2 quadrature (dots).

Because we have replaced O(N) objective evaluations with a single gradient evaluation, our
code will now run much faster. The difference is huge even on modest grids. For example, each
SNES iteration in the run

$ ./phelm -da_refine 4 -snes_rtol 1.0e-6 -snes_converged_reason

is 100 times faster than the objective-only version.29 Just as important, the new code generates
much higher-quality search directions in the Newton iteration; the objective-only version needs
several times more SNES iterations on this grid.

Adding -log_view | grep Eval to count evaluations in the above run shows two objec-
tive evaluations per SNES iteration because the line search uses the supplied objective instead
of the default merit function, namely φ in equation (4.23). That is, though SNES constructs a
merit function from the residual when no objective is provided, when the PDE arises from a
minimization principle then providing the objective function should improve the line search.

We can now give convincing evidence of convergence (Figure 9.7) in the easy p = 2 case:

for LEV in 1 2 3 4 5 6 7 8; do
./phelm -da_refine $LEV -snes_converged_reason

done

The numerical errors ‖u − uexact‖∞ converge at the O(h2) rate expected for uniformly elliptic
PDEs on convex polygonal domains with smooth coefficient functions [49].

Recall that we have implemented 2D Gauss-Legendre quadrature for n = 1, 2, 3 points in
each direction. So far we have only used the default n = 2 case, which suffices to exactly in-
tegrate cubic polynomials. Adding option -ph_quadpts 1 to the above runs, for midpoint-rule
quadrature, makes the numerical error larger by a factor of two (Figure 9.7). By contrast, switch-
ing to -ph_quadpts 3 generates virtually the same errors as n = 2, but the run time increases.

29I.e., with -ph_no_gradient -snes_fd_function. Remember that -snes_fd_color is the default for DMDA
codes without Jacobian procedures; both runs under consideration use it.

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Regularization for p 6= 2 233

In fact the run time is dominated by the time spent evaluating the integrand at quadrature points,
with the n = 1 time about 60% of the n = 2 time, which in turn is about 60% of the n = 3 time.
This brief analysis justifies using n = 2 quadrature points in each direction.

Regularization for p 6= 2

For p = 2 the functional (9.1) is quadratic, the PDE (9.9) is linear, and the problem is easy. Now
we take an empirical approach to solving some p 6= 2 cases, using the gradient evaluation just
described.

Results from the following runs, with various exponents and grids, are shown in Table 9.2:

$ ./phelm -snes_rtol 1.0e-5 -snes_converged_reason -ph_p P -da_refine LEV

The table shows either the number of SNES iterations if converged or, if not, the DIVERGED flavor.
These results suggest that convergence of the Newton iteration requires modifying the gradient
evaluation even on these coarse grids.

Table 9.2. SNES iterations or the DIVERGED flavor, e.g., DIVERGED_FNORM_NAN, for unregularized runs.

p
Grid

9× 9 33× 33 129× 129

1.1 FNORM_NAN FNORM_NAN FNORM_NAN

1.5 FNORM_NAN FNORM_NAN FNORM_NAN

2 2 2 2
4 10 13 LINEAR_SOLVE

10 21 LINEAR_SOLVE LINEAR_SOLVE

Cases with p < 2 fail immediately because NaN (not-a-number) values appear in the cal-
culation. A moment of thought shows the NaNs must be generated in FormFunctionLocal().
The objective integrand uses a positive exponent, so it will not generate NaNs, and neither will
the KSP and SNES internal methods. In fact, the exact solution u(x, y) = cos(πx) cos(πy), used
to generate the right-hand side f(x, y) of (9.9), has ∇u → 0 in the corners of the unit square
Ω. At these points the coefficient |∇u|p−2, and |f(x, y)| also, goes to infinity when p < 2. A
quick check with option -ph_view_f, added for this diagnosis, confirms that gridded values of
f(x, y) include NaNs.

We propose to use a parameter ε > 0 to regularize the diffusivity coefficient:

Dε(u) =
(
|∇u|2 + ε2

)(p−2)/2
. (9.29)

This change avoids division by zero in p < 2 cases. Notice that Dε is bounded above by εp−2

if p ≤ 2 and bounded below by the same quantity if p ≥ 2. We use Dε in the weak form
(9.7) and also in manufacturing the right-hand side from the exact solution (i.e., fε(x, y) =
−∇ · (Dε(u)∇u) + u). However, the original minimization goal remains because we do not
regularize the functional in (9.24); the original objective is well defined for all p ≥ 1. Line-search
Newton minimization of Ih[u] now has better search directions, calculated from the regularized
weak form, but we are solving the unmodified minimization problem.

Because we now have positive lower and upper bounds on the diffusivity coefficient, the
problem is uniformly elliptic [51], and furthermore the condition number of the Hessian (i.e.,
Jacobian) relates to the bounds on the diffusivity coefficient. We expect that κ2(A) ≤ Ch−2 for
a constant C constructed from these bounds and the geometry of the mesh [49, Theorem 1.33],
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234 Chapter 9. Finite element method I: Nonlinear optimization

and indeed we see O(h−2) growth of the condition number in practice (below). On the other
hand, loss of ellipticity for p > 2 may be physically meaningful in models, as it may correspond
to actual degeneration of diffusivity (e.g., [30]).

Given that the finite differenced Hessian is only accurate to one part in 108 anyway, the
regularization in (9.29) defaults to ε = 10−4; compare ε = 10−5 for a similar problem in [29].
The new data in Table 9.3, generated using -ph_eps 1.0e-4, shows progress in p < 2 cases
but no essential change for p ≥ 2. Evidently either a fine grid or p far from 2 makes the problem
harder. All cases now seem to succeed on very coarse grids but if p 6= 2 then they generate “bad”
linear systems on fine grids.

Table 9.3. SNES iterations, or the DIVERGED flavor, using regularization (9.29) with ε = 10−4.

p
Grid

9× 9 33× 33 129× 129

1.1 19 28 LINEAR_SOLVE

1.5 6 6 LINEAR_SOLVE

2 2 2 2
4 10 13 LINEAR_SOLVE

10 20 LINEAR_SOLVE LINEAR_SOLVE

Our DIVERGED_LINEAR_SOLVE errors suggest certain possibilities. Perhaps the Newton it-
eration is approaching a point where ‖∇I(u(k))‖ = ‖F(u(k))‖ → 0, but where the Hessian be-
comes singular. Alternatively, perhaps ‖u(k)‖ diverges to infinity in a singular-Hessian direction
(in the refinement limit). In fact these are the only possibilities; iterative minimization methods
using appropriate line searches will either converge to stationary points of I (‖∇I‖ = ‖F‖ = 0)
or the Hessian will become singular [118, section 3.2]. Thus a bound on Hessian condition
numbers implies that ‖F(u(k))‖ → 0.

Several approaches can be used to investigate further:

(i) Option -ph_exact_init uses the gridded values of the exact continuum solution u(x, y)
as initial values, which puts the initial iterate inside the domain of quadratic convergence
of the Newton iteration. In fact, all cases now exhibit SNES convergence. On the 129×129
grid with p = 1.1 the discrete solution does not have small numerical error, but for other p
there is clear evidence of numerical convergence (not shown).

(ii) One may estimate the condition number [143] of the Hessian at each Newton step using
option -ksp_view_singularvalues. The output reports “max/min Z” values where Z
is the estimated condition number (Chapter 3). Because the condition number estimate
improves as the number of KSP iterations increases, and because our concern is with the
unpreconditioned linear system, a useful option combination is

-pc_type none -ksp_rtol 1.0e-12 -ksp_view_singularvalues

(When using GMRES one also avoids restarts by using a large value for
-ksp_gmres_restart.) Computing the condition number this way only works on rela-
tively coarse grids because we are solving an unpreconditioned system with a slow method.

Figure 9.8 shows the results from regularized runs with ε = 10−4. The estimated condition
numbers increase steadily with p > 2, but the numerical errors remain small (not shown).
While the condition number trend may explain convergence failures with large p, perhaps
including p = 10, this is not the obvious culprit for most of our fine-grid SNES failures.
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Figure 9.8. Condition numbers at the converged solution, for coarse grids and a range of p values.

(iii) An attempt to diagnose our difficulties by visualizing p < 2 runs also makes sense. Two
options are

-snes_monitor_solution draw
-snes_monitor_solution_update draw

(One typically adds -draw_pause 1 or similar.) For p < 2 runs on the 33 × 33 grid
from Figure 9.8, namely p = 1.8, 1.6, 1.4, 1.2 in turn, the solution concentrates into the
corners of Ω more than it should (not shown). For p = 1.1 the updates (Newton steps)
show significant loss of smoothness near the corners. However, while visualization may
help intuition, it does not suggest a solution strategy.

(iv) An investigation into line-search types (-snes_linesearch_type) is also reasonable. Of
the several types in Table 4.4, the critical point type cp is the most promising. However,
testing shows that the same p < 2 cases as in Figure 9.8 remain problematic, but now the
p > 2 cases also fail to converge (not shown); the reasons for this are not evident.

In fact our difficulties will largely be fixed by a better initial iterate method, namely by the
application of grid sequencing, and only the p = 1.1 case will remain unresolved. The conclusion
we may draw from this situation, demonstrated next, is that the Hessian becomes singular if the
Newton iteration is started too far from the solution.

Convergence and (near) optimality
Recall that for DM-based codes applied to nonlinear PDEs, the -snes_grid_sequence tech-
nique introduced in Chapter 7 generates high-quality initial iterates by interpolating a converged
solution from a coarser grid. When combined with a multigrid-preconditioned Newton-Krylov
method, such grid sequencing is a nonlinear multigrid “full-cycle” solver; compare Figure
6.14. Such a full-cycle solver works upward from coarse grids to fine grids, with coarse-grid
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236 Chapter 9. Finite element method I: Nonlinear optimization
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Figure 9.9. Numerical errors ‖u− uexact‖∞ for some p 6= 2 cases.

corrections occurring within the preconditioner during the solution of the linear Newton-step
equations. As we will see, this solution strategy succeeds for p in a substantial range around
p = 2. In fact, as with the minimal surface equation in Chapter 7, grid sequencing seems to be
necessary for solving nonlinear p-Helmholtz problems, although cases near the extremes p = 1
and p =∞ will remain problematical.

We can demonstrate convergence, and near-optimal solver complexity (Chapter 7), for non-
extreme p. Consider these runs:

./phelm -snes_rtol 1.0e-5 -ph_eps 1.0e-4 -ksp_type cg -pc_type mg \
-ph_p P -snes_grid_sequence LEV

for p = 1.4, 1.8, 2.5, 4, 8 and LEV = 4, 5, 6, 7, 8, 9, 10. The finest 1025 × 1025 grid has N >
106 degrees of freedom. We add -snes_converged_reason to count Newton iterations and
-log_view to get the total flops.

The resulting numerical errors are shown in Figure 9.9. For exponents closest to the linear
case (p = 1.8, 2.5) we see the expectedO(h2) convergence rate. For the larger p > 2 values (p =
4, 8) the tendency of the diffusivity to degenerate reduces the rate to near O(h1); as mentioned
earlier, diffusion is reduced in the level-curve directions. For the p = 1.4 case note that ‖u −
uexact‖∞ > 1 on the coarse grids, i.e., there are no digits of accuracy.

We have chosen a GMG-based solver based on its performance on Poisson problems. As
shown in Figure 9.10, the cost of the full-cycle nonlinear solver using -snes_grid_sequence
appears to scale as O(N) for exponents in a range around p = 2. That is, the work per degree of
freedom is roughly constant for p = 1.8, 2.5, 4. However, the p = 8 case requires significantly
more work and the trend is not clear on fine grids. Likewise for p = 1.4, noting we exclude grids
where ‖u−uexact‖∞ > 1, we see that the cost per degree of freedom may actually be increasing.

The solver scales well in parallel. For example, the following strong-scaling (Chapter 8) runs
solve the 4-Helmholtz equation on a 1025× 1025 grid with P = 1, 4, 16, 64 processes:
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Figure 9.10. Flops per degree of freedom for p = 1.8, 2.5, 4 (left) and p = 1.4, 8 (right).

$ mpiexec -n P ./phelm -ph_p 4.0 -ph_eps 1.0e-4 -snes_rtol 1.0e-5 \
-snes_converged_reason -ksp_type cg -pc_type mg \
-da_grid_x 9 -da_grid_y 9 -snes_grid_sequence 7 -log_view

In this redundant form of parallel multigrid the coarsest grid must be sufficiently fine to give
at least one degree of freedom per process (Chapter 7), thus the choice of a 9 × 9 coarsest grid.
The result is excellent, with the total number of flops varying by only 2% from P = 1 to P = 64
processes, and a maximum load imbalance of 4% on 64 processes.

In summary, we have used the p-Helmholtz problem to explore a number of ideas:

• the relationship between optimization and PDEs,

• implementation of a structured-grid Q1 finite element method,

• direct numerical optimization using only an objective function,

• quasi-Newton and nonlinear conjugate gradients methods,

• regularization of a nonlinear operator to improve Newton search directions,

• and nonlinear full-cycle multigrid methods, namely grid sequencing combined with a
multigrid-preconditioned Newton-Krylov solver.

Our initial objective-only approach is actually limited to a prototyping role. However, note
that implementing an objective function has the nice side effect that line search uses the correct
objective, as opposed to a merit function (Chapter 4). In any case, a gradient (residual) evalu-
ation function is certainly required for high-resolution solutions, and regularization is a helpful
technique when facing strong nonlinearities.

Exercises
9.1. Figure 9.1 shows the graph of Φ(x, y) = 1

4 (x4 + y4) − 2x + 2y on [−5, 5]2, a
“cartoon” of the p-Helmholtz functional I[u] in the case p = 4. Find the unique min-
imum of the objective function Φ and then write a code cartoon.c which only im-
plements FormObjective() to solve minx,y Φ(x, y). Choose an initial iterate with
attention to nonsingularity of the Hessian. After checking that the solver works using
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238 Chapter 9. Finite element method I: Nonlinear optimization

-snes_fd_function -snes_fd|mf, add FormFunction() which computes the gra-
dient; now -snes_fd_function is not needed. Compare numbers of evaluations and
numerical error. (Hints. Your code will not use a DMDA; there is no grid. Consider
ch4/expcircle.c as a starting point.)

9.2. Assume Ω is a bounded domain and that f ∈ Lq(Ω) for 1
q + 1

p = 1.

(a) For p = 2, prove coercivity (9.3) of functional I[u] onW 1,2(Ω). (Hint. The Cauchy-
Schwarz inequality can be applied to the

∫
fu term.)

(b) For 1 ≤ p ≤ 2, prove coercivity (9.3) of functional I[u] on W 1,p(Ω). (Hints.
Jensen’s inequality applied to the convex function g(x) = |x|2/p shows that ‖u‖L2 ≥
C‖u‖Lp for C > 0. When f = 0 one may now argue by contradiction: if ‖un‖W 1,p

→∞ and I[un] 9∞ then there is a subsequence where I[un] is bounded. And so
on. Complete a square to extend to all f .)

(c) For 1 < p < ∞, prove strict convexity (9.4) of functional I[u] on W 1,p(Ω). (Hint.
See section 5.3 of [36].)

9.3. The weak formulation (9.7) of the p-Helmholtz problem implicitly includes homogeneous
Neumann boundary conditions, but a boundary integral appears in the nonhomogeneous
case, as follows. Suppose g ∈ Lq(∂Ω) and suppose u satisfies∫

Ω

|∇u|p−2∇u · ∇v + uv − fv =

∫
∂Ω

gv (9.30)

for all v ∈ W 1,p(Ω), where p−1 + q−1 = 1. (A trace theorem [50] explains the assumed
regularity for g.) By following the argument which derives strong form (9.9), show that if
u is sufficiently smooth and satisfies (9.30) then

−∇ ·
(
|∇u|p−2∇u

)
+ u = f on Ω and |∇u|p−2 ∂u

∂n
= g on ∂Ω.

9.4. Assume u is smooth and that the formulas below apply where |∇u| 6= 0. Recall 4pu =

∇·(|∇u|p−2∇u) denotes the p-Laplacian. Define 4̂∞u= |∇u|−2(u2
xuxx + 2uxuyuxy +

u2
yuyy) and 4̂1 = 42 − 4̂∞. For 1 < p <∞ show that [124]

4pu = p|∇u|p−2

(
1

p
4̂1 +

1

q
4̂∞

)
u

where q is the conjugate exponent to p satisfying p−1 + q−1 = 1. (This justifies the name
“∞-Laplacian” for 4̂∞, as a rescaled p → ∞ limit, and it gives 4p as an interpolant
between the extremes.)

9.5. Use (9.13) and (9.14) to confirm (9.16). Then use (9.14), (9.16), and (9.20) to derive
(9.21).

9.6. Show that (9.23) is, in detail,

Gij(u, ξ, η) =
1

p

 4

h2
x

(
3∑
`=0

u`
∂χ`
∂ξ

)2

+
4

h2
y

(
3∑
`=0

u`
∂χ`
∂η

)2
p/2

+
1

2

(
3∑
`=0

u`χ`

)2

−

(
3∑
`=0

f`χ`

)(
3∑
`=0

u`χ`

)
,

where u` and f` are local-node-indexed values on element �ij .
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Exercises 239

9.7. In the case where the objective is quadratic there are two ways to use classical conjugate
gradient (CG) optimization [118] in PETSC. For illustration, generate two classical CG
runs based on these common options:
$ ./phelm -ph_p 2.0 -da_refine 2

One run should add -snes_type ncg. The other should use -snes_type ksponly and
-ksp_type cg. Use monitoring to show that residual norms are the same up to rounding
errors.

9.8. Show that for local node index L = 0, 1, 2, 3, (9.27) is, in detail,

HL
ij(u, ξ, η) =

 4

h2
x

(
3∑
`=0

u`
∂χ`
∂ξ

)2

+
4

h2
y

(
3∑
`=0

u`
∂χ`
∂η

)2
(p−2)/2

·

[
4

h2
x

(
3∑
`=0

u`
∂χ`
∂ξ

)
∂χL
∂ξ

+
4

h2
y

(
3∑
`=0

u`
∂χ`
∂η

)
∂χL
∂η

]

+

(
3∑
`=0

u`χ` −
3∑
`=0

f`χ`

)
χL.

9.9. Our p-Helmholtz problem has a zeroth-order term and Neumann boundary conditions. A
related p-Laplacian problem considers the functional

J [u] =

∫
Ω

1

p
|∇u|p − fu

over the affine space W 1,p
g (Ω) with Dirichlet boundary conditions g on ∂Ω; here the

strong-form PDE−4pu = f generalizes the Poisson equation. However, in the discretize-
and-minimize approach of this chapter, the implementation of Dirichlet boundary condi-
tions is more subtle than Neumann conditions. The difficulty is that if the boundary nodes
are treated as unknowns, as we have previously, then J [u] does not actually depend on
these values. With a residual-evaluation approach we would solve trivial equations at
boundary points, so a gradient function is easy to implement, but it is less obvious how
to construct the functional J [u]. There are at least three approaches to constructing the
objective function:

(a) Interior grid only. Use the DMDA in an unusual way by having the grid extend only
from h to 1 − h in each direction. Thus all degrees of freedom are interior points.
This can be made to work but, because interpolation to a finer grid involves ex-
trapolation using g values, it precludes GMG preconditioning without additional
intervention in the interpolation/restriction operators.

(b) Penalize the boundary. Add quadratic terms to the discrete objective function which
correspond to

∫
∂Ω

µ
2 (u− g)2. Care must be taken with the scaling parameter µ > 0.

(c) Lagrange multipliers. Use Lagrange multipliers to extend the objective to any
u ∈ W 1,p(Ω) by adding the constraint u = g at each boundary grid location. This
generates a saddle-point objective J [u, λ] with an indefinite gradient operator; com-
pare the Stokes problem in Chapter 14.

Write and test a code for one of these possibilities.
9.10. One may approximate PDE (9.9) by structured-grid FD methods as in previous chapters.

Construct such an FD code phelmfd.c, perhaps based on ch7/minimal.c, which imple-
ments the corresponding gradient-evaluation function. Handling the coefficient |∇u|p−2
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240 Chapter 9. Finite element method I: Nonlinear optimization

in a consistent [115] manner requires thought, but note how the minimal surface equation
in Chapter 7 is discretized. Use the same manufactured solution, namely (9.10). Com-
pare convergence and performance. Comment on implementation differences, including
programmer time.

9.11. In this exercise we address how the Jacobian of the weak form would be implemented.
(An actual implementation may not be justified.)

(a) Let φ : Rd → Rd be defined as

φ(X) = (X ·X)(p−2)/2X. (9.31)

Note that φ(∇u) defines the expression “|∇u|p−2∇u” in (9.7). For each nonzero
X ∈ Rd, and any Z ∈ Rd, show that

lim
ε→0

φ(X + εZ)− φ(X)

ε
= |X|p−2Z + (p− 2)|X|p−4X(X · Z).

This defines a derivative map which, for X 6= 0, is linear in Z ∈ Rd:

φ′(X)[Z] = |X|p−2Z + (p− 2)|X|p−4X(X · Z).

(b) (Ever since Chapter 4, “F(x)” has denoted the finite-dimensional residual function,
and “Fi(x)” one of its components. It inspires the notation used here.) For u, v ∈
W 1,p(Ω), the p-Laplacian weak form (9.7) is a residual function:

Fv(u) =

∫
Ω

φ(∇u) · ∇v + uv − fv,

a scalar, where the test function v plays the role of an index. For w ∈ W 1,p(Ω)
show that a scalar “entry” of the Jacobian is

Jvw(u) = lim
ε→0

Fv(u+ εw)− Fv(u)

ε
=

∫
Ω

φ′(∇u)[w] · ∇v + wv. (9.32)

(c) Verify that if d = 1 then (9.32), with (9.31), simplifies to

Jvw(u) =

∫
Ω

(p− 1)|u′|p−2v′w′ + vw.

(d) For p = 2, and any d, check that (9.32) includes the expected formula for an entry
of the Laplacian stiffness matrix (see, e.g., [49, equation (1.22)]) in the case where
v = ψpq and w = ψrs.

(e) Starting from (9.32), show that Jvw(u) = Jwv(u).

(f) Write a pseudocode for FormJacobianLocal() in phelm.c.

9.12. One may linearize the p-Helmholtz equation (9.9) as a Picard iteration. This approach,
discussed further in Chapter 10, reuses linear-case code while avoiding an actual Jacobian
implementation.

(a) If u(k) is the kth iterate then, given u(k−1), suppose we solve

−∇ ·
(
|∇u(k−1)|p−2∇u(k)

)
+ u(k) = f (9.33)

for u(k). Note (9.33) is a linear equation A(u(k−1))u(k) = b in which the matrix
changes at each iteration. Implement this method by adding FormPicardLocal(),
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Exercises 241

which computes and assembles a Mat for the left side, to phelm.c; this is the true
Jacobian (Exercise 9.11) only when p = 2. Use DMDASNESSetJacobianLocal()
to set the call-back and MatSetValuesStencil() to insert entries into the Mat
(Chapter 3).

(b) Confirm (-log_view | grep Eval) that the number of evaluations of
FormFunctionLocal() per iteration is now smaller than with -snes_fd_color,
but note quadratic convergence is lost. Recover quadratic convergence for p 6= 2 us-
ing option -snes_mf_operator, which uses the Picard matrix for preconditioning
(Chapter 4).

(c) By also using -snes_grid_sequence and -ksp_type cg -pc_type mg, for
which p > 2 can you demonstrate near-optimal solver complexity? p < 2?
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Chapter 10

Finite element method II:
Naive and unstructured

In this chapter we implement a finite element (FE) method for certain nonlinear Poisson equa-
tions on an unstructured triangulation of a 2D domain. Relative to the structured-gridQ1 method
of the last chapter, we face new tasks including reading a mesh from a file and managing ele-
ment and node indices in an unstructured manner. However, the construction of the nonlinear
system F(u) = 0, from the PDE weak form, follows the same SNES-based approach as in Chap-
ters 4–9. Our code simply sums over elements to evaluate the residual F, so no user-written
matrix-assembly procedure is initially needed. After verifying this implementation using a finite
differenced Jacobian we write additional code to assemble a matrix, the exact Jacobian in the
linear case. For nonlinear problems we either (Picard) iterate using this matrix, as an approxi-
mate Jacobian, or we use the matrix only in the preconditioner of a Jacobian-free Newton-Krylov
method. In either case, preallocating this Mat is essential for performance.

However, a substantial programmer workload comes from the naive design of our mesh in-
frastructure. Furthermore, because the infrastructure is incomplete, solver choices are limited
compared to DM-based discretizations. For instance, instead of solving the equations using geo-
metric multigrid (GMG), using grid-based interpolation and restriction operators such as those
from a DMDA (Chapters 6–9), we introduce and apply an algebraic multigrid (AMG) solver in-
stead. Also, our code only works in serial. In fact, the benefits of using a PETSC DM mesh
topology/geometry type become clear by their absence here. Therefore, in preparation for using
the DMPlex type (Chapter 13), at the end of the current chapter we also discuss how FE mesh
and assembly operations would be distributed across MPI processes.

A nonlinear Poisson problem
Let Ω ⊂ R2 be a bounded (open) region as in Figure 10.1. We suppose the boundary ∂Ω is well-
behaved, e.g., polygonal or Lipschitz continuous [36], and is decomposed into disjoint, measur-
able subsets ∂Ω = ∂DΩ∪ ∂NΩ. Let a(u, x, y) and f(u, x, y) be given continuous functions and
assume there is ε so that

a(u, x, y) ≥ ε > 0, (10.1)

that is, assume uniform ellipticity [51, 60]. Defining ∂u/∂n = n · ∇u, where n is the outward
unit normal on ∂Ω (Figure 10.1), we solve the following nonlinear (quasilinear) Poisson problem:

−∇ · (a(u)∇u) = f(u) on Ω, (10.2)
u = gD on ∂DΩ,

a(u)
∂u

∂n
= gN on ∂NΩ.
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244 Chapter 10. Finite element method II: Naive and unstructured

u = gD

∂DΩ

∂N
Ω

∂u

∂n
=
gN

n

−∇ · (a∇u) = f

Figure 10.1. Problem (10.2) on domain Ω; Neumann boundary in bold.

The data of the problem include the diffusion coefficient a, source term f , Dirichlet data gD, and
Neumann data gN . The last two functions, which we assume are continuous and independent of
u, may be defined only on ∂DΩ, ∂NΩ, respectively.

More general boundary conditions are possible, for instance Robin conditions of the form
αu+ β ∂u∂n = γ [49] (Exercise 10.11). One might also allow a or f to depend on the gradient of
u—e.g. a = |∇u|p−2 in the p-Laplacian equation of Chapter 9—but this is not done here.

Strong form problem (10.2) may have no solution wherein “∇ · (a∇u)” makes sense as a
continuous function, even for polygonal regions and continuous data. (There may be no u ∈
C2(Ω) ∩ C(Ω) satisfying (10.2) at all points.) However, once we convert (10.2) to weak form
then, at least in the linear case, a solution exists (see below). On the other hand, while the linear
Poisson problem comes from minimizing an objective function, the general nonlinear form (10.2)
has no optimization formulation; compare the problem in Chapter 9 and see Exercise 10.1. Thus
we derive the weak form from (10.2) simply by multiplying this equation by a test function and
integrating by parts, as follows.

Consider two subsets of W 1,2(Ω),30 namely trial functions W 1,2
g (Ω) and test functions

W 1,2
0 (Ω), with value gD and zero, respectively, along ∂DΩ. We multiply (10.2) by a test function

v and integrate by parts:∫
Ω

a(u)∇u · ∇v −
∫
∂Ω

a(u)
∂u

∂n
v =

∫
Ω

f(u)v.

Now apply boundary conditions v = 0 on ∂DΩ and a(u)∂u/∂n = gN on ∂NΩ:∫
Ω

a(u)∇u · ∇v =

∫
Ω

f(u)v +

∫
∂NΩ

gNv. (10.3)

Observe that the Dirichlet data gD are used in defining W 1,2
g (Ω) while the Neumann data gN

appear explicitly in (10.3).
We seek u ∈ W 1,2

g (Ω) satisfying the weak formulation (10.3). The above derivation shows
that a well behaved function u ∈ C2(Ω) ∩ C(Ω) which satisfies (10.2) also solves (10.3). On
the other hand, if u ∈ W 1,2

g (Ω) solves (10.3) then we accept it, by definition, as a solution. If
u is well-behaved enough to reverse the derivation then it will also solve (10.2). For the linear
case, where functions a and f are independent of u, and if ∂DΩ has positive measure, then a

30Recall that W 1,2(Ω) is the Hilbert space of functions with square-integrable gradients; see definition (9.2).
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Unstructured P1 finite elements 245

x

y

Ω

1

−2 −1 1 2∂NΩ

∂DΩ

Figure 10.2. Our exact solutions solve cases of (10.2) on this trapezoid. For cases 0 and 1 the
Neumann boundary is as shown in bold.

unique solution to (10.3) exists [36, 51]. Furthermore there exist conditions on the domain (e.g.,
a convex polygon) and the boundary data so that u solving (10.3) is in C2(Ω) ∩ C(Ω) [51].

In terms of practical computation, the code c/ch10/unfem.c, described in this chapter, will
solve certain nonlinear Poisson equations on arbitrary 2D domains. Interesting cases like the
following are solvable:

• Liouville-Bratu equations (Exercise 7.12), where a ≡ 1 and f = λeu (see Exercises 10.9
and 10.10), and

• porous medium equations [119], in which a = ε+ um−1 for some m ≥ 1 and ε > 0.

As usual, we will need simple problems with known exact solutions for testing the implemen-
tation. Ideally the measured numerical errors will converge at the theoretical rate O(h2) [49],
and only converge at that rate, if our implementation is correct. The three cases we propose, all
implemented in c/ch10/cases.h (not shown), are based on the same “manufactured” solution:

uexact(x, y) = 1− xy2 − 1

4
y4. (10.4)

Case 0: Linear. Use the domain and boundary decomposition shown in Figure 10.2. Define gD
as the value of uexact along ∂DΩ. Noting that uexact has zero normal derivative on the
Neumann boundary ∂NΩ = {y = 0}, let gN = 0. Let a = 1 and determine f by
differentiating the exact solution (thus f(x, y) = 2x+ 3y2).

Case 1: Nonlinear (porous medium type). Use the same domain and boundary conditions as in
case 0 but let a(u) = 1 + u2 and determine f(x, y) by differentiation.

Case 2: Linear, with nonhomogeneous Neumann boundary conditions. The domain is the same
as in Figure 10.2 and a, f are the same as in case 0. However, the Neumann boundary
∂NΩ is the line segment from (2, 0) to (1, 1), and the (nonzero) value gN is found by
differentiating uexact along this segment.

Unstructured P1 finite elements
Our method will find an approximate solution uh, from a finite-dimensional (affine) subspace of
trial functions, by satisfying (10.3) for all test functions. These two subspaces are built from a
triangulation of Ω by using the same local functions, so this is a Galerkin method [49]. For sim-
plicity we assume that Ω is polygonal, ∂DΩ is closed and nonempty, and the segments forming
the polygon ∂Ω are each either in ∂DΩ or in ∂NΩ.
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246 Chapter 10. Finite element method II: Naive and unstructured
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Figure 10.3. A triangulation Th of a polygon withK = 21 elements (left),N = 17 nodes (right),
nD = 5 nodes in the Dirichlet boundary (dots), and P = 7 segments in the Neumann boundary (bold).

By definition, a triangulation is a finite set of nonoverlapping, nonempty open triangles 4k
whose closures tile Ω:

Th =
{
4k
∣∣∣ ∪k 4k = Ω and 4k ∩4l = ∅ if k 6= l

}
. (10.5)

An example is shown in Figure 10.3. The subscript “h” denotes the maximum diameter of the
triangles. (It also serves as a reminder of our desired limit h→ 0.) In contrast to many standard
references (e.g., [49]), numbering here is zero-based, appropriate for a C implementation, so
triangles 4k ∈ Th are indexed k = 0, . . . ,K − 1 while nodes are xi = (xi, yi) for i =
0, . . . , N − 1.

In the P1 FE method used here, functions are linear on each 4k. To be in W 1,2(Ω) such
functions must also be continuous on Ω, and then each function is determined by its values at the
N nodes [19, 49].

A linear function a+ bx+ cy on a triangle has three degrees of freedom, but there are more
convenient bases than {1, x, y}. Specifically, consider linear functions on4k which are nonzero
at only one node. For each node j in Th let ψj(x, y) denote the “hat” function which is linear
on each triangle, continuous on Ω, and satisfies ψj(xi) = δij (Figure 10.4; compare Figure 9.4).
Note that the set {ψj}N−1

0 is linearly independent, and that the partial derivatives of ψj(x, y) are
piecewise constant (and not continuous).

Hat functions allow us to extend the Dirichlet data gD to all of Ω. First number the nodes
xjl ∈ ∂DΩ by l = 0, . . . , nD − 1. Then define ĝD ∈ C(Ω) as the piecewise-linear interpolant of
gD having value zero at all the nodes xj which are not in the Dirichlet boundary ∂DΩ; expanding
in hat functions yields

ĝD(x, y) =

nD−1∑
l=0

gD(xjl)ψjl(x, y). (10.6)

We can now define the FE subspaces of W 1,2(Ω). The test functions are in

Sh0 = span {ψj : xj /∈ ∂DΩ} . (10.7)

If v ∈ Sh0 then v = 0 on ∂DΩ. The trial functions have value gD along ∂DΩ,

Shg =
{
ĝD + w : w ∈ Sh0

}
. (10.8)

Note that Sh0 is a linear subspace of W 1,2
0 (Ω), while Shg is an affine subspace of W 1,2(Ω), but

dim(Sh0 ) = dim(Shg ) = N − nD.

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Assembly of the residual equations 247

ψj(xj) = 1

xj

ψj(xi) = 0

xi

Figure 10.4. A hat function ψj .

Our FE method seeks uh ∈ Shg such that (10.3) holds for all vh ∈ Sh0 . By linearity it suffices
to test only a basis from Sh0 , so we require∫

Ω

a(uh)∇uh · ∇ψi =

∫
Ω

f(uh)ψi +

∫
∂NΩ

gNψi (10.9)

for all i such that xi /∈ ∂DΩ. On the other hand we may expand the trial function uh using
N − nD unknown coefficients uj ∈ R,

uh(x, y) = ĝD(x, y) +
∑

xj /∈∂DΩ

uj ψj(x, y). (10.10)

The coefficients uj in (10.10) are the unknowns in this FE method.
Given a triangulation Th, and the data a, f , gD, and gN , the FE solution uh is completely

specified by equations (10.6), (10.9), and (10.10). This finite-dimensional problem can be shown
to be well posed by the same theory that applies to the continuum problem [49].

In the linear case we may write system (10.9) and (10.10) as Au = b where A is the stiffness
matrix [19, 49]. While FE codes often assemble this matrix as their first goal, we will not
write code to construct such a matrix until after we have a verified numerical solution. In fact,
following the pattern since Chapter 4, we implement (10.9) by constructing a residual function
F(u) in a SNES call-back. Here the input u is the representation of uh as a vector of nodal
values. We use (10.10) to get point values of uh and∇uh—namely at the quadrature points—so
as to approximate the integrals in (10.9). In the linear case implementing such a residual F(u) is
nearly equivalent to assembling A and b, but writing residual-evaluation code requires no direct
contact with a Mat object, and our design is quite insensitive to whether the problem is linear or
not. After our solution is tested for correctness, via a finite differenced Jacobian (Chapter 4), we
will reconsider preallocating and constructing a Jacobian matrix for F.

Assembly of the residual equations
Integrals over Ω may be written as sums of integrals over elements. Thus for each triangle 4k
and hat function ψi we define an element residual

F ki (u) =

∫
4k

a(uh)∇uh · ∇ψi − f(uh)ψi. (10.11)

For each segment (edge) sν in the Neumann boundary we likewise define

ϕνi =

∫
sν

gNψi. (10.12)
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248 Chapter 10. Finite element method II: Naive and unstructured

x

y

(x0, y0)

(x1, y1)

(x2, y2)

4k

1

1

ξ

η

` = 0

` = 1

` = 2

4∗

Figure 10.5. Formula (10.17) maps from the reference triangle4∗ to4k.

(Note ϕνi does not depend on the solution uh.) Numbering the Neumann segments by ν =
0, . . . , P − 1, weak form (10.9) then becomes the statement

Fi(u) =

K−1∑
k=0

F ki (u)−
P−1∑
ν=0

ϕνi = 0 if xi /∈ ∂DΩ. (10.13)

The implementation is a bit easier if we also increase the size of the system by including the
nodes in the Dirichlet boundary as unknowns, thus

u = {uj}N−1
j=0 ∈ RN . (10.14)

To do so we define trivial residuals for the nodes in the Dirichlet boundary:

Fi(u) = ui − gD(xi) if xi ∈ ∂DΩ. (10.15)

Observe that nodes in the Dirichlet boundary become degrees of freedom while segments in the
Neumann boundary are used as domains of integration.

Together, equations (10.13) and (10.15) generate the nonlinear system

F(u) = 0, (10.16)

with F : RN → RN . We will ask SNES to solve this problem. System (10.16) is sparse because
the support of each hat function ψi only overlaps with a few triangles4k and boundary segments
sν , and, on the other hand, only a few nodal values u = {uj} enter into any given element
residual F ki (u). (Representative Jacobian sparsity patterns appear later in Figure 10.9.)

We compute the element residuals (10.11) by referring4k to a reference triangle4∗, shown
in Figure 10.5, namely 4∗ = {(ξ, η) : ξ ≥ 0, η ≥ 0, ξ + η ≤ 1}. If 4k has vertices (x0, y0),
(x1, y1), (x2, y2) then

x(ξ, η) = x0 + (x1 − x0)ξ + (x2 − x0)η,

y(ξ, η) = y0 + (y1 − y0)ξ + (y2 − y0)η
(10.17)

is a linear map from 4∗ to 4k. The Jacobian determinant of this map is constant on each
element, with magnitude equal to 2|4k|, the ratio of triangle areas. On4∗ any linear function is
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Meshes from Gmsh 249

a linear combination of three (nodal) basis functions, namely

χ0(ξ, η) = 1− ξ − η, χ1(ξ, η) = ξ, χ2(ξ, η) = η. (10.18)

If vertex ` of4∗ is mapped by (10.17) to node xi then the hat function ψi satisfies

ψi(x(ξ, η), y(ξ, η)) = χ`(ξ, η). (10.19)

Now, recalling both the change-of-variables formula for integrals and the chain rule, we can
write

F ki (u) = 2|4k|
∫
4∗

Hk
` (u, ξ, η) dξ dη, (10.20)

where from (10.11) the integrand is

Hk
` (u, ξ, η) =

[
a(uh)∇uh · ∇ψi − f(uh)ψi

]
4∗

. (10.21)

Here vertex ` of4∗ corresponds to node xi and the gradient “∇” is in variables x, y. Exercises
10.2 and 10.3 address the remaining details needed to implement (10.21) as a C function.

Integrals (10.20) are now approximated using symmetric quadrature rules; see page 171 in
the Interlude chapter. Thus, from quadrature nodes (ξr, ηr) ∈ 4∗ and weights wr, we actually
compute element residuals as

F ki (u) ≈ 2|4k|
nQ−1∑
r=0

wrH
k
` (u, ξr, ηr). (10.22)

For each Neumann boundary segment we use midpoint rule quadrature; compare Exercise 10.4.
If segment sν is incident to node xi ∈ ∂Ω then hat function ψi has value 1/2 at the segment
midpoint (xm, ym), thus

ϕνi ≈ gN (xm, ym)ψi(xm, ym)|sν | =
1

2
|sν | gN (xm, ym); (10.23)

otherwise, if xi /∈ sν then ϕνi = 0.

Meshes from Gmsh
The widely available Gmsh software [59] generates unstructured meshes, including triangula-
tions, of plane regions. While Gmsh has a graphical user interface (GUI) for interactive meshing
and visualization, we only need its command-line interface here. See the website gmsh.info for
documentation.

Gmsh takes as input an ASCII file with .geo extension to describe the polygonal boundary
of the domain. For example, trap.geo in Code 10.1 describes the polygon ∂Ω and boundary
conditions shown in Figure 10.2.

// trapezoid domain geometry
// usage: gmsh -2 trap.geo

cl = 1.5; // characteristic length
Point(1) = {2.0,0.0,0,cl};
Point(2) = {1.0,1.0,0,cl};
Point(3) = {-1.0,1.0,0,cl};
Point(4) = {-2.0,0.0,0,cl};
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250 Chapter 10. Finite element method II: Naive and unstructured

Line(5) = {1,2};
Line(6) = {2,3};
Line(7) = {3,4};
Line(8) = {4,1};
Line Loop(9) = {5,6,7,8};
Plane Surface(10) = {9};
Physical Line("dirichlet") = {5,6,7};
Physical Line("neumann") = {8};
Physical Surface("interior") = {10};

Code 10.1. c/ch10/meshes/trap.geo. Definition of the polygon ∂Ω and boundary conditions
shown in Figure 10.2.

In this file each polygon vertex (Point) and boundary segment (Line) gets a unique integer
identifier. A characteristic length, included for each Point, gives the default target value of the
typical side length h of the generated mesh (below). A single Line Loop and Plane Surface
[59] define the topology of our simply-connected 2D domain. In order for the generated mesh to
contain sufficient information to tell our solver where boundary conditions should be applied, all
parts of the boundary must have added “Physical” labels. The parts of ∂Ω on which dirichlet
and neumann conditions apply are labeled, as is the interior.

Figure 10.6. The triangulation in Gmsh file trap1.msh.

The coarse triangulation in Figure 10.6 comes from applying Gmsh as follows:

$ cd c/ch10/meshes
$ gmsh -2 trap.geo -o trap1.msh

This generates trap1.msh,31 shown in Code 10.2, with N = 7 nodes, K = 5 elements,
P = 3 Neumann boundary segments, and nD = 5 nodes on the Dirichlet boundary. This
output file defines the labels ($PhysicalNames), node locations ($Nodes), and element topol-
ogy ($Elements). The nodes are given by quadruples “n x y 0” where n is the node index, x,y
are 2D coordinates, and the z coordinate is zero.

$MeshFormat
2.2 0 8
$EndMeshFormat
$PhysicalNames
3
1 1 "dirichlet"
1 2 "neumann"
2 3 "interior"
$EndPhysicalNames
$Nodes
7

31If your .msh file looks different try gmsh -format msh22 -2 trap.geo -o trap1.msh for legacy format.

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Meshes from Gmsh 251

1 2 0 0
2 1 1 0
3 -1 1 0
4 -2 0 0
5 2.755129457909788e-12 1 0
6 -0.6666666666703693 0 0
7 0.6666666666629641 0 0
$EndNodes
$Elements
12
1 1 2 1 5 1 2
2 1 2 1 6 2 5
3 1 2 1 6 5 3
4 1 2 1 7 3 4
5 1 2 2 8 4 6
6 1 2 2 8 6 7
7 1 2 2 8 7 1
8 2 2 3 10 7 5 6
9 2 2 3 10 7 1 2
10 2 2 3 10 4 6 3
11 2 2 3 10 6 5 3
12 2 2 3 10 7 2 5
$EndElements

Code 10.2. c/ch10/meshes/trap1.msh. Defines the mesh in Figure 10.6.

Both boundary segments and triangular elements are listed in the $Elements section. The
former correspond to lists “j 1 2 a b c d”, where j is the segment index and “1 2” says this
a one-dimensional segment described by two labels. Then a,b are the labels while c,d are the
node indices of the ends of the segment. Triangular elements are given by lines “k 2 2 a b c
d e”, where k is the element index, “2 2” indicates a 2D triangle with two labels, a,b are the
labels, and c,d,e are the indices of the vertices (nodes). The labels for boundary segments and
elements include both the original values using in the .geo file plus new labels corresponding to
the $PhysicalNames.

We will test our FE code on a sequence of refined meshes. There are two approaches to
refining supported in Gmsh, remeshing and splitting. The left mesh in Figure 10.7 comes from
remeshing with a smaller characteristic length:

$ gmsh -2 -clmax 0.375 trap.geo -o trapr.msh

The right mesh in Figure 10.7 comes from two stages of refinement of trap1.msh by splitting:

$ gmsh -refine trap1.msh -o trap2.msh
$ gmsh -refine trap2.msh -o traps.msh

The resulting meshes are comparable:

• trapr.msh has N = 48 nodes and K = 69 elements, while

• traps.msh has N = 55 nodes and K = 80 elements.

Figure 10.7. Finer meshes are generated by remeshing with smaller characteristic length (left;
trapr.msh) or by splitting a coarser mesh (right; traps.msh).
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252 Chapter 10. Finite element method II: Naive and unstructured

However, refinement by splitting maintains the proportions of the elements. Because narrow
elements reduce the quality of FE solutions [49], remeshing risks introducing bad elements.
Thus, when testing convergence of the FE method later in this chapter, we will use splitting.
In Chapter 14 we will again use Gmsh files to input unstructured meshes, but the splitting will
be done through the Firedrake [126] interface, which also supports geometric multigrid (GMG)
mesh hierarchies and solvers.

Loading the mesh into PETSC data structures
Our plan is to compute (10.22) and (10.23) by traversing the elements4k and Neumann bound-
ary segments sν , respectively. First, however, we will convert the Gmsh-generated ASCII files
into PETSC types and store them in binary format so that the initial stage of the solution method
becomes reasonably fast.

As we have already seen there are two kinds of “data” to describe a triangulation, geometrical
and topological. For the Gmsh format the geometry consists of the nodal coordinates, pairs of
real numbers for each node (vertex). The topology includes which elements are incident to which
nodes; in fact an element is simply a triple of node indices. Similarly, a boundary segment is a
pair of indices for the endpoints.

For topology in PETSC we use IS “index set” types,32 which the reader may regard as
integer-valued Vecs. The element IS holds 3K integers while the boundary segment IS holds
2P integers. We use a third IS, of length N , to store nodal flags, namely a 0 for an interior node,
a positive value for any boundary node, and a 2 for each Dirichlet boundary node.

The Python script msh2petsc.py (not shown) reads the Gmsh-generated ASCII33 .msh file
and then writes two files in PETSC binary format with extensions .is and .vec. The .is file
holds the three ISs in a particular order: element triples, then nodal boundary flags, and then
boundary segment pairs. (In the purely Dirichlet boundary conditions case where P = 0, the
boundary segment IS has first entry negative.) The .vec file is simpler: it contains a single two
degrees-of-freedom Vec for the node coordinates. An important detail is that Gmsh uses one-
based indexing; the script lowers the node indices by one. (Also, the .is and .vec extensions
here are not standard but they are used by unfem.c below.)

The following generates PETSC binary files meshes/trap1.{is,vec}:

$ cd c/ch10/
$ ln -s $PETSC_DIR/lib/petsc/bin/petsc_conf.py
$ ln -s $PETSC_DIR/lib/petsc/bin/PetscBinaryIO.py
$ ./msh2petsc.py meshes/trap1.msh

Note the script uses Python modules from the PETSC source directory, to which we make sym-
bolic links.

Now that the mesh is stored in binary files, we turn to C codes which read the mesh and solve
the problem. Mesh input/output functions are separated from the tasks of computing the residual
and setting up the PETSC solver. See these source files in c/ch10/:

• cases.h: Exact solutions and boundary conditions.

• um.h and um.c: These define a naive unstructured-mesh “object” UM, actually just a C
struct, and provide an interface for it. The functions read a mesh from binary files and
view it.

• unfem.c: The FE method itself is here, as well as a main() function. It reads options,
calls UM functions to read the mesh, calls functions from cases.h to set boundary condi-
tions, provides a residual-evaluation function for call-back, sets up a SNES solver object,
runs the solver, and reports the numerical error.

32IS types are also used to distribute indexing across processes, but not in this chapter.
33Gmsh can generate a binary format .msh file but we do not use it here.
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Loading the mesh into PETSC data structures 253

Regarding this solver design, we have attempted modularity. However, our representation of an
unstructured mesh remains simple, and even deliberately naive.

In the excerpts below the UM struct is declared in Code 10.3 and its methods are
declared in Code 10.4. Regarding the methods, function UMReadNodes() should be called be-
fore UMReadISs(); these call PETSC functions VecLoad() and ISLoad(), respectively. The
modestly tedious implementations of these functions, in c/ch10/um.c, including some input
checking steps, are not shown.

/ / locat ion of one node
typedef struct {

PetscReal x , y ;
} Node;

/ / data type for an Unstructured Mesh
typedef struct {

PetscInt N, / / number of nodes
K, / / number of elements
P; / / number of Neumann boundary segments ; may be 0

Vec loc ; / / nodal locat ions ; length N, dof=2 Vec
IS e , / / element t r i p l e s ; length 3K

/ / values e[3*k+0] ,e[3*k+1] ,e[3*k+2]
/ / are indices in to node−based Vecs

bf , / / f lag fo r boundary nodes ; length N
/ / i f bf [ i ] > 0 then node i i s on boundary
/ / i f bf [ i ] == 2 then node i i s D i r i ch le t

ns ; / / Neumann boundary segment pairs ; length 2P;
/ / may be a nu l l p t r ; values s [2*p+0] ,s [2*p+1]
/ / are indices in to node−based Vecs

} UM;

Code 10.3. c/ch10/um.h, part I. UM is an unstructured-mesh data type.

PetscErrorCode UMIni t ia l ize (UM *mesh) ; / / c a l l f i r s t
PetscErrorCode UMDestroy(UM *mesh) ; / / c a l l l as t

/ / create Vec and then read node coordinates from f i l e in to i t
PetscErrorCode UMReadNodes(UM *mesh, char * filename ) ;

/ / create ISs and then read element t r i p l es , Neumann boundary segments ,
/ / and boundary f lags in to them; c a l l UMReadNodes( ) f i r s t
PetscErrorCode UMReadISs(UM *mesh, char * filename ) ;

/ / view a l l f i e l ds in UM to the viewer
PetscErrorCode UMViewASCII(UM *mesh, PetscViewer viewer ) ;
PetscErrorCode UMViewSolutionBinary (UM *mesh, char * filename , Vec u) ;

/ / compute s t a t i s t i c s fo r mesh: maxh,meanh are fo r t r iang le side
/ / lengths ; maxa,meana are fo r areas
PetscErrorCode UMStats(UM *mesh, PetscReal *maxh, PetscReal *meanh,

PetscReal *maxa, PetscReal *meana) ;

/ / access to a length−N array of s t ruc ts fo r nodal coordinates
PetscErrorCode UMGetNodeCoordArrayRead(UM *mesh, const Node ** xy ) ;
PetscErrorCode UMRestoreNodeCoordArrayRead(UM *mesh, const Node ** xy ) ;

Code 10.4. c/ch10/um.h, part II. Methods of the UM data type.
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254 Chapter 10. Finite element method II: Naive and unstructured

user code

residual FormFunction()

approximate Jacobian FormPicard()

SNES
nonlinear solver

KSP
linear solver

PC
preconditioner

Mat
Jacobian

Vecs
node coordinates, solution

ISs
indices, bdry flags

Figure 10.8. The structure of unfem.c.

Initial implementation and testing
With an unstructured mesh in hand we implement an FE method in the program
c/ch10/unfem.c. Figure 10.8 shows its structure, and extracts are shown in Codes 10.5–10.8.
So that call-backs have access to the functions a, f , gD, gN in FE method (10.9), we first define
a solution context unfemCtx (Code 10.5). This struct also includes the mesh, namely a pointer
to a UM instance.

typedef struct {
UM *mesh;
PetscInt solncase ,

quaddegree ;
PetscReal ( * a_fcn ) (PetscReal , PetscReal , PetscReal ) ;
PetscReal ( * f_fcn ) (PetscReal , PetscReal , PetscReal ) ;
PetscReal ( * gD_fcn ) (PetscReal , PetscReal ) ;
PetscReal ( * gN_fcn ) (PetscReal , PetscReal ) ;
PetscReal ( * uexact_fcn ) (PetscReal , PetscReal ) ;

} unfemCtx ;

Code 10.5. c/ch10/unfem.c, part I. Context for FE method (10.9), (10.10).

The first actions of the main() function are to read options, choose the problem case, and
read a mesh from files via UM methods (not shown). Then, as shown in Code 10.6, it allocates
Vecs and configures the SNES solver. The default KSP and PC types are reset to conjugate gra-
dient (CG) and incomplete Cholesky (ICC). (See Chapter 3 regarding these choices, which we
reconsider below.) Note we access the KSP inside the SNES, set its type, then access the PC inside
the KSP and set its type as well. Next a Mat is allocated and configured, about which much more
is said below.
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Initial implementation and testing 255

/ / configure Vecs
VecCreate (PETSC_COMM_WORLD,& r ) ;
VecSetSizes ( r ,PETSC_DECIDE,mesh.N) ;
VecSetFromOptions ( r ) ;
VecDuplicate ( r ,&u) ;
VecSet (u ,0 .0 ) ;

/ / configure SNES: reset defaul t KSP and PC
SNESCreate(PETSC_COMM_WORLD,&snes) ;
SNESSetFunction(snes , r , FormFunction,&user ) ;
SNESGetKSP(snes,&ksp ) ;
KSPSetType(ksp ,KSPCG) ;
KSPGetPC(ksp,&pc) ;
PCSetType(pc ,PCICC) ;

/ / setup matrix fo r Picard i te ra t ion , including preal locat ion
MatCreate (PETSC_COMM_WORLD,&A) ;
MatSetSizes (A,PETSC_DECIDE,PETSC_DECIDE,mesh.N,mesh.N) ;
MatSetFromOptions (A) ;
MatSetOption (A,MAT_SYMMETRIC,PETSC_TRUE) ;
/ / Preal locat ion and set t ing the nonzero ( spars i ty ) pattern is
/ / recommended; set t ing the pattern allows f i n i t e di f ference
/ / approximation of the Jacobian using color ing . Option
/ / −un_noprealloc reveals the poor performance otherwise .
i f ( noprealloc ) {

MatSetUp(A) ;
} else {

PreallocateAndSetNonzeros (A,&user ) ;
}
/ / The fo l lowing ca l l −back is ignored under option −snes_fd or
/ / −snes_fd_color .
SNESSetJacobian(snes ,A,A, FormPicard,&user ) ;
SNESSetFromOptions(snes) ;

/ / solve
SNESSolve(snes ,NULL,u) ;

Code 10.6. c/ch10/unfem.c, part II. An extract of main().

Code 10.7 shows the FE tools which evaluate local basis functions χ`(η, ξ), their gradients
∇χ`, and linear combinations

∑
` v`χ`.

PetscReal chi ( PetscInt L , PetscReal xi , PetscReal eta ) {
const PetscReal z [3 ] = {1.0 − x i − eta , xi , eta } ;
return z [L ] ;

}

const PetscReal dchi [ 3 ] [ 2 ] = {{ −1.0 , −1.0} ,{ 1.0 , 0 .0 } , { 0.0 , 1 .0 } } ;

/ / evaluate v ( xi , eta ) on reference element using loca l node numbering
PetscReal eval (const PetscReal v [3 ] , PetscReal xi , PetscReal eta ) {

PetscReal sum = 0.0;
PetscInt L ;
for (L = 0; L < 3; L++)

sum += v [L ] * chi (L , xi , eta ) ;
return sum;

}

Code 10.7. c/ch10/unfem.c, part III. FE tools including local basis functions.
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256 Chapter 10. Finite element method II: Naive and unstructured

Then the residual F(u) is evaluated by FormFunction() in Code 10.8. The input and output
Vecs are accessed by VecGetArrayRead() and VecGetArray(), respectively; note that func-
tion UMGetNodeCoordArrayRead() (Code 10.4) returns a read-only array pointer of Nodes
(Code 10.3). When accessing indices we use ISGetIndices(), and each Get function has a
matching Restore. FormFunction() first zeros the residual F so that elementwise contribu-
tions can be accumulated. It loops through the Neumann boundary segments computing integrals
(10.12) by the midpoint rule, adds them to the corresponding entries of F, and then loops through
the element residuals (10.11) while also identifying Dirichlet boundary nodes and setting (10.15).
Sums (10.13) are complete at the end of this loop.

PetscErrorCode FormFunction (SNES snes , Vec u , Vec F, void * ctx ) {
unfemCtx *user = (unfemCtx * ) ctx ;
const Quad2DTri q = symmgauss[ user−>quaddegree−1];
const PetscInt *ae , *ans , *abf , *en ;
const Node * aloc ;
const PetscReal *au ;
PetscInt p , na , nb , k , l , r ;
PetscReal *aF, unode [3 ] , gradu [2 ] , gradpsi [ 3 ] [ 2 ] , uquad [4 ] ,

aquad [4 ] , fquad [4 ] , dx , dy , dx1 , dx2 , dy1 , dy2 ,
detJ , ls , xmid , ymid , s int , xx , yy , psi , ip , sum;

VecSet (F,0 .0 ) ;
VecGetArray (F,&aF) ;
UMGetNodeCoordArrayRead( user−>mesh,&aloc ) ;
ISGetIndices ( user−>mesh−>bf ,&abf ) ;

/ / Neumann boundary segment contr ibut ions ( i f any)
i f ( user−>mesh−>P > 0) {

ISGetIndices ( user−>mesh−>ns,&ans) ;
for (p = 0; p < user−>mesh−>P; p++) {

na = ans[2*p+0]; nb = ans[2*p+1]; / / end nodes of segment
dx = aloc [na ] . x−aloc [nb ] . x ; dy = aloc [na ] . y−aloc [nb ] . y ;
l s = sqrt (dx * dx + dy * dy) ; / / length of segment
/ / midpoint ru le ; psi_na=psi_nb=0.5 at midpoint of segment
xmid = 0.5*( aloc [na ] . x+aloc [nb ] . x ) ;
ymid = 0.5*( aloc [na ] . y+aloc [nb ] . y ) ;
s in t = 0.5 * l s * user−>gN_fcn (xmid , ymid ) ;
/ / nodes could be D i r i ch le t
i f ( abf [na ] != 2)

aF[na ] −= s in t ;
i f ( abf [nb ] != 2)

aF[nb ] −= s in t ;
}
ISRestoreIndices ( user−>mesh−>ns,&ans) ;

}

/ / element contr ibut ions and D i r i ch le t node residuals
VecGetArrayRead(u,&au) ;
ISGetIndices ( user−>mesh−>e,&ae) ;
for ( k = 0; k < user−>mesh−>K; k++) {

/ / element geometry and hat funct ion gradients
en = ae + 3*k ; / / en [0 ] , en [1 ] , en [2 ] are nodes of element k
dx1 = aloc [en [ 1 ] ] . x − aloc [en [ 0 ] ] . x ;
dx2 = aloc [en [ 2 ] ] . x − aloc [en [ 0 ] ] . x ;
dy1 = aloc [en [ 1 ] ] . y − aloc [en [ 0 ] ] . y ;
dy2 = aloc [en [ 2 ] ] . y − aloc [en [ 0 ] ] . y ;
detJ = dx1 * dy2 − dx2 * dy1 ;
for ( l = 0; l < 3; l ++) {

gradpsi [ l ] [ 0 ] = ( dy2 * dchi [ l ] [ 0 ] − dy1 * dchi [ l ] [ 1 ] ) / detJ ;
gradpsi [ l ] [ 1 ] = (−dx2 * dchi [ l ] [ 0 ] + dx1 * dchi [ l ] [ 1 ] ) / detJ ;
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Initial implementation and testing 257

}
/ / u and grad u on element
gradu [0 ] = 0.0;
gradu [1 ] = 0.0;
for ( l = 0; l < 3; l ++) {

i f ( abf [en [ l ] ] == 2) / / enforces symmetry
unode [ l ] = user−>gD_fcn ( aloc [en [ l ] ] . x , aloc [en [ l ] ] . y ) ;

else
unode [ l ] = au [en [ l ] ] ;

gradu [0 ] += unode [ l ] * gradpsi [ l ] [ 0 ] ;
gradu [1 ] += unode [ l ] * gradpsi [ l ] [ 1 ] ;

}
/ / funct ion values at quadrature points on element
for ( r = 0; r < q .n ; r ++) {

uquad [ r ] = eval (unode ,q . x i [ r ] , q . eta [ r ] ) ;
xx = aloc [en [ 0 ] ] . x + dx1 * q . x i [ r ] + dx2 * q . eta [ r ] ;
yy = aloc [en [ 0 ] ] . y + dy1 * q . x i [ r ] + dy2 * q . eta [ r ] ;
aquad [ r ] = user−>a_fcn (uquad [ r ] , xx , yy ) ;
fquad [ r ] = user−>f_fcn (uquad [ r ] , xx , yy ) ;

}
/ / residual contr ibut ion fo r each node of element
for ( l = 0; l < 3; l ++) {

i f ( abf [en [ l ] ] == 2) { / / set D i r i ch le t residual
xx = aloc [en [ l ] ] . x ; yy = aloc [en [ l ] ] . y ;
aF[en [ l ] ] = au [en [ l ] ] − user−>gD_fcn (xx , yy ) ;

} else {
sum = 0.0;
for ( r = 0; r < q .n ; r ++) {

psi = chi ( l , q . x i [ r ] , q . eta [ r ] ) ;
ip = InnerProd (gradu , gradpsi [ l ] ) ;
sum += q .w[ r ] * ( aquad [ r ] * ip − fquad [ r ] * psi ) ;

}
aF[en [ l ] ] += PetscAbsReal ( detJ ) * sum;

}
}

}

ISRestoreIndices ( user−>mesh−>e,&ae) ;
VecRestoreArrayRead(u,&au) ;
ISRestoreIndices ( user−>mesh−>bf ,&abf ) ;
UMRestoreNodeCoordArrayRead( user−>mesh,&aloc ) ;
VecRestoreArray (F,&aF) ;
return 0;

}

Code 10.8. c/ch10/unfem.c, part IV. FormFunction() traverses the elements and boundary
segments to compute residuals (10.13).

Now, the process of debugging is difficult to show, but of course bugs appeared and were
resolved. Here is a first run using the coarse triangulation in Figure 10.6, option -snes_fd, the
default “case 0” exact solution, and default quadrature degree 1:

$ make unfem
$ ./unfem -un_mesh meshes/trap1 -snes_fd
case 0 result for N=7 nodes with h = 1.414e+00: |u-u_ex|_inf = 7.59e-02

To determine whether we are in fact solving the problem, we start by refining the mesh
and examining the finite differenced Jacobian matrix. The already generated mesh traps.msh
(Figure 10.7) first needs to be converted to PETSC binary files:
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258 Chapter 10. Finite element method II: Naive and unstructured

Figure 10.9. Matrix sparsity patterns from unfem -snes_fd applied to meshes trap1.msh,
trap2.msh,traps.msh.

$ ./msh2petsc.py meshes/traps.msh
$ ./unfem -un_mesh meshes/traps -snes_fd -mat_view draw -draw_pause 1
case 0 result for N=55 nodes with h = 3.536e-01: |u-u_ex|_inf = 5.52e-03

Note the error is an order of magnitude smaller than with mesh trap1. Matrix sparsity patterns
for our three levels of refinement (Figure 10.9) show symmetry, and shows the diagonal entries
associated to Dirichlet boundary, but no other structure is obvious.

If the implementation is correct then the error will decrease at the theoretically expected
O(h2) rate [49] as the mesh is refined. To test this we run the following Bash loop in directory
meshes/ to generate ten levels of refined (i.e., by splitting) meshes trap1.msh–trap10.msh:

gmsh -2 trap.geo -o trap1.msh
./msh2petsc.py trap1.msh
for (( Z=1; Z<10; Z++ )); do

gmsh -refine trap$Z.msh -o trap$((Z+1)).msh
./msh2petsc.py trap$((Z+1)).msh

done

(A helper script is available: ./refinetraps.sh meshes/trap 10.) Now consider the fol-
lowing runs to solve the linear case 0 problem:

$ ./unfem METHOD -snes_converged_reason -un_mesh meshes/trapX

For METHOD = -snes_fd the solve succeeds on meshes X = 1, . . . , 6, but for X = 7 we get
a DIVERGED_FUNCTION_COUNT error as the evaluations exceeds the default -snes_max_funcs
10000. However, Figure 10.10 shows both convergence and, as expected, that the number of
function evaluations grows rapidly.34

Jacobian-free Newton-Krylov (Chapter 4), i.e., METHOD = -snes_mf, is better here; we
reach mesh level X = 9 with no error messages and with times less than a minute. Numerical
errors from -snes_fd and -snes_mf runs coincide for all grids where both methods complete.
While with -snes_fd the number of evaluations of FormFunction() is proportional to the
number of unknowns N , for -snes_mf it scales with the number of Krylov iterations (Chapter
4). However, the Krylov iterations grow rapidly with refinement. Indeed, without an assembled
matrix for preconditioning, we are applying the Krylov method to an unpreconditioned operator
which has growing condition number under refinement.

34Add -log_view and grep for FunctionEval.
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Figure 10.10. Numerical error (open circles; left axis) and number of residual evaluations (solid
symbols; right axis) using -snes_fd and -snes_mf.

Picard iteration as a Newton-like step
To do better we need to assemble a Jacobian and use it for preconditioning. In fact, we will build
a matrix which, in nonlinear cases of PDE (10.2), is only an approximate linearization, namely
a “Picard” matrix. This common technique, somewhat easier than building the full Jacobian,
works reasonably well here.

Because (10.2) is quasilinear [51], the FE discretization (10.9), (10.10) generates an algebraic
system of form

A(u)u = b(u) (10.24)

for A(u) ∈ RN×N and b(u) ∈ RN . In Picard iteration the matrix A(u) and right-hand side
b(u) are “frozen” at the current iterate and a linear system is solved for a new iterate:

A(uk)uk+1 = b(uk). (10.25)

This can also be stated for the continuum problem as a linear PDE:

−∇ ·
(
a(uk)∇uk+1

)
= f(uk). (10.26)

Under strong hypotheses on the functions A(u) and b(u) one can prove convergence (Exercise
10.5), but often one has no more a priori knowledge about the convergence of (10.25) than for
the Newton iteration.

Our approach to (10.2) could have been to write code for the linear case with a = a(x, y),
f = f(x, y) and then to “hard-code” the Picard iteration for the nonlinear cases. However, a
more powerful approach is to regard the Picard matrix A(u) as an approximation to the Jacobian
and then use Newton’s method and related tools from SNES. For example, this allows use of a line
search to globalize convergence, and the use of A(u) as a preconditioner for JFNK (Chapter 4).

In fact, we subtract A(uk)uk from each side of (10.25) to get

A(uk)(uk+1 − uk) = −
(
A(uk)uk − b(uk)

)
,
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260 Chapter 10. Finite element method II: Naive and unstructured

so the step s = uk+1 − uk and the residual F(u) = A(u)u − b(u) appear. That is, we have a
linear system for the step,

A(uk)s = −F(uk), (10.27)

which has identical form to the Newton method itself:

J(uk)s = −F(uk). (10.28)

(See equation (4.4).)
For the linear case where ∂a/∂u = 0 and ∂f/∂u = 0 the matrices A(u) and J(u) are

the same, and neither depends on u. On the other hand, for nonlinear cases we expect A(u) to
be a good spectral approximation of J(u) because (10.26) captures the highest-order derivative
terms in (10.2), which control the large eigenvalues and thus the convergence of Krylov methods
(Chapter 2).

Preallocating and assembling the matrix
The function FormPicard(), which computes SPD matrix A(u) from the current estimate u of
the solution, is shown below in Code 10.9. The entries of A are sums of element contributions
computed as in equations (10.11), (10.13), and (10.15). That is, if

Akij(u) =

∫
4k

a(uh)∇ψj · ∇ψi (10.29)

then the entries of A are sums over elements,

Aij(u) =

{
δij , i ∈ ∂DΩ or j ∈ ∂DΩ,∑K−1
k=0 Akij(u) otherwise.

(10.30)

Most values Akij(u) are zero because the support of ψi or ψj often does not overlap 4k; the
matrix is sparse.

PetscErrorCode FormPicard (SNES snes , Vec u , Mat A, Mat P, void * ctx ) {
unfemCtx *user = (unfemCtx * ) ctx ;
const Quad2DTri q = symmgauss[ user−>quaddegree−1];
const PetscInt *ae , *abf , *en ;
const Node * aloc ;
const PetscReal *au ;
PetscReal unode [3 ] , gradpsi [ 3 ] [ 2 ] , uquad [4 ] , aquad [4 ] , v [9 ] ,

dx1 , dx2 , dy1 , dy2 , detJ , xx , yy , sum;
PetscInt n , k , l , m, r , cr , cv , row [ 3 ] ;

MatZeroEntries (P) ;
ISGetIndices ( user−>mesh−>bf ,&abf ) ;
for (n = 0; n < user−>mesh−>N; n++) {

i f ( abf [n ] == 2) {
v [0 ] = 1.0;
MatSetValues (P,1 ,&n,1 ,&n , v ,ADD_VALUES) ;

}
}
ISGetIndices ( user−>mesh−>e,&ae) ;
VecGetArrayRead(u,&au) ;
UMGetNodeCoordArrayRead( user−>mesh,&aloc ) ;
for ( k = 0; k < user−>mesh−>K; k++) {

en = ae + 3*k ; / / en [0 ] , en [1 ] , en [2 ] are nodes of element k
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Preallocating and assembling the matrix 261

/ / geometry of element
dx1 = aloc [en [ 1 ] ] . x − aloc [en [ 0 ] ] . x ;
dx2 = aloc [en [ 2 ] ] . x − aloc [en [ 0 ] ] . x ;
dy1 = aloc [en [ 1 ] ] . y − aloc [en [ 0 ] ] . y ;
dy2 = aloc [en [ 2 ] ] . y − aloc [en [ 0 ] ] . y ;
detJ = dx1 * dy2 − dx2 * dy1 ;
/ / gradients of hat funct ions and u on element
for ( l = 0; l < 3; l ++) {

gradpsi [ l ] [ 0 ] = ( dy2 * dchi [ l ] [ 0 ] − dy1 * dchi [ l ] [ 1 ] ) / detJ ;
gradpsi [ l ] [ 1 ] = (−dx2 * dchi [ l ] [ 0 ] + dx1 * dchi [ l ] [ 1 ] ) / detJ ;
i f ( abf [en [ l ] ] == 2)

unode [ l ] = user−>gD_fcn ( aloc [en [ l ] ] . x , aloc [en [ l ] ] . y ) ;
else

unode [ l ] = au [en [ l ] ] ;
}
/ / funct ion values at quadrature points on element
for ( r = 0; r < q .n ; r ++) {

uquad [ r ] = eval (unode ,q . x i [ r ] , q . eta [ r ] ) ;
xx = aloc [en [ 0 ] ] . x + dx1 * q . x i [ r ] + dx2 * q . eta [ r ] ;
yy = aloc [en [ 0 ] ] . y + dy1 * q . x i [ r ] + dy2 * q . eta [ r ] ;
aquad [ r ] = user−>a_fcn (uquad [ r ] , xx , yy ) ;

}
/ / generate 3x3 element s t i f f ness matrix (may be smaller )
cr = 0; cv = 0; / / cr = count rows ; cv = entry counter
for ( l = 0; l < 3; l ++) {

i f ( abf [en [ l ] ] != 2) {
row [ cr ++] = en [ l ] ;
for (m = 0; m < 3; m++) {

i f ( abf [en [m] ] != 2) {
sum = 0.0;
for ( r = 0; r < q .n ; r ++) {

sum += q .w[ r ] * aquad [ r ]
* InnerProd ( gradpsi [ l ] , gradpsi [m] ) ;

}
v [ cv++] = PetscAbsReal ( detJ ) * sum;

}
}

}
}
MatSetValues (P, cr , row , cr , row , v ,ADD_VALUES) ;

}
ISRestoreIndices ( user−>mesh−>e,&ae) ;
ISRestoreIndices ( user−>mesh−>bf ,&abf ) ;
VecRestoreArrayRead(u,&au) ;
UMRestoreNodeCoordArrayRead( user−>mesh,&aloc ) ;

MatAssemblyBegin (P,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(P,MAT_FINAL_ASSEMBLY) ;
i f (A != P) {

MatAssemblyBegin (A,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY) ;

}
return 0;

}

Code 10.9. c/ch10/unfem.c, part V. Generate Mat A, the Picard matrix.

Note that in main() we created a Mat for A(u), called MatSetSizes() and
MatSetFromOptions() on it, and set a call-back to FormPicard() using SNESSetJacobian().
(A method called SNESSetPicard() exists in the PETSC API, but it is not recommended. The
method used here is Picard iteration treated as a Newton-like step.) Now, inside FormPicard(),
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262 Chapter 10. Finite element method II: Naive and unstructured

MatSetValues() is called with ADD_VALUES to do sum (10.30). Note that we have already
computed integral (10.29) when evaluating the residual, namely in equation (10.20), so
FormFunction() could have been rewritten to generate A(u) as a side effect, but we write
a separate function so that already-tested FormFunction() is not touched.

However, preallocating memory for the Mat is critical for performance. Without this step,
memory would be allocated incrementally as nonzero entries are generated; the resulting ineffi-
ciency is easy to demonstrate (below). In addition to preallocation we provide the precise sparsity
pattern of the matrix. Actually, in previous chapters we have benefited, perhaps without being
aware of it, from automatic preallocation and sparsity-pattern generation when using a DMDA.
The following function PreallocateAndSetNonzeros(), shown in Code 10.10, accomplishes
essentially the same actions as DMCreateMatrix(). It first preallocates storage for the sparse
matrix by providing a count of nonzero entries in each row. Then it actually sets the sparsity
pattern by inserting zeros (ironically) where there will be nonzero entries. Because the nonzero
pattern of the Mat is now known to the SNES, option -snes_fd_color can be used, again with
easily demonstrated performance benefit.

PetscErrorCode PreallocateAndSetNonzeros (Mat J , unfemCtx *user ) {
const PetscInt *ae , *abf , *en ;
PetscInt *nnz , n , k , l , cr , row [ 3 ] ;
PetscReal zero = 0.0 ,

v [9 ] = {0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0} ;

/ / preal locate : set number of nonzeros per row
ISGetIndices ( user−>mesh−>bf ,&abf ) ;
ISGetIndices ( user−>mesh−>e,&ae) ;
PetscMalloc1 ( user−>mesh−>N,&nnz) ;
for (n = 0; n < user−>mesh−>N; n++)

nnz [n ] = ( abf [n ] == 1) ? 2 : 1;
for ( k = 0; k < user−>mesh−>K; k++) {

en = ae + 3*k ; / / en [0 ] , en [1 ] , en [2 ] are nodes of element k
for ( l = 0; l < 3; l ++)

i f ( abf [en [ l ] ] != 2)
nnz [en [ l ] ] += 1;

}
MatSeqAIJSetPreallocation (J, −1 ,nnz) ;
PetscFree (nnz) ;

/ / set nonzeros : put values (=zeros ) in al located locat ions
for (n = 0; n < user−>mesh−>N; n++) {

i f ( abf [n ] == 2) {
MatSetValues (J,1 ,&n,1 ,&n,&zero ,INSERT_VALUES) ;

}
}
for ( k = 0; k < user−>mesh−>K; k++) {

en = ae + 3*k ; / / en [0 ] , en [1 ] , en [2 ] are nodes of element k
/ / a 3x3 element s t i f f ness matrix ( at most ) fo r each element
cr = 0; / / cr = count rows
for ( l = 0; l < 3; l ++) {

i f ( abf [en [ l ] ] != 2) {
row [ cr ++] = en [ l ] ;

}
}
MatSetValues (J , cr , row , cr , row , v ,INSERT_VALUES) ;

}
MatAssemblyBegin (J ,MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd(J ,MAT_FINAL_ASSEMBLY) ;
/ / the assembly rout ine FormPicard ( ) w i l l generate an error i f
/ / i t t r i e s to put a matrix entry in the wrong place
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Convergence and profiling 263

MatSetOption (J ,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE) ;
ISRestoreIndices ( user−>mesh−>e,&ae) ;
ISRestoreIndices ( user−>mesh−>bf ,&abf ) ;
return 0;

}

Code 10.10. c/ch10/unfem.c, part VI. Preallocation and nonzero pattern for the Picard Mat A.

Function PreallocateAndSetNonzeros() calls MatSeqAIJSetPreallocation() with
an integer array nnz. To compute nnz[n], the number of nonzeros in row n, where n is also
the node index, we traverse the elements just as in FormFunction(). For Dirichlet boundary
nodes nnz[n] equals one, but otherwise it is one more than the number of triangles incident to
an interior node, or two more than that number for Neumann boundary nodes. (In terms of the
vertex degree d, d triangles are incident to each interior node while d − 1 are incident to each
boundary node.) This scheme is an overestimate for rows near a Dirichlet node, but otherwise
exact.

After preallocating, our function sets nonzero locations by traversing the elements and com-
puting 3× 3 element stiffness matrices just as in FormPicard(). In fact, a reasonable workflow
is to write the matrix assembly procedure first and then strip it down to simply indicating non-
zeros in a separate procedure (like PreallocateAndSetNonzeros() here).

Preallocation makes a huge difference. To demonstrate it, first observe that the default path
in main() is to call PreallocateAndSetNonzeros() and then to set the Jacobian call-back
to FormPicard(). Using a �with-debugging=0 PETSC configuration we can show over 100
times faster runs with preallocation, on a medium-resolution mesh:

$ time ./unfem -un_mesh meshes/trap8 -un_noprealloc
case 0 result for N=41409 nodes with h = 1.105e-02: |u-u_ex|_inf = 1.04e-05
real 103.04
$ time ./unfem -un_mesh meshes/trap8
case 0 result for N=41409 nodes with h = 1.105e-02: |u-u_ex|_inf = 1.04e-05
real 0.56

Adding -info | grep malloc to these runs shows that former run issues about 4 × 104

mallocs for memory [90] during matrix assembly while the latter issues none.

Convergence and profiling
Next we measure convergence for the verification problems described at the beginning of the
Chapter, by using the already-generated meshes. For the linear case 0 and 2 verification prob-
lems, runs with mesh levels LEV = 1, 2, . . . , 10 generated the results in Figure 10.11:

$ ./unfem -un_case $CASE -un_mesh meshes/trap$LEV \
-snes_type ksponly -ksp_rtol 1.0e-10

The finest mesh has N ≈ 6.6 × 105 nodes, with run times less than 60 seconds on the author’s
laptop. The solutions to the case 0 and 2 problems are the same—see equation (10.4)—so the
numerical errors are the same, thus case 2 serves only as a check on the implementation of
Neumann boundary conditions. For the nonlinear case 1 problem, the runs were

$ ./unfem -un_case 1 -un_mesh meshes/trap$LEV \
-snes_rtol 1.0e-10 -ksp_rtol 1.0e-10
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Figure 10.11. Numerical errors and convergence rates as a function of maximum mesh edge length h.

for the same mesh levels, with results also in Figure 10.11. These rates, reasonably close to
the theoretical rate O(h2) for well-behaved refinements [19], suggest that our numerical method
converges.

Now, how does the solver scale with the size of the problem, say the number of mesh nodes
N? Our goal is optimality (Chapter 7), so we want solver flops and run time to be O(N) for
large N . A Krylov method can achieve this if we can find a preconditioner such that the (pre-
conditioned) iteration counts are independent of the mesh spacing h, or equivalently independent
of N .

Our solver is constructed from KSP and PC choices made in main()—see Code 10.6—
namely CG+ICC. For linear case 0, as shown in Figure 10.12, the scaling is poor. The flops
grow as O(N1.58) and the run time, for the four finest grids where the timing is not too noisy,
at the same rate (not shown). The KSP iterations grow proportionally to N , roughly doubling
each time we reduce the grid spacing by half. (Mesh refinement by splitting gives h→ h/2 and
N → 4N .) Thus the flops per N are nowhere near constant, and the solver is far from optimal.

For the Poisson equation on a structured grid, and generally in the structured-grid solvers
of Chapters 6–9, the CG+GMG combination (geometric multigrid) was optimal because its KSP
iterations grew slowly, or not at all, as we decreased h. However, the run time here includes
stages not present in those solvers, specifically our mesh-reading and preallocation schemes.

Does profiling support a focus on the preconditioner? Yes, it does. In fact, unfem.c logs
three computational stages, namely reading the mesh, setup of the solver including preallocation
of the linear system, and solving the system. (The third stage is the call to SNESSolve().) That
is, the code has lines looking like the following, though they are stripped out of the code extracts
above:

PetscLogStagePush(stage);
... code ...
PetscLogStagePop();

By adding -log_view to the above runs, now using the next-level mesh with N = 2.6 × 106

nodes, we get the timing results in Figure 10.13, showing the percentage of total run time spent

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Convergence and profiling 265

101 102 103 104 105 106

N = degrees of freedom
0

3 × 104

6 × 104

9 × 104
flo

ps
 / 

N 
 (s

ol
id

 d
ot

s)

0

1000

2000

KS
P 

ite
ra

tio
ns

  (
st

ar
s)

Figure 10.12. Our CG+ICC solver is nowhere near optimal. The KSP iterations and flops/N
grow as O(N), whereas we want them to be independent of N .
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Figure 10.13. Profiling the major code stages of our CG+ICC runs shows that improving the
preconditioner is all important. By contrast, our mesh reader, based on PETSC binary files, has tiny
run-time fraction even on fine meshes.
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266 Chapter 10. Finite element method II: Naive and unstructured

in the three stages.35 For the finer meshes the lesson is very clear: the cost of the solver, ICC-
preconditioned CG iteration, dominates over everything else. On the finest two grids the solver
takes more than 97% of the time.

Algebraic multigrid
In recent chapters, geometric multigrid (GMG) on structured grids has been the key to optimal
O(N) solver complexity. The main benefit of GMG preconditioning, namely an h-independent
Krylov iteration count, requires the construction of a hierarchy of grids and associated interpola-
tion/restriction operators. While the DMDA object constructs these internally, unfem.c reads only
one unstructured mesh from a file. Substantial additional work would be required to construct
a mesh hierarchy geometrically. Such a hierarchy will be available using Firedrake—see the
example in Chapter 14—but for now we need a different multigrid approach.

Algebraic multigrid (AMG) is intended to recover much of the benefit of GMG in situations
like this. The idea is that one may act on an assembled matrix A by recursively identifying and
extracting coarse “subgrids,” actually subsets of the variables, to generate interpolation (prolon-
gation) and restriction operations for use in a V-cycle (for example). More or less heuristic rules,
based on the expected structure of a Laplacian, or more general elliptic operators, identify these
coarse grids. A classical iteration such as SOR or Chebyshev (Chapter 6) is used as a smoother
on each subgrid. AMG therefore has a nontrivial setup stage, but at least for linear problems this
effort can be reused at (and amortized over) each preconditioner application.

High-level motivation for AMG might start by observing that GMG solutions of elliptic PDEs
are “geometric” in two particular senses:

(i) Interpolation (prolongation) P and restriction R operators are defined using the geometry
of grids.

(ii) Coarse-grid operators AC created by rediscretization (Chapter 6) use geometric informa-
tion.

AMG must remove these geometric dependencies. One quickly dispenses with (ii) by using
the Galerkin formulation AC = P>AP , equation (6.21). In fact, -pc_mg_galerkin may be
regarded as partly-algebraic multigrid. Also, from now on we will assume R = P> so item (i)
only concerns prolongation.

The AMG setup phase must construct a prolongation matrix P using only the entries of
A. The algorithm which does this will fully determine the “coarse grid” as the range (column
space) of the prolongation. To illustrate an AMG-generated coarse grid we use PETSC’s native
implementation -pc_type gamg [10]. (An alternative is the BoomerAMG preconditioner [77]
from the Hypre library, which may be linked to PETSC during configuration; see [10].) Using
the N = 48 mesh shown at left in Figure 10.7, the run

$ ./unfem -un_mesh meshes/trapr -pc_type gamg

applies AMG-preconditioned CG using only one coarse level—thus a two-level method—with
six nodes. The prolongation matrix P is a full-rank, sparse 48×6 matrix whose six columns have
nonzero entries as shown by dots in Figure 10.14. The nonzeros in a column of P identify those
fine-grid (original mesh) points which linearly combine to give the interpolant for that column
index. (The figure indicates the sparsity of P but not the magnitude of the entries.) Note that
geometric locations for coarse grid points are never defined; the nonzero entries in a column of
P “are” the coarse grid.

35Time in residual and Jacobian evaluation is also logged (not shown), and included in the solver stage. These evalua-
tions take a small, O(N) time both for linear and nonlinear cases.
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Algebraic multigrid 267

Figure 10.14. In AMG, the nonzero entries in columns of P define overlapping aggreggates which
are the “nodes” of the “coarse grid.”

However, we will give no details on how AMG generates prolongation matrices, and we
proceed to treat AMG as a black-box preconditioner. For more information, introductions [53,
144] are highly recommended.

The default gamg preconditioner type is smoothed aggregation [144, 150] (-pc_gamg_type
agg). Exercise 10.8 compares this default type to “classical” AMG (-pc_gamg_type
classical). At run time the AMG preconditioner can be viewed either by -ksp_view or by
-info | grep GAMG for greater detail. Though tuning of AMG is outside our scope, see the
advice in [10].

The untuned, default AMG preconditioner generates a nearly optimal solver for the case 0
linear problem. Consider these runs using trapezoidal meshes at levels LEV = 1, . . . , 12 (page
258):

$ ./unfem -snes_type ksponly -ksp_rtol 1.0e-10 -pc_type gamg \
-un_mesh meshes/trap$LEV

Running on the finest level-12 mesh, with N ≈ 107, took about 100 seconds on the author’s
workstation.

Figure 10.15 shows the result of recording KSP iterations, flops, and time using
-ksp_converged_reason -log_view. The solver is not quite optimal, and in fact straight-
forward power regression, over the finest five meshes gives flops = O(N1.12), and total run
time O(N1.09) on fine meshes. Observe that the flops per degree of freedom roughly doubles as
N increases by four orders of magnitude from 103 to 107. The slow increase in KSP iterations
suggests that flops = O(N logN) might be a more appropriate fit, and regression to most of
the data (dashed line) gives

flops
N
≈ 1232 + 244 logN.

Recall that when we profiled the earlier CG+ICC solver we found that nearly 100% of the
run time was taken in the solver, that is, in the SNESSolve() event. With AMG the picture is
significantly different (Figure 10.16), but the solver still takes a majority of the time. On fine
meshes it seems to steadily use about 90% of the time, with AMG PC setup requiring most of the
remainder. Again we see that reading the mesh from PETSC binary files takes negligible time.
In any case the AMG solver is much faster than the ICC solver. On the level 11 mesh, the finest
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Figure 10.15. AMG-preconditioned CG iterations solve the Poisson equation, on refinements of
a trapezoidal domain, with slowly growing iterations and O(N logN) near-optimality of flops.
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Figure 10.16. Profiling the CG+GAMG solver shows the solver still dominates the cost, with
setup costs noticeable and mesh-reader costs very small.
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shown in Figure 10.13, the AMG solution takes 25 seconds while ICC takes 250 seconds (on the
author’s workstation).

Nonlinear performance
Recall that the Case 1 problem is a nonlinear porous medium equation:

−∇ ·
(
(1 + u2)∇u

)
= f(x, y). (10.31)

As implemented in c/ch10/cases.h, the source f is computed from the exact solution (10.4)
so as to solve (10.31), and the boundary data are the same as in the linear case 0 problem.

We have already implemented and verified a Picard iteration solution to (10.31); see Figure
10.11. While this method is not expected to be quadratically convergent, we may recover that
property using either a finite differenced Jacobian or the JFNK method (Chapter 4). In fact,
given that AMG gives near-optimal solutions to the linear problems, three sensible strategies are
available for (10.31). Namely, consider the run

$ ./unfem -un_mesh meshes/trap$LEV -un_case 1 -snes_rtol 1.0e-10 \
-snes_converged_reason -pc_type gamg

This is Picard iteration using the analytically-constructed sparse matrix from FormPicard().
We may also add either of the following options:

• -snes_fd_color: Newton iteration using a finite differenced Jacobian, exploiting the
fact that our preallocation function also sets the sparsity of the Mat, permitting coloring.
FormPicard() is not called.

• -snes_mf_operator: Newton iteration using a finite differenced Jacobian action—see
(4.19) and related discussion—with the FormPicard() matrix used only by the AMG
preconditioner.

The results, shown in Figure 10.17 for LEV = 3, . . . , 11 meshes—note N = 2.6 × 106 on
the finest mesh—show surprisingly good performance from the plain Picard iteration. It also
shows the poor performance of the -snes_mf_operator method, which does not converge on
the finest two levels. The existence of such examples reflects the details of the nonlinearity in a
given PDE, but it surely justifies including Picard iteration in one’s bag of tricks. Both the Picard
iteration and -snes_fd_color methods show near-optimality, with O(N1.04) and O(N1.08)
flops, respectively, from logarithmic regression to all the data.

A look at SNES residual norms shows that the Picard iteration, in this case, reduces the
residual even when the iterate is far from the solution. Consider the result shown in Figure
10.18 for the LEV = 9 mesh with N = 1.6 × 105 nodes (on which all methods converge).
The Picard iteration steadily decreases the residual, by about an order of magnitude per itera-
tion, while -snes_fd_color and -snes_mf_operator show classic, delayed quadratic con-
vergence. Which of the Picard and -snes_fd_color methods is better on a given grid may
therefore depend on the convergence tolerance.

Performance relative to a DMDA structured grid
One is permitted, of course, to ask whether a given code is “efficient.” Though a good answer is
often lacking, for unfem.c a reasonable approach is to assume that a DMDA-based structured-grid
solution of the Poisson problem, e.g., fish.c from Chapter 6, is efficient. We can compare the
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Figure 10.17. For the nonlinear porous medium equation (10.31) the Picard and
-snes_fd_color methods using AMG preconditioning show near-optimality, but -snes_mf_operator
has convergence difficulties on fine grids.
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Figure 10.18. For the nonlinear Case 1 problem the the Picard iteration generates immediate
and steady decreases in residual norm. Newton methods show classic quadratic convergence.

two codes on the same structured grid, but with unfem.c managing it as an unstructured trian-
gulation. Our unstructured solution is efficient if it can, despite the unstructured-mesh overhead,
solve the problem nearly as fast as structured FD.

To do this we first write a Python script c/ch10/genstructured.py (not shown) which
stores a triangulation of the unit square domain S = (0, 1)2 directly into PETSC binary format.

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Performance relative to a DMDA structured grid 271
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Figure 10.19. A triangulation of the unit square with N = 16 nodes.

For example,

$ ./genstructured.py small 4

generates, and stores in small.vec|is, the small grid shown in Figure 10.19.
Now we generate a N = 10252 ≈ 106 grid by

$ ./genstructured.py square 1025

Table 10.1 compares timing results on the author’s workstation from unfem.c, on this grid, to
fish.c runs at the same resolution. Note we have added a “Case 3” in cases.h, specifically for
square domains, so as to solve the same problem as fish.c. The runs in the table all have the
options

-snes_type ksponly -ksp_type cg -ksp_rtol 1.0e-11 -pc_type X

with preconditioning either by V-cycles of X=gamg (untuned AMG) or X=mg (GMG). For the
latter we also compare Galerkin or rediscretized coarse-grid matrices (Chapter 6). All of these
runs produced a numerical error norm of less than 10−7.

Table 10.1. Measured performance of multigrid solutions of the Poisson equation on a grid of
N ≈ 106 nodes. The c/ch6/fish.c code uses DMDA.

Code Preconditioner KSP iterations Time (s)
unfem -un_mesh square

-un_case 3
gamg 16 8.8

fish -da_refine 9 gamg 16 7.3
(same) mg -pc_mg_galerkin 8 3.7
(same) mg 8 3.3

This comparison shows unfem.c is quite efficient. The cost of unstructured indexing is
reflected by the difference in run times when using the same preconditioner (i.e., gamg). By that
measure, unfem.c is only 20% slower than the DMDA-based solution. Note that the unfem.c
time includes reading the mesh from a binary file, something which fish.c is not doing at all.
The same performance ratios remain at the next-coarser and next-finer levels of refinement as
well, namely 5132 and 20492 grids (not shown).

The additional performance improvement from using GMG, roughly a factor of two faster,
is not available to our naive unstructured solver. However, see Chapter 14 for Firedrake/DMPlex
solutions using GMG on unstructured meshes.
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Figure 10.20. A Koch snowflake polygon (left) and triangulation thereof (right).

In summary, the following approach solves the Poisson equation efficiently in serial on un-
structured meshes:

(i) reading an mesh from PETSC binary files,

(ii) evaluating the residual and the (Picard) matrix by traversing the elements using unstruc-
tured indexing,

(iii) preallocating the matrix by traversal of the elements, and

(iv) AMG solution of the discrete equations.

The performance is, remarkably, comparable to using an FD method on a DMDA structured grid.
Items (i) and (iii) are particularly important to efficiency on unstructured meshes. For nonlinear
problems, an additional step of setting the sparsity pattern during preallocation, which permits
use of -snes_fd_color, is also worthwhile.

Poisson equation on the Koch snowflake
Just for fun we now solve a Poisson problem on polygonal domains like that shown in Figure
10.20. This domain is a stage in the construction of the Koch snowflake, one of the earliest
fractals [151]. The polygon was generated by a Python script domain.py in c/ch10/koch/
(not shown), and then the mesh was generated by Gmsh:

$ cd koch/
$ ./domain.py -l 2 -o koch2.geo
$ gmsh -2 koch2.geo

As a test problem on these Koch domains, a new case 4 in cases.h sets a(u) = 1, f(u) = 2,
and gD = 0 in (10.2), giving

−∇2u = 2, (10.32)

subject to homogeneous Dirichlet boundary conditions on all of ∂Ω.
The solution u(x, y) to (10.32) is the expected time at which Brownian motion started at

(x, y) ∈ Ω first hits the boundary ∂Ω. (See [52, section 6.2] or [120].) In particular, suppose
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Poisson equation on the Koch snowflake 273

Figure 10.21. A Poisson solution on a Koch snowflake.

Bt is a (random) Brownian path started at the center (0, 0) of a Koch domain Ω. Note that Bt
will, with probability one, cross ∂Ω. If τ is the (random) first time at which Bt exits Ω then by
symmetry,

E(τ) = u(0, 0) = max
(x,y)∈Ω

u(x, y).

We will compute this value using highly refined Koch polygonal domains, to estimate its value
for the limiting fractal.

The following commands construct a refined Koch polygon with P ≈ 1.2 × 104 boundary
segments and a mesh with N ≈ 4.8× 105 nodes (not shown):

$ ./domain.py -l 6 -o koch6.geo
$ gmsh -2 koch6.geo
$ ../msh2petsc.py koch6.msh

Then we solve the Poisson equation in a few seconds:

$ ../unfem -un_mesh koch6 -un_case 4 -un_view_solution \
-snes_type ksponly -ksp_converged_reason -pc_type gamg

Option -un_view_solution saves a PETSC binary file koch6.soln containing the solution
u. A script petsc2contour.py (not shown), which can be provided with specific contours to
show details near the boundary, then generates Figure 10.21:

$ export CT="1e-6 1e-5 1e-4 3e-4 1e-3 3e-3 0.01 0.02 0.03 0.05 0.1 0.2"
$ ../vis/petsc2contour.py -i koch6 --contours $CT

The contouring script also reports the solution maximum, from which we estimate u(0, 0) ≈
0.22484. On a finer polygon from ./domain.py -l 7 we find u(0, 0) ≈ 0.22499; not shown.

A simple timing study with polygon levels 5, 6, 7 gives O(N1.29) run time, evidence of good
scaling of the AMG-preconditioned CG solver. Note we do not expect O(N1) scaling even from
a perfect solver because the problem becomes harder as the boundary becomes more detailed and
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longer. (Indeed, the boundary length grows exponentially in the Koch-fractal construction.) One
could, however, use the same tools to create a faster solver either by exploiting symmetry, or by
grading the mesh to be more refined near the boundary, or both; see Exercise 10.12. Nonetheless
it is fair to say that we have mastered the Poisson equation on arbitrary 2D domains.

Toward mature unstructured-mesh FE method capabilities
This chapter’s naive approach to the unstructured-mesh FE method is useful as an introduction,
and it might even be adequate for modest-scale problems. However, significant capabilities are
missing, including, among others,

(i) 3D domains,

(ii) more element types (e.g., quadrilaterals in 2D, various 3D elements),

(iii) higher-degree polynomial FE spaces (e.g., Pk, Qk spaces),

(iv) geometric multigrid (GMG),

(v) parallel distribution of meshes, and

(vi) parallel solvers.

A common way to add (i)–(iii) is to use a FE discretization library such as deal.II [12],
libMesh [93], FEniCS [107], or Firedrake [126]. These libraries make application of the FE
method much easier by hiding the details of the discretization stage. These libraries include
domain-specific languages, like the Unified Form Language [5] in FEniCS and Firedrake, for
specifying PDE weak forms.

Regarding item (iv), though AMG preconditioning applies without awareness of the topology
and geometry of the FE mesh, a desire to use GMG is motivated by our performance measure-
ments on DMDA structured grids. Furthermore, for problems other than the basic Poisson equation
the heuristics used in AMG sometimes yield performance significantly worse than GMG. How-
ever, adding the ability to use GMG solvers to our code unfem.c would require implementations
of interpolation and restriction operators, which we have not yet done. (However, this is a capa-
bility of the DMPlex type.)

A strategy for using unstructured FE in parallel, items (v) and (vi), can be sketched as follows.
(Observe that these two goals are not separate; efficient parallel solvers always require distributed
data structures.) To integrate weak form (10.3), which is summed element by element, each
element should be owned by exactly one process. Thus the elements should be partitioned across
the processors (Figure 10.22); this can be done in parallel by ParMETIS [88]. The goal of such
a partitioner is to reduce interprocess communication in the solver by minimizing the number
of vertices, edges, or faces which are incident to elements on different processors, while also
balancing the number of elements. In fact the element partitioning induces a list of vertices,
edges, or faces which must be accessible on each process. As each process loops over its owned
elements, computing the integral contribution to the residual requires the topological closure of
the element, including those lower-dimensional objects which are incident to the element. For
example, to use quadrature one must interpolate to the quadrature points from function values
at the nodes. These shared nodes must therefore be “ghosted” onto neighboring processors;
compare Figures 10.22 and 3.4. Note that in PETSC the management of such indexing is by a
VecScatter object, and one uses both a “global” indexing for all nodes and a “local” indexing
for the process-owned nodes.

The PETSC DMPlex type abstracts and implements all of the topological and geometri-
cal information needed for parallel mesh management, as described above. As illustrated in
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Exercises 275
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Figure 10.22. In a parallel partition of an unstructured mesh, elements (top) are uniquely owned
by processes, but certain lower-dimensional entities (e.g., nodes; bottom) are shared, i.e., ghosted (circled).

Chapter 13, the Firedrake Python library uses DMPlex under the hood. In Chapters 13 and 14 we
will achieve all six objectives (i)–(vi), while avoiding tedious user involvement in the discretiza-
tion and mesh-management aspects of the FE method.

Exercises
10.1. A PDE like (10.2) does not generally arise from a minimization principle. To show this,

suppose for simplicity that f is independent of u and set homogeneous Dirichlet boundary
conditions on ∂Ω. Show that if ∂a/∂u 6= 0 then the Euler-Lagrange equation of

Î[u] =

∫
Ω

1

2
a(u)|∇u|2 − fu (10.33)

is not the weak form (10.3). (Compare with the derivation of (9.7).) However, knowing
that reasonable guess (10.33) is wrong does not exclude that another minimization prob-
lem leads to (10.3). Show next that if ∂a/∂u 6= 0 then for some value of u the residuals
(10.13) satisfy

∂Fi(u)

∂uj
6= ∂Fj(u)

∂ui
. (10.34)

This fact does exclude a minimization formation when the coefficient a(u) depends on u;
explain why.

10.2. For the map (10.17) from4∗ to4k, the Jacobian is

Jk =
∂(x, y)

∂(ξ, η)
=

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)
=

(
∆x1 ∆x2

∆y1 ∆y2

)
.
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276 Chapter 10. Finite element method II: Naive and unstructured

Use the chain rule and (10.19) to show that

∇x,yψi =
1

det Jk

〈
∆y2

∂χ`
∂ξ
−∆y1

∂χ`
∂η

,−∆x2
∂χ`
∂ξ

+ ∆x1
∂χ`
∂η

〉
, (10.35)

where indices i and ` have the same relationship as in (10.19). Compare formula (9.21)
for the structured case.

10.3. Formula (10.21) requires some interpretation before the implementation becomes clear.
Confirm that formulas (10.17) and (10.19) lead to the following expressions:

uh =
N−1∑
j=0

{
gD(xj)
uj

}
χ`′(ξ, η), (10.36)

∇uh = ∇x,yuh =

N−1∑
j=0

{
gD(xj)
uj

}
∇x,yψj . (10.37)

In (10.36) and (10.37), the two cases for computing the coefficient are when xj ∈ ∂DΩ
and xj /∈ ∂DΩ, respectively, and node xj corresponds to vertex `′ on 4∗. Note that
(10.35) expands∇x,yψj in (10.37).

10.4. We use the midpoint rule (10.23) when computing the Neumann boundary segment con-
tributions ϕiν in (10.12), but this is not the only choice. Modify unfem.c to optionally use
two-point Gaussian quadrature instead. Confirm that accuracy improves in some cases,
for coarse grids, but this effect disappears under grid refinement.

10.5. Let ‖·‖ denote the 2-norm: ‖w‖ =
√
w>w for w ∈ RN . Assume that the right-hand side

of Picard iteration (10.25) is bounded, ‖b(u)‖ ≤ B, for all u, and that the functions are
Lipschitz so that ‖A(u)−A(v)‖ ≤ LA‖u−v‖ and ‖b(u)−b(v)‖ ≤ Lb‖u−v‖. Assume
also that A(u) is uniformly positive-definite, so there is δ > 0 for which w>A(u)w ≥
‖w‖2/δ for all u,w ∈ RN ; equivalently this says ‖A−1(u)‖ ≤ δ.

(a) Show that the sequence generated by (10.25) is then well defined and bounded,
‖uk‖ ≤ δB.

(b) Now let α = δ (LAδB + Lb). Show that (10.25) satisfies ‖uk+1 − uk‖ ≤ α‖uk −
uk−1‖.

(c) Under the (strong) assumption that α < 1, it follows from a geometric series argu-
ment that the Picard iteration converges; show this.

For the FE matrix in this chapter, the existence of δ follows from uniform-ellipticity as-
sumption (10.1). Note that these norm techniques are often applied to ODE IVPs [82].

10.6. Explain why the first of the following two runs, which solve the linear “Case 0” problem,
requires fewer SNES iterations:

$ ./unfem -un_mesh meshes/trap3 -snes_monitor -ksp_rtol 1.0e-14
$ ./unfem -un_mesh meshes/trap3 -snes_monitor -ksp_rtol 1.0e-14 -snes_fd

Now explain why the second of the following two runs, of a nonlinear problem, requires
fewer SNES iterations:

$ ./unfem -un_case 1 -un_mesh meshes/trap3 -snes_monitor
$ ./unfem -un_case 1 -un_mesh meshes/trap3 -snes_monitor -snes_fd
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Exercises 277

10.7. We have assumed that the Dirichlet boundary ∂DΩ contains at least one node so that
the linear problem has a unique solution, but one can also modify the solver to handle
∂DΩ = ∅ cases.

(a) By modifying the Case 2 exact solution to use only Neumann boundary conditions,
confirm experimentally that if ∂DΩ = ∅ then the equations no longer have a unique
solution. Even a direct solve -ksp_type preonly -pc_type lu will fail; explain
the error message.

(b) Now use SNESGetKSP() and KSPSetNullSpace() to tell the linear solver that the
linearization of the Neumann-only problem has constant functions as its null space.
Confirm that direct and iterative solvers now succeed.

10.8. Option -un_gamg_save_pint_matlab saves the top-level GAMG prolongation operator
in MATLAB format if the PC is of type gamg. Generate meshes/trapr.vec|is as
shown in the text, and compare the interpolation operators P from
$ ./unfem -snes_type ksponly -pc_type gamg -pc_gamg_type X \

-un_mesh meshes/trapr -un_gamg_save_pint_matlab PX.m

for X = agg,classical. The entries of P from classical AMG are all in [0, 1], and
there are entries with exact value one. These can be regarded as an actual coarse subgrid;
visualize it and compare Figure 10.14. Now redo the scaling study which generated Figure
10.15 using type classical.

10.9. Implement the true Jacobian in the a = a(x, y) case, that is, with the correct linearization
when ∂f/∂u 6= 0. This will add a diagonal term to the matrix. A test case is appropriate,
and it might be built by manufacturing a solution to the equation −∇2u = f(u, x, y)
where f(u, x, y) = eu + F (x, y) and where F (x, y) is generated by differentiation from
a chosen exact solution. Compare results from Picard and Newton iterations.

10.10. Use the code from the previous exercise to solve the Liouville-Bratu equation −∇2u =
λeu with homogeneous Dirichlet boundary conditions on the unit square S = (0, 1)2.
Compare results from Picard and Newton iterations. Compare the critical λ value from
Exercise 7.12.

10.11. Implement and test a version of unfem.c which can handle Robin boundary conditions.
10.12. The solution to the Poisson problem on the Koch fractal shown in Figure 10.21 has sixfold

symmetry, and it is not difficult to exploit this symmetry to reduce the work. Furthermore
one may grade the mesh so it is coarse in the interior and fine near the boundary. Re-
write c/ch9/koch/domain.py so that it only generates one-sixth of the boundary, adds
rays to the origin to make a closed polygon, and grade the mesh by setting the charac-
teristic length at the origin to a larger value. Apply homogeneous Neumann boundary
conditions along the rays. Demonstrate the resulting efficiencies by measuring run-time
performance.
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Chapter 11

Advection without,
and then with,
diffusion

Previous chapters have solved nonlinear elliptic PDEs by finite difference (FD) and finite element
(FE) methods. Now we switch to advection equations, both time dependent and steady state,
solving them by freely mixing finite volume (FV) and FD concepts. This chapter serves as a
very minimal introduction to FV methods.

The first code solves a linear advection equation in a time-dependent, two-spatial dimensions
case. Perhaps surprisingly, the highest-quality results use a nonlinear discretization. (As we will
see, getting good-looking results from advection equations is harder than one expects.) Then
we consider a steady-state equation which combines advection and diffusion, first in 1D and
then 2D. The importance of using a high-quality advection discretization depends on the rela-
tive amounts of advection and diffusion. Advection-dominated cases require reconsideration of
preconditioning. Optimal solvers are achieved by careful use of multigrid preconditioners and
discretizations which respect the advection.

Flux conservation and finite volumes
Advection simply refers to the motion of a substance carried along by a velocity field. Closely
related terms include transport and convection [114, 119]; the former we treat as a synonym but
the latter suggests a coupled dynamical model for the velocity, a notion which we do not pursue.
Advection is also an aspect of the equations for electromagnetic fields, with speed constant, but
without an underlying fluid; there is no ether. In any case, for simplicity and concreteness we
picture advection equation solutions as a moving fluid carrying the substance passively along,
sometimes called a tracer. We call the velocity the wind and the solution the concentration.

An equation for advection may conserve a flux, for instance, when the flux φ = au is the
product of wind and concentration:

ut +∇ · (au) = g(u). (11.1)

(The sense in which u is “conserved” will be addressed momentarily.) The solution u(t,x) to
(11.1) is sought for t ≥ 0 and x in some domain Ω ⊂ Rd. For simplicity we assume the wind
a(x) and source g(x, u) are functions which are both t independent and continuous in x, though
our notation will often suppress dependence on x. Furthermore we assume a(x) has continuous
derivatives and that g is Lipschitz in u. Thus the decoupled system of ODEs arising from (11.1)
when a = 0, namely ut = g(x, u), is at least well posed for short times at each location x
separately.
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280 Chapter 11. Advection without, and then with, diffusion

If the wind a is differentiable then form (11.1) describes the same class of problems as

ut + a · ∇u = g̃(u). (11.2)

An easy calculation shows that g̃ = g in the important case where a is divergence free (Exercise
11.1). Either (11.1) or (11.2) is an advection equation.

Equation (11.2) can be solved by characteristic curves [51], namely by solving the ODE
system dx/dt = a(x) describing particle motion with velocity a. If g̃ = 0 then a solution of
(11.2) is constant along such a characteristic curve. In 2D, for example, if a = (α, β) is constant
and g = g̃ = 0 then the solution of (11.1) and (11.2) is

u(t, x, y) = u0(x− αt, y − βt) (11.3)

for given initial values u0(x, y). In general the solution can be found by solving a system of
ODEs which determine the characteristic curve; see Exercise 11.2 and references [51, 115, 119].

In equation (11.1) the concentration u is conserved in the sense that, for any fixed open set
V ⊂ Ω with well-behaved boundary, the divergence theorem implies

d

dt

(∫
V

u

)
= −

∫
∂V

φ · n +

∫
V

g(u), (11.4)

where n is the outward unit normal along ∂V . Thus the amount of u in V changes only through
identified mechanisms, namely by the flux φ through ∂V and creation/removal by the source g.
Conversely, if (11.4) holds for all V then u solves (11.1), as long as u is sufficiently smooth.

The heat equation of Chapter 5 is also a flux conservation equation, but not an advection
equation as its flux is proportional to the concentration gradient, i.e., following Fourier’s or Fick’s
law [119]. For such a diffusive flux there is no meaningful velocity. This chapter makes a start on
equations combining both flux mechanisms, but we do not consider time-dependent advection-
diffusion equations.

The FV approach to discretizing (11.1) replaces it with (11.4) applied on control volumes.
Though “volumes” suggests three-dimensionality, the 2D, structured-grid control “volumes” in
this chapter are rectangles. The discretization in our first example makes three assumptions:

(i) We enforce (11.4) only for finitely many rectangular control volumes Vij , each with sides
hx, hy and area |V | = |Vij | = hxhy (Figure 11.1).

(ii) We regard the discrete unknowns as the averages of the concentration over the control
volumes,

Uij(t) ≈
1

|V |

∫
Vij

u(t, x, y) dx dy. (11.5)

(iii) Midpoint quadrature is applied to all integrals in (11.4).

Using the midpoint rule on the faces of the control volume, i.e., the midpoints of the segments
of ∂Vij , and denoting the flux components by φ = (φx, φy), we use one flux evaluation per face,
signed according to the outward normal. Thus∫

∂Vij

φ · n ≈ hyφxi+1/2,j + hxφ
y
i,j+1/2 − hyφ

x
i−1/2,j − hxφ

y
i,j−1/2. (11.6)

Spatial discretizations (11.5) and (11.6) applied to (11.4), plus division by cell area |V | = hxhy ,
generate the following method of lines (MOL; Chapter 5):

U ′ij = −
φxi+1/2,j − φ

x
i−1/2,j

hx
−
φyi,j+1/2 − φ

y
i,j−1/2

hy
+ g(Uij). (11.7)
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Flux conservation and finite volumes 281

V00

V01

V02

V10

V11

V12

V20

V21

V22

V30

V31

V32

i = 0 i = 1 i = 2 i = 3

j = 0

j = 1

j = 2

hx

hy

Figure 11.1. Control volumes Vij with cell centers at (xi, yj).

Equation (11.7) is not a surprise. Applying a centered FD scheme to (11.1) will yield the
same equation. On the other hand, solving (11.7) numerically will require a scheme for the face-
center fluxes, and our FV derivation identifies staggered-grid fluxes with a quadrature choice over
faces. This way of thinking will suggest increased-accuracy methods through better quadrature,
and it relates the discretization to the goal of conservation.

The discrete solution is globally conservative if fluxes have the same values when viewed
from either side of a face, as our notation in (11.6) already assumes. In fact, suppose we have
periodic boundary conditions on Ω. (This applies to our first code; see below.) Summing (11.7)
over all cells eliminates the fluxes through cancellation, hence the rate of change of the sum ofUij
depends only on the source term. Then discrete global conservation is analogous to continuum
conservation derived from (11.4) when ∂Ω = ∅:

d

dt

(∑
ij

Uij

)
=
∑
ij

g(Uij) ∼ d

dt

(∫
Ω

u
)

=

∫
Ω

g(u). (11.8)

Equation (11.8) is motivation for adding a function which monitors the conserved quantity∑
ij Uij (Exercise 11.10).
The centered flux approximation is an obvious choice for discretization. This formula, for

flux φ = au, uses the average of the cell-center values,

φxi+1/2,j = ax(xi+1/2,j)
Ui,j + Ui+1,j

2
, (11.9)

with similar formulas for other face centers. Combining equations (11.7) and (11.9) gives an
MOL scheme with second-order truncation error (Exercise 11.3), as expected for the centered
FD discretizations in previous chapters.

Sadly, however, this centered scheme is not adequate to the job. In a problem for which the
exact solution is simple translation, i.e., equation (11.3), the scheme generates the ugly results
in Figure 11.2. The two ugly results differ only in the choice of O(∆t2) time-stepping methods,
namely RK2a and the trapezoid (CN) rule; see Chapter 5. (We compare explicit and implicit
methods here to suggest that the issues must be different from the stability concerns for the heat
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282 Chapter 11. Advection without, and then with, diffusion

Figure 11.2. Given a discontinuous initial condition (top), the centered flux (11.9) produces poor
results with either RK2a (left) or trapezoid/CN (middle) time-stepping. RK2a with a flux-limited high-
resolution flux (11.25) (right) approximates the (translation) exact solution better.

equation.) The rightmost figure shows that RK2a time-stepping and a different flux discretiza-
tion, as described next, does a much better job. Apparently some effort is needed in dealing with
advection!

Upwinding, and the goals of advection schemes
Method-of-lines (MOL) system (11.7) is not actually a “method” until we determine how the
face-centered fluxes are computed, and then we choose a time-stepping scheme. The first choice
would seem to be easy because the flux formula φ = au is so simple, but difficulties are already
apparent in the constant velocity case. The reason is that translation is not a smoothing process,
thus a discrete version of translation can only be of high quality if all frequencies (spatial modes)
present in the solution are

• well approximated on the grid and

• translated at identical rates.

The noise seen in Figure 11.2 for flux discretization (11.9) arises from the poor gridded ap-
proximation of high-frequency modes as well as translation of these modes at the wrong speeds
(dispersion).

Some amount of numerical diffusion, i.e., diffusion present in the numerical scheme but not
in the PDE, is desirable because it can hide translation and approximation errors by decaying
them away. All successful advection schemes hide high-frequency translation errors in this way,
but the effect must be used sparingly. Our best results, measured as usual by verification against
an exact solution, but also in an informal and visual sense, will come from schemes which will
use targeted numerical diffusion at locations where the numerical solution is changing rapidly.
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Upwinding, and the goals of advection schemes 283

These high-resolution schemes are modifications of first-order upwinding, introduced momen-
tarily, which has plenty of diffusion. The high-resolution schemes add flux corrections to the
first-order upwinding formula at places where the solution is smooth. Where the solution has
an accurate gridded approximation the scheme therefore has little numerical diffusion. How-
ever, where such methods detect rapid spatial variations the formulas turn off the corrections
and only apply diffusive first-order upwinding. This approach, which is necessarily nonlinear, is
appropriate even for the simplest linear advection equations like (11.2).

First-order upwinding, also called the donor cell method [103], calculates the face-centered
flux φ = au by choosing a solution value according to the sign of the wind:

φxi+1/2,j = axi+1/2,j

{
Ui,j , axi+1/2,j ≥ 0,

Ui+1,j , axi+1/2,j < 0,
(11.10)

= max(axi+1/2,j , 0)Ui,j + min(axi+1/2,j , 0)Ui+1,j .

Similar formulas apply to the other fluxes appearing in (11.7) (Exercise 11.4).
Consider the 1D case and suppose the wind is a positive constant α > 0:

ut + αux = 0. (11.11)

Spatial discretization (11.7) and first-order upwinding yield the MOL system

U ′i + α
Ui − Ui−1

h
= 0. (11.12)

We can make three closely related observations about (11.12):

(i) Applying forward Euler time-stepping yields

Un+1
i = (1− γ)Uni + γ Uni−1, (11.13)

where γ = ∆t α/h. If 0 ≤ γ ≤ 1 then this formula computes the new value Un+1
i as an

average of the current values Uni , U
n
i−1. The condition γ ≥ 0 is automatic with upwinding,

but the condition γ ≤ 1, required so that the coefficients in (11.13) are nonnegative, is a
restriction on the size of the time step ∆t. If (11.13) is subject to this restriction and if
Unj ≥ 0 for all j then Un+1

j ≥ 0 also. Oscillations of the type seen in Figure 11.2, where a
nonnegative initial condition evolves into an oscillatory state of both signs, cannot occur.

For 2D upwinding (11.10) the condition generalizes to

∆t max

{
|ax|
hx

,
|ay|
hy

}
≤ 1 (11.14)

(see Exercise 11.4). In their 1928 paper [38], Courant, Friedrichs, and Lewy (CFL) inter-
preted (11.14) as requiring that the (approximate) characteristic curves from (tn+1, xi, yj)
pass through the interior of the stencil at t = tn, allowing interpolation to compute an
updated value from the current (time tn) gridded values. Many advection schemes, includ-
ing first-order upwind (11.12), centered fluxes (11.9), and the third-order upwind-biased
scheme (11.22) below, can be interpreted as arising from interpolation [115]. The CFL
condition (11.14) keeps these formulas from becoming extrapolation (Exercise 11.5).

(ii) MOL equations (11.12) form a linear ODE system U ′ = AU . With periodic boundary
conditions on the interval (−1, 1), and a grid of m points with spacing h = 2/m, the
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284 Chapter 11. Advection without, and then with, diffusion

3 2 1 0 1
Re(z)

0
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(z

)

3 2 1 0 1
Re(z)

0
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2

3

4

Im
(z

)

Figure 11.3. The exact eigenvalues of PDE (11.11) (open circles) are imaginary. Those from first-
order upwinding on the MOL system (11.12) (left; solid) or a third-order upwind-biased scheme (11.22)
(right; solid) are damped by negative real parts. The absolute stability region of RK4 is shaded.

matrix is

A = −α
h


1 −1
−1 1

−1 1
. . . . . .

−1 1

 (11.15)

with (exact) eigenvalues

µp = −iα
h

sin(πph)− α

h
(1− cos(πph)) (11.16)

for p = 1, . . . ,m. (See [104] and the eigenvalue calculation in Exercise 11.3.) For compar-
ison, the exact eigenvalues of advection equation (11.11) can be found by Fourier series:
λp = −iαpπ, for all integers p.

Now recall that a time-stepping scheme for U ′ = AU is absolutely stable if the scaled ei-
genvalues of A are inside the scheme’s stability region (Chapter 5). In the example shown
in Figure 11.3, using RK4 time-stepping for illustration, the discrete first-order upwind
eigenvalues are inside the region. However, the figure also shows that these discrete ei-
genvalues have significantly negative real parts, representing substantial damping which is
not present in the PDE.

The figure suggests the goals in designing stable, higher-order advection schemes. High-
frequency modes of the MOL system must indeed have eigenvalues inside the absolute
stability region, but superior schemes will also push more eigenvalues toward their exact
values on the imaginary axis. Figure 11.3 shows that scheme (11.22) below does this.

(iii) Scheme (11.12) has truncation error O(h1) as an approximation of (11.11). However, the
same scheme is an O(h2) approximation to a different PDE, namely

vt + αvx =
αh

2
vxx, (11.17)
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Upwinding, and the goals of advection schemes 285

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0

Figure 11.4. Translation computed by first-order upwinding and RK2a time-stepping (left) over-
smooths especially in the direction of motion. A high-resolution flux-limited method (11.25) does much
better (right).

an advection-diffusion equation with diffusivity constant D = αh/2 > 0. (Such an ob-
servation is a modified equation analysis [84] of the scheme.) As h → 0 the solutions
to (11.12) will converge to the solution of advection equation (11.11), because D → 0,
but along the way they are higher-quality approximations of (11.17). In fact, the centered
difference scheme applied to (11.17) is identical to the upwind scheme (11.12) applied to
(11.11); compare Exercise 11.7.

These three observations together say that the first-order upwind scheme (11.12) is stable
when subject to the CFL condition but that it is excessively smoothing. The numerical results
in the left part of Figure 11.4, including results for the same diagonal-translation problem as in
Figure 11.2, confirm this. On the other hand, at least there is no hint of oscillation in the figure,
as would be the case with the centered flux scheme.

Overdamping, as occurs in first-order upwinding, is not a good strategy for high-quality
numerical advection. Instead we want many modes, those with medium spatial frequency, to
be translated at nearly the correct rates with minimal damping. At the same time, the highest-
frequency modes must indeed be damped because we will not be able to translate them at the
right rates; they are not faithfully represented on the grid. Thus first-order upwinding is kept as
a useful tool, but we apply it in a targeted manner while also improving the order of accuracy in
most locations.

An alternate approach would be to seek schemes for (11.11) with no damping whatsoever.
The leapfrog scheme [115] is a well-known example. It uses a centered spatial difference, giving
purely imaginary eigenvalues for the MOL system, and the midpoint rule in time. As an ODE
scheme, the midpoint rule has a segment of the imaginary axis as its stability region [104],
and the CFL condition puts the discrete eigenvalues inside this segment. However, because high-
frequency modes are (inevitably) translated at the wrong speeds, and because there is no damping
to hide this error, one sees obvious oscillations in typical leapfrog results (Exercise 11.3).

A further alternative uses high-degree trigonometric or polynomial approximations. While
such spectral methods can achieve superior advection results [142], they are beyond our scope
and more difficult to use in parallel.
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286 Chapter 11. Advection without, and then with, diffusion

High-resolution flux discretizations
Nonoscillatory discretizations [84], also known as flux-limiters or high-resolution schemes, are
built upon first-order upwinding. To explain how, we present the ideas here in 1D and then
implement them in 2D in the next section.

For the linear flux-conservation equation

ut + fx = 0, (11.18)

centered spatial finite differences gives an MOL system

U ′i +
fi+1/2 − fi−1/2

h
= 0. (11.19)

Suppose f = a(x)u with continuous wind a(x). To specify an MOL scheme the face-center
fluxes

fi+1/2 = a(xi+1/2)u(t, xi+1/2)

must be approximated by a function of the grid values Ui(t) ≈ u(t, xi). Note we evaluate a(x)
at the staggered-grid points xi+1/2 in all cases; we denote a = a(xi+1/2).

Both first-order upwinding (11.10),

fi+1/2 =

{
aUi, a ≥ 0,

a Ui+1, a < 0,
(11.20)

and the centered flux formula
fi+1/2 = a

Ui + Ui+1

2
(11.21)

use only the two regular-grid values Ui, Ui+1 straddling xi+1/2. We may also expand the stencil
and consider the third-order upwind-biased formula

fi+1/2 =

{
1
6a (−Ui−1 + 5Ui + 2Ui+1) , a ≥ 0,
1
6a (2Ui + 5Ui+1 − Ui+2) , a < 0.

(11.22)

This formula may use all four values Ui−1, Ui, Ui+1, Ui+2 nearest to xi+1/2.
Although it is not so obvious, it is true that both formulas (11.21) and (11.22) modify (11.20)

by adding a higher-order correction:

fi+1/2 =

{
a [Ui + ψ(θi)(Ui+1 − Ui)] , a ≥ 0,

a [Ui+1 + ψ (1/θi+1) (Ui − Ui+1)] , a < 0.
(11.23)

Here ψ(θ) is a nonnegative function called the flux-limiter, defined for all θ ∈ R, and θi is a ratio
which quantifies the variation of U around xi:

θi =
Ui − Ui−1

Ui+1 − Ui
. (11.24)

The second case in (11.23) reflects the first case, as though viewed from the other side. Observe
that if Ui = Ui+1 then θi is not defined, but that in that case we define (11.23) as computing a
zero correction since the other factor is zero.

If Ui is either the minimum or maximum of the values {Ui−1, Ui, Ui+1}, so that the slope
changes sign at xi, then θi ≤ 0. Thus, to turn off the higher-order correction near extrema we
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High-resolution flux discretizations 287

first-order upwind (11.20)
1

centered (11.21)
1/2 1/2

third-order upwind-biased (11.22)
−1/6 5/6 2/6

flux-limited (11.23)
1− ψ(θi) ψ(θi)

Ui−1 Ui Ui+1

fi+1/2

a

Figure 11.5. When a = a(xi+1/2) ≥ 0, schemes (11.23) all use the same three regular grid
points, with coefficients as shown.

require ψ(θ) = 0 for θ ≤ 0. On the other hand, if the slope of the piecewise-linear function
defined by {Ui} is nearly equal to a nonzero constant then θi ≈ 1.

First-order upwinding (11.20) uses no correction, i.e., ψ(θ) = 0, the centered flux (11.21)
uses ψ(θ) = 1/2, and the third-order upwind-biased flux (11.22) uses ψ(θ) = 1/3 + (1/6)θ
(Exercise 11.8). Note that when a ≥ 0 then, for any function ψ, (11.23) uses the three-point
stencil {Ui−1, Ui, Ui+1} (Figure 11.5).

We may say that a piecewise-linear function represented by grid values {Uj} is smooth at xi
if the change in slope is small in the sense that θi is roughly equal to one, θi ≈ 1. Because a
higher-order correction to first-order upwinding is desirable wherever the solution is smooth, we
want ψ(θ) to match a second- or third-order formula when θi ≈ 1.

Thus, as an informal definition, an MOL flux-conservation scheme for advection is nonoscil-
latory or high resolution if it has at least second-order accuracy in regions where the solution is
smooth and if it captures discontinuities of u(x, t) as “narrow, monotone structures” [148] in-
stead of generating oscillations with multiple minima and maxima. When used without modifi-
cation the second- and third-order linear schemes (11.21) and (11.22) both propagate oscillations
(e.g., Figure 11.2) when u(x, t) is nonsmooth, and thus they do not satisfy the definition. High-
resolution methods are constructed from the additional insight that the corrections to first-order
upwinding made in oscillatory higher-order linear schemes are too large near discontinuities.
These corrections should be limited, as in (11.23), by making the value of ψ(θ) smaller both
when θ → 0 and when θ →∞. In fact, linearity of the scheme is at odds with this high-resolution
goal for the corrections, and Godunov’s barrier theorem [62] (below) confirms this idea.

In (11.23) the flux itself is not actually limited because the first-order flux can be arbitrary.
However, the higher-order correction, the part which is proportional to ψ(θi), is limited. A better
name for ψ would be “flux-correction-limiter” [148] but “flux-limiter” is traditional.

We propose to test the two high-resolution flux-limiters shown in Figure 11.6. The first is the
Koren limiter [97],

ψ(θ) = max
{

0,min
{

1,
1

3
+

1

6
θ, θ
}}

. (11.25)

On the interval 2/5 ≤ θ ≤ 4 around θ = 1 we have ψ(θ) = 1/3 + (1/6)θ in agreement with
(11.22). Thus we get third-order accuracy where the solution is smooth. Because ψ(θ) → 0 as
θ → 0 and ψ(θ) is bounded as θ →∞ the correction is limited when the solution is bumpier.
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288 Chapter 11. Advection without, and then with, diffusion

1 0 1 2 3 4 5

0.0

0.5

1.0
(

)

Figure 11.6. The Koren (11.25) (dashed) and van Leer (11.26) (solid) limiters are two of many
possible flux-limiters ψ(θ). Flux-limiters give second-order results and avoid spurious oscillations if they
lie in the shaded Sweby region [138].

However, the Koren limiter ψ(θ) is not differentiable, which explains why we also test the
van Leer limiter [147]:

ψ(θ) =
1

2

θ + |θ|
1 + |θ|

. (11.26)

The resulting scheme does not have third-order accuracy, but it is second order where the solution
is smooth because at least ψ(1) = 1/2.

To explain the shaded region shown in Figure 11.6, consider a periodic grid with solution
values {Ui}m−1

i=0 and Um = U0. Define

TV(U) =

m∑
i=1

|Ui − Ui−1| (11.27)

as the total variation of U . A scheme for ut + a(x)ux = 0 is total variation diminishing (TVD)
if TV(U) is nonincreasing in time [76]. Because periodic solutions of the continuum problem
also have constant total variation (Exercise 11.9), a TVD scheme mimics a property of the exact
solution.

A scheme of form (11.23), which

(i) is TVD,

(ii) is at least second-order for smooth functions, and

(iii) avoids evolving sine wave solutions into square waves (i.e., is not “overcompressive” [84]),

must use a limiting function ψ(θ) with graph in the shaded region in Figure 11.6 [76, 138]. In
particular, one can rigorously show that a scheme of form (11.23) which satisfies (i) and (ii) must
have 0 ≤ ψ(θ) ≤ 1 and 0 ≤ ψ(θ) ≤ θ. This defines two of the several boundaries of the shaded
region, but the other boundaries arise, at least in part, from considering numerical results [138].

The use of such relatively complicated high-resolution schemes is justified by the following
theorem.

Theorem 11.1. (Godunov’s barrier theorem [62]) A monotonicity-preserving linear scheme for
the 1D constant-coefficient equation ut + αux = 0 cannot have second-order (or higher) local
truncation error in x.
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Implementation in 2D 289

To explain this statement, we define a grid function {Ui} to be monotone if either Ui ≤
Ui+1 for all i or Ui ≥ Ui+1 for all i. A numerical scheme is monotonicity preserving if {Uni }
monotone implies {Un+1

i } monotone. Note that TVD implies monotonicity preserving but not
vice versa [103].

Godunov’s theorem, which applies to both one-step and multistep time-integration [153],
excludes linear second-order TVD schemes. The above high-resolution methods overcome this
barrier by incorporating an appropriately bounded limiter, thus the schemes are nonlinear maps
from one time step to the next.

There are of course many high-resolution limiters other than the two above [84], and there
are also other ways of describing high-resolution schemes. For example one may “slope limit”
a reconstructed solution within a finite volume cell [103]. In any case, as we show next in a 2D
implementation, the numerical results produced by flux-limiters justify their relative complexity.

Implementation in 2D
Our program advect.c solves (11.1) on the square Ω = (−1, 1)2, with periodic boundary con-
ditions, using the structured grid of mx×my points shown in Figure 11.1. Spatial discretization
again leads to form (11.7). A flux discretization—we will test all the possibilities discussed
above—then generates an MOL ODE system of dimension N = mxmy:

U′ = G(t,U), U(t) = {Ui,j(t)} ∈ RN . (11.28)

With nontrivial flux-limiting, the right-hand side function G is nonlinear in U.
The way advect.c uses DMDA and TS objects is similar to heat.c in Chapter 5. As with that

code we may compare different time-stepping methods at run time, using a TS option to choose.
If the method is implicit, TS will build an internal SNES/KSP/PC “stack” of solver components
(e.g., Figure 5.5), while for an explicit scheme the TS sets up no solver stack, but our code is the
same either way.

typedef enum {STRAIGHT, ROTATION} ProblemType ;
static const char *ProblemTypes [ ] = { " s t ra igh t " , " ro ta t ion " ,

"ProblemType" , " " , NULL} ;

typedef enum {STUMP, SMOOTH, CONE, BOX} In i t i a lType ;
static const char * In i t ia lTypes [ ] = { "stump" , "smooth" , "cone" , "box" ,

" In i t i a lType " , " " , NULL} ;

typedef enum {NONE, CENTERED, VANLEER, KOREN} LimiterType ;
static const char * LimiterTypes [ ] = { "none" , " centered " , " vanleer " , " koren " ,

" LimiterType " , " " , NULL} ;

typedef struct {
ProblemType problem ;
PetscReal windx , windy , / / x , y ve loc i ty in STRAIGHT

( * i n i t i a l _ f c n ) (PetscReal , PetscReal ) , / / fo r STRAIGHT
( * l im i te r_ fcn ) (PetscReal ) , / / l i m i t e r used in RHS
( * jac_ l imi te r_ fcn ) (PetscReal ) ; / / used in Jacobian

} AdvectCtx ;

Code 11.1. c/ch11/advect.c, part I. Enumerate types and a context struct.

We show extracts from advect.c in Codes 11.1–11.4. The first shows a context struct
along with type declarations for use with PetscOptionsEnum(). For each such option one
defines a C enum type [90], plus an array of strings, including some for the -help documen-
tation. Here we solve two problems in form (11.1), each with g = 0, namely -adv_problem
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290 Chapter 11. Advection without, and then with, diffusion

−→

Figure 11.7. In problem -adv_problem rotation the initial condition (left) combines “cone”
and “box” functions. With -ts_max_time 6.2832, i.e. for 0 ≤ t ≤ 2π, the solution is one complete
rotation. The combination of the Koren (11.25) flux-limiter and third-order adaptive RK time-stepping
gives this good-looking result (right) on a relatively coarse grid.

straight|rotation. The default problem straight (Figure 11.2) has constant wind a =
〈2, 2〉 while rotation (Figure 11.7) has a = 〈y,−x〉, a rigid rotation in the plane. Figures
11.2 and 11.7 also show three of the four possible initial conditions, namely -adv_initial
stump|smooth|cone|box; the corresponding formulas are in Code 11.2.

/ / equal to 1 in a disc of radius 0.2 around ( −0.6 , −0.6)
static PetscReal stump(PetscReal x , PetscReal y ) {

const PetscReal r = PetscSqrtReal ( ( x+0.6) * ( x+0.6) + (y+0.6) * ( y+0.6) ) ;
return ( r < 0.2) ? 1.0 : 0.0;

}

/ / smooth (C^6) version of stump
static PetscReal smooth(PetscReal x , PetscReal y ) {

const PetscReal r = PetscSqrtReal ( ( x+0.6) * ( x+0.6) + (y+0.6) * ( y+0.6) ) ;
i f ( r < 0.2)

return PetscPowReal(1.0 − PetscPowReal ( r / 0.2 ,6.0) ,6.0) ;
else

return 0.0;
}

/ / cone of height 1 of base radius 0.35 centered at ( −0.45 ,0.0)
static PetscReal cone(PetscReal x , PetscReal y ) {

const PetscReal r = PetscSqrtReal ( ( x+0.45) * ( x+0.45) + y*y ) ;
return ( r < 0.35) ? 1.0 − r / 0.35 : 0.0;

}

/ / equal to 1 in square of side−length 0.5 (0.1 ,0 .6) x ( −0.25 ,0.25)
static PetscReal box(PetscReal x , PetscReal y ) {

i f ( (0 .1 < x ) && (x < 0.6) && (−0.25 < y ) && (y < 0.25) )
return 1.0;

else
return 0.0;

}

typedef PetscReal ( * PointwiseFcn ) (PetscReal , PetscReal ) ;

static PointwiseFcn i n i t i a l p t r [ ] = {&stump , &smooth , &cone , &box } ;

Code 11.2. c/ch11/advect.c, part II. Initial conditions.
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Implementation in 2D 291

Code 11.3 shows the implementations of the limiters: -adv_limiter none|centered
|vanleer|koren. Note that the none limiter is simply a NULL pointer.

/ * the centered−space method is l inear * /
static PetscReal centered (PetscReal theta ) {

return 0.5;
}

/ * van Leer (1974) l i m i t e r i s formula (1.11) in section I I I .1 of
Hundsdorfer & Verwer (2003) * /
static PetscReal vanleer (PetscReal theta ) {

const PetscReal abstheta = PetscAbsReal ( theta ) ;
return 0.5 * ( theta + abstheta ) / (1.0 + abstheta ) ;

}

/ * Koren (1993) l i m i t e r i s formula (1 .7) in section I I I .1 of
Hundsdorfer & Verwer (2003) * /
static PetscReal koren (PetscReal theta ) {

const PetscReal z = (1 .0 /3 .0 ) + (1 .0 /6 .0 ) * theta ;
return PetscMax(0.0 , PetscMin (1.0 , PetscMin (z , theta ) ) ) ;

}

typedef PetscReal ( * LimiterFcn ) (PetscReal ) ;

static LimiterFcn l i m i t e r p t r [ ] = {NULL, &centered , &vanleer , &koren } ;

Code 11.3. c/ch11/advect.c, part III. Flux-correction limiters ψ(θ).

The right-hand-side function FormRHSFunctionLocal() computes G(t,U) in system
(11.28) (Code 11.4). For explicit time-stepping schemes this is almost the entire implemen-
tation. However, for implicit time-stepping we have also implemented the Jacobian of G in
FormRHSJacobianLocal() (not shown, but addressed below).

PetscErrorCode FormRHSFunctionLocal (DMDALocalInfo * info , PetscReal t ,
PetscReal **au , PetscReal **aG, AdvectCtx *user ) {

PetscInt i , j , q , dj , d i ;
PetscReal hx , hy , halfx , halfy , x , y , a ,

u_up , u_dn , u_far , theta , f l ux ;

/ / c lear G f i r s t
for ( j = info −>ys ; j < info −>ys + info −>ym; j ++)

for ( i = info −>xs ; i < info −>xs + info −>xm; i ++)
aG[ j ] [ i ] = 0.0;

/ / f luxes on c e l l boundaries are traversed in E,N order with indices
/ / q=0 for E and q=1 for N; c e l l center has coordinates (x , y )
hx = 2.0 / info −>mx; hy = 2.0 / info −>my;
hal fx = hx / 2.0; hal fy = hy / 2.0;
for ( j = info −>ys−1; j < info −>ys + info −>ym; j ++) { / / note −1 s ta r t

y = −1.0 + ( j +0.5) * hy ;
for ( i = info −>xs−1; i < info −>xs + info −>xm; i ++) { / / −1 s ta r t

x = −1.0 + ( i +0.5) * hx ;
i f ( ( i >= info −>xs ) && ( j >= info −>ys ) ) {

aG[ j ] [ i ] += g_source (x , y ,au [ j ] [ i ] , user ) ;
}
for (q = 0; q < 2; q++) { / / E (q=0) and N (q=1) bdry f luxes

i f (q == 0 && j < info −>ys ) continue ;
i f (q == 1 && i < info −>xs ) continue ;
d i = 1 − q ;
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292 Chapter 11. Advection without, and then with, diffusion

dj = q ;
a = a_wind(x + hal fx * di , y + hal fy * dj , q , user ) ;
/ / f i r s t −order f l ux
u_up = (a >= 0.0) ? au [ j ] [ i ] : au [ j +dj ] [ i +d i ] ;
f l ux = a * u_up ;
/ / use f lux − l i m i t e r
i f ( user−>l im i te r_ fcn != NULL) {

/ / formulas (1 .2) , (1 .3 ) , (1 .6 ) ; H&V pp 216−−217
u_dn = (a >= 0.0) ? au [ j +dj ] [ i +d i ] : au [ j ] [ i ] ;
i f (u_dn != u_up) {

u_far = (a >= 0.0) ? au [ j −dj ] [ i −d i ]
: au [ j +2*dj ] [ i +2*di ] ;

theta = (u_up − u_far ) / (u_dn − u_up) ;
f l ux += a * ( * user−>l im i te r_ fcn ) ( theta )

* (u_dn−u_up) ;
}

}
/ / update owned G_ij on both sides of computed f lux
i f (q == 0) {

i f ( i >= info −>xs )
aG[ j ] [ i ] −= f lux / hx ;

i f ( i +1 < info −>xs + info −>xm)
aG[ j ] [ i +1] += f lux / hx ;

} else {
i f ( j >= info −>ys )

aG[ j ] [ i ] −= f lux / hy ;
i f ( j +1 < info −>ys + info −>ym)

aG[ j +1] [ i ] += f lux / hy ;
}

}
}

}
return 0;

}

Code 11.4. c/ch11/advect.c, part IV. Right side function G(t,U) in (11.28).

The flux discretizations in advect.c use 2D versions of limiter formula (11.23). As shown
in Figure 11.8, this generally needs a nine-point, star-type stencil with width (Chapter 3) of two.
To supply a value for each control-volume face center, first-order upwinding merely identifies a
regular grid point which we call up. The flux-limited schemes also need a far and a dn (down-
wind) point for each face center. See Code 11.4 for the implementation.

The structured-grid DMDA object is created by this call:

DMDACreate2d(PETSC_COMM_WORLD,
DM_BOUNDARY_PERIODIC,DM_BOUNDARY_PERIODIC,
DMDA_STENCIL_STAR,5,5,PETSC_DECIDE,PETSC_DECIDE,
1,2,NULL,NULL,&da);

The default periodic grid has five points in each direction so that all nine grid points in the stencil
(Figure 11.8, right) are distinct, thus that finite-difference-by-coloring evaluation of the Jacobian
(Chapter 4) can be used.

When computing the right-hand-side function G(t,U) in (11.28) we evaluate each face-
center flux only once, as follows. For volume Vij we label the face centers (xi+1/2, yj) as
“E” (east) and (xi, yj+1/2) as “N” (north); see Figure 11.9. Then FormRHSFunctionLocal()
traverses the locally owned portion of the grid using indices i and j, computing the E and N
fluxes for each control volume. It is not necessary to save these flux values in an array because
we can immediately add the contribution to the correct Gkl. This technique requires redundant
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Implementation in 2D 293

a

j − 1

j

j + 1

i− 1 i i+ 1

Vij
E

up

N
up

up dn

far

up

dn

far

Figure 11.8. Assume the wind a is directed as shown at top. First-order upwind (left) and flux-
limited (right) schemes make decisions at E and N face centers (circles) based on a star stencil.

Vi,j E

N

Figure 11.9. Every regular-grid point (solid) is at the center of a control volume Vij (outlined
in gray), which has four face-center (staggered-grid) points. Fluxes at E and N face-center points are
computed once for each pair i, j.

evaluation only along the boundaries of each process-owned subdomain. Note that periodic ghost
points are used to compute the fluxes along the edges of the global domain Ω.

There is little more to say about the implementation. As usual, main() starts by checking
options and creating the DMDA and TS objects. Because performance measurements suggest it is
fastest (next), we set the default TS type to Runge-Kutta. We choose an initial time step from CFL
condition (11.14), but after that the adaptive time-steppers determine the time step according to
their internal estimates of one-step error.

The last action of main() is to check whether the exact solution of the problem is known,
and measure the numerical error if so. Specifically, if the problem is straight, the final
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294 Chapter 11. Advection without, and then with, diffusion

time tf is an integer, and the velocity components are even integers, then the initial condition
w(x, y) = u(0, x, y) is also the exact solution because of periodic wrapping. In that case a single
VecNorm() call with norm type NORM_1_AND_2, followed by a scaling, gives the L1 and L2

error norms:

‖U − w‖1,h = hxhy
∑
i,j

|Uij − w(xi, yj)|,

‖U − w‖2,h =
(
hxhy

∑
i,j

|Uij − w(xi, yj)|2
)1/2

.
(11.29)

(Compare Exercise 11.6.)

Advection results
Let us make sure that advect.c produces reasonable-looking and convergent results. First we
visualize two laps of diagonal motion on an 80× 80 grid:

$ cd c/ch11/ && make advect
$ ./advect -da_refine 4 -ts_max_time 2.0 -ts_monitor_solution draw

This is the straight problem with a discontinuous stump initial condition, namely using de-
faults

-adv_problem straight -adv_initial stump -adv_windx 2.0 -adv_windy 2.0

Regarding numerical choices, the defaults are the Koren limiter (11.25) and the adaptive Runge-
Kutta 3bs scheme. The results look good, visually identical to those in Figure 11.4 (right); Figure
11.2 shows results for the same problem but without a flux limiter.

On a given grid the numerical error, and even the wall clock time, can be relatively is insen-
sitive to the choice of adaptive time-stepping method. For example, restricting the comparison
to the Runge-Kutta family (Chapter 5) for simplicity, we measure the (serial) run time and error
norms for a one-lap run of the default problem on a 320× 320 grid:

$ ./advect -da_refine 6 -ts_max_time 1.0 -ts_rk_type XX

This generates Table 11.1. While the number of steps varies substantially, because different
schemes have different regions of absolute stability (Chapter 5), adaptive time-stepping has en-
forced that the final errors are nearly the same. Furthermore, because lower-order schemes do
more steps with less computation per step, and higher-order schemes vice versa, the run times
are more similar than the number of steps. However, based on these results the 3bs RK solver,
namely the PETSC default for -ts_rk_type, is the default solver in advect.c.

Table 11.1. Wall clock time, number of steps, and numerical error norms (11.29) for adaptive
Runge-Kutta time-stepping types on a 2D advection problem.

-ts_rk_type time (s) steps L1 error L2 error

2a 17.4 1920 1.6× 10−2 7.0× 10−2

3bs 12.7 616 1.7× 10−2 7.2× 10−2

5bs 12.5 322 1.9× 10−2 7.4× 10−2

5dp 14.8 450 1.6× 10−2 7.0× 10−2

5f 15.7 432 1.6× 10−2 7.0× 10−2
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Advection results 295
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Figure 11.10. High-resolution flux-correction-limiting schemes yield smaller errors for the dis-
continuous stump initial condition. The convergence rate is poor because of the low regularity of the
solution.
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centered O(h1.46)
vanleer O(h1.08)
koren O(h1.31)

Figure 11.11. Replacing the stump initial condition with smooth improves convergence rates
and redeems the centered flux scheme.

To examine convergence we use one lap (-ts_max_time 1.0) of the default problem and
refine from 40 to 1280 grid points in each dimension, i.e., -da_refine 3,...,8. Figure 11.10
shows the L1 error norm results. The numerical error is substantially smaller for the high-
resolution vanleer and koren schemes, confirming results in earlier figures. The convergence
rate is also somewhat better, but the low regularity of the exact solution limits the rates to worse
than O(h1). However, replacing stump with a smoother initial condition yields Figure 11.11.
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296 Chapter 11. Advection without, and then with, diffusion
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vanleer O(h0.84)
koren O(h1.05)

Figure 11.12. With the smooth initial condition, the result using an L2 error norm (11.29) is
similar to that from L1 (Figure 11.11).

Again the high-resolution methods are notably better than first-order upwinding, but now the
centered flux scheme (11.21) is competitive. On sufficiently fine grids the centered beats the
high-resolution schemes because at a smooth local extrema the limiter imposes (local) first-order
upwinding while the centered fluxes remain second-order. Note that convergence with the C0

initial condition cone is not significantly worse than for smooth (Exercise 11.12).
From the same runs we can explore the role of the choice of error norm. For example, Figure

11.12 suggests that for smooth solutions the convergence pattern is similar between L1 and L2

norms, but compare Exercise 11.6.
Recall Figure 11.7. It reproduces Figure 20.5 from [103], showing the result after one lap

of circular motion with wind a = 〈y,−x〉, namely rigid motion counterclockwise around the
origin. This can be computed in parallel, and viewed as a movie, by a run like

$ mpiexec -n 4 ./advect -da_grid_x 80 -da_grid_y 80 -ts_max_time 6.283185 \
-adv_problem rotation -adv_limiter XX -ts_monitor_solution draw

The XX = vanleer (not shown) and koren (Figure 11.7) results are indistinguishable at screen
resolution. As the reader should confirm, both are much better than none or centered.

The major messages about numerical advection are now clear. High-resolution schemes are
effective when compared by solution appearance (Figures 11.2 and 11.4) and in the sense of
convergence rate (Figures 11.10–11.12). They are superior to the oversmoothed results from
first-order upwinding in all cases, and to results from the centered scheme for discontinuous
solutions. (The centered scheme generally shows “ringing,” the erroneous propagation of high
frequencies throughout the domain.) The koren and vanleer high-resolution corrections are
comparable, with koren slightly better. This situation reflects a numerical fact of life.

Fact 18. Achieving good-looking numerical advection results requires effort. Numerical results
for simple advection tend to reveal that high-frequency components are transported at the wrong
rates. Nonlinear flux-limiters or slope-limiters can correct this, and are worth the effort.
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Implicit time-stepping for advection 297

Implicit time-stepping for advection
In Chapter 5 the evidence showed that implicit time-stepping schemes were more efficient than
explicit schemes for diffusion equations. From the same empirical perspective, for advection
problems we will find instead that explicit schemes are superior. Though this is no surprise—
the standard literature [84, 103, 115] assumes it to be so—the reasons are worth examining.
Furthermore, after this section we will solve equations which combine advection and diffusion,
so we want our eyes open to the trade-offs. We start by making sure that implicit methods
do indeed converge on advection problems, and then we measure their performance relative to
explicit methods.

Note that our high-resolution spatial discretization schemes are nonlinear. We will use SNES
solvers for the implicit step equations, but we need adequate smoothness of the scheme equations
to allow the Newton iteration to converge. Thus the smoother vanleer limiter may have an
advantage over the piecewise-linear koren limiter (Figure 11.6), but we will also test this belief.

The code advect.c only implements the Jacobian for limiter types none and centered
(FormRHSJacobianLocal(); not shown). To check the correctness of such new code, one
should both use -snes_test_jacobian (Chapter 4) and check that convergence occurs in one
Newton step when the scheme and problem are linear. For example, consider a run using one
step of the Crank-Nicolson (CN) method:

$ ./advect -da_refine 3 -ts_max_time 0.01 -ts_dt 0.01 -ts_type cn \
-snes_converged_reason -adv_limiter LIM -adv_jac_limiter JLIM

This implicit time-stepper creates the usual stack of algebraic equation solvers, so all
SNES, KSP, and PC options become available. Using LIM = JLIM = none and adding
-snes_test_jacobian yields a relative Jacobian difference norm of order O(10−10), and we
see convergence in one step. Repeating these tests with LIM = JLIM = centered, and adding
-ksp_rtol 1.0e-12 to make sure the linear equations are solved accurately, we get the same
results. Thus we have strong evidence of Jacobian correctness.

Though we have not implemented an analytical Jacobian for vanleer (or koren), the Ja-
cobians of the first-order upwind and/or centered formulas might be adequate replacements if
we accept subquadratic convergence of the SNES iteration. Alternatively we may use a none or
centered Jacobian to precondition a Jacobian-free Newton-Krylov step (Chapter 4) for one of
the high-resolution methods. We will test these ideas empirically.

The following runs do a single time-step of CN, yielding Table 11.2.

$ ./advect -da_refine 4 -ts_dt 0.01 -ts_max_time 0.01 -ts_type cn \
-ksp_rtol 1.0e-12 -snes_converged_reason \
-adv_limiter LIM -adv_jac_limiter JLIM

The cases in the Table with one iteration use the correct Jacobian (on this linear problem).
Otherwise, the vanleer limiter generates more rapid convergence than koren when an imple-
mented Jacobian is used directly. This is expected; the smoothness of the limiter determines the

Table 11.2. Number of SNES iterations to compute one CN time step.

limiter used in residual
none centered vanleer koren

limiter used in Jacobian none 1 25 95
centered 1 27 86

same + none 7 6
-snes_mf_operator centered 7 9
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298 Chapter 11. Advection without, and then with, diffusion

rate of Newton convergence. The piecewise form of the koren limiter (Figure 11.6) is generally
undesirable in a SNES residual function. However, the SNES iterations are greatly reduced for
both limiters when -snes_mf_operator is used (i.e., preconditioned JFNK).

Thus our implicit, high-resolution solvers converge. However, relative to Runge-Kutta solvers,
implicitness imposes a substantial performance cost with no improved accuracy outcome. To
show this, consider runs of the form

$ ./advect -adv_initial smooth -ts_max_time 1.0 -da_refine 5 \
-ts_type TYPE -adv_limiter LIM [+ other solver options]

with TYPE of cn or rk. The problem is one lap of straight on a 160× 160 grid.
Table 11.3 shows that the implicit run times, with any of the above limiter/Jacobian combina-

tions, are one or two orders of magnitude greater than for the explicit (RK) rule. The numerical
error magnitudes are essentially determined by the choice of limiter (i.e., by spatial truncation
error) and not by the time-stepping procedure.

Table 11.3. Run times and L1 errors for implicit (cn) and explicit (rk) time-stepping on a pure
advection problem.

TS type limiter solver options time (s) L1 error
cn none -adv_jac_limiter none 6.4 7.6× 10−2

centered -adv_jac_limiter centered 12.8 5.0× 10−2

vanleer -adv_jac_limiter none 67.6 1.0× 10−2

vanleer same + -snes_mf_operator 54.8 1.0× 10−2

rk none 0.5 7.6× 10−2

centered 0.5 3.7× 10−2

vanleer 1.0 1.2× 10−2

While more testing could be done, for example with backward Euler or BDF implicit time-
stepping schemes (Chapter 5), the evidence is already pretty clear. For pure advection problems,
adaptive explicit time-stepping schemes are distinctly faster and just as accurate as adaptive
implicit schemes. Explicit schemes are also simpler because no effort is expended on setting up
a solver for algebraic equations, nor on the Jacobian matrix.

Regarding solver complexity, observe that in an advection problem each space-time grid
location corresponds to a solution degree of freedom, essentially as worthwhile as any other.
That is, when the time step has the value imposed by the CFL condition (11.14), an explicit
solver already has “optimal” algorithmic complexity because it expends a fixed amount of work
per degree of freedom.

Though the situation is now clear for time-dependent advection problems, the implicit/ex-
plicit tradeoff must be reconsidered when diffusion is included. In particular, pure advection
problems often do not possess steady states. For example, all of the initial value problems solved
by advect.c have no t→∞ limit. However, even a small amount of diffusion allows a steady
state if the source term and boundary terms are time independent.

Steady-state advection-diffusion problems
So now we combine advection and diffusion into one time-independent equation. The problem
is linear and elliptic, but the advection breaks the symmetry of the Laplacian operator and makes
solver choice interesting. A key concern remains that the advection discretization be suitably
nonoscillatory. In contrast to time-dependent pure advection problems, where explicit methods
are well-suited, the construction of an optimal solver is nontrivial.
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Steady-state advection-diffusion problems 299

Suppose Ω ⊂ R2 is a bounded domain with well-behaved boundary. For a given diffusion
constant ε > 0, consider the following linear Dirichlet problem:

− ε∇2u+∇ · (au) = g, u|∂Ω = b. (11.30)

If the wind a(x) is bounded and integrable, and if the source g(x) and boundary data b(x) are
merely integrable, then a unique solution to the weak form of (11.30) exists in H1(Ω) [114]; it is
well posed. However, we will assume further that a, g, and b are regular enough for strong-form
solutions. Conditions for strong-form well-posedness are in [60] but see also Exercises 11.13
and 11.14.

A solution of (11.30) is the steady state of a time-dependent equation similar to the heat
equation in Chapter 5, but with added advection, namely

ut +∇ · (au) = ε∇2u+ g. (11.31)

Said the other way, this equation adds diffusion to the advection problem (11.1). Observe that
elliptic problems like (11.30) arise at each time step of an implicit method for (11.31).

Our examples will all have divergence-free wind (∇ · a = 0). Recall that the equation can be
regarded either in flux-conservation form (11.30) or advective form −ε∇2u+ a · ∇u = g. For a
general wind one may convert between the two forms by adjusting g.

Advection-diffusion equation (11.30) is a singular perturbation [114] of the reduced problem
where ε→ 0, thus

a · ∇u = g. (11.32)

At least when ε > 0 is small, the reduced equation may tell us where the solution of (11.30)
will have steep gradients, and thus where it will be hard to approximate. However, note that
well-posed boundary conditions for (11.30) and (11.32) are generally different.

The reduced problem (11.32) can be understood and solved by calculus, that is, by charac-
teristics. If u(x) solves (11.32) and x(s) satisfies dx/ds = a(x) then U(s) = u(x(s)) solves
dU/ds = g(x(s)). Thus the value of u is determined along each characteristic x(s) by a single
value u(x0) and then by the solution of an ODE initial value problem. A Dirichlet boundary
value problem for (11.32) is thus well posed if every such characteristic crosses ∂Ω and if a
boundary value is imposed exactly once per characteristic. Because of the sign of the diffusion
term36 in (11.30), one imposes an inflow boundary condition on (11.32), namely u|Ω− = bwhere
Ω− denotes the set of points x ∈ ∂Ω such that a(x) · n < 0, and where n denotes the outward
unit normal on ∂Ω (as usual). In summary, the reduced problem is well posed, and its solu-
tion constructable by the method of characteristics, if we have only inflow (upstream) Dirichlet
boundary conditions (Exercise 11.14).

Given a distance scale ` and a scale a for the wind, the dimensionless Peclet number P =
a`/ε [49] measures the relative roles of advection versus diffusion in PDE (11.30). We say the
equation is advection dominated if P ≥ 1, and our primary goal will be to construct an effective
solver in such cases. When P � 1 a solution of (11.30) will generally exhibit boundary layers
[55] where it rapidly, though smoothly, changes to match Dirichlet boundary conditions at non-
inflow locations. Where the solution of the reduced problem would propagate a discontinuity
of the boundary data b into the interior, the advection-diffusion equation generates an internal
layer. (Studying these layers would take us too far afield, but see [49, 55, 84, 114].) Our ex-
amples follow [49], to which the reader should refer for physical meaning and applicable FE
methodology, but our goal is to build effective and even optimal solvers from the same FV point
of view already applied to the advection equation.

36The reduced problem (11.32) treats the two directions along a characteristic symmetrically, but the time-dependent
equation (11.31) with ε > 0 is only well posed forward in time.
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300 Chapter 11. Advection without, and then with, diffusion

Regarding the Peclet number, the distance scale that concerns us most is the grid spacing h.
The upcoming discussion of discretization schemes will treat the mesh Peclet number

Ph =
ah

ε
(11.33)

as determining whether a scheme is suitable for (11.30) on a particular grid. (Note cells are
square with hx = hy = h in the computed examples.)

The earlier material regarding numerical solutions of pure advection equations, i.e., the con-
cerns and schemes which went into advect.c above, should have convinced the reader that we
know how to discretize advection. Now, supposing we have an adequate advection discretiza-
tion, we want to know how to use it in an efficient, multigrid-based solver of steady-state equation
(11.30).

Our code both.c (not shown) solves (11.30) by a FV method similar to the one in advect.c,
but both.c calls SNES at the top level instead of TS. The method uses a grid of points (xi, yj)
with spacing hx, hy as illustrated in Figures 11.1 and 11.9, but now with Dirichlet boundary
conditions. Similarly to scheme (11.7) for equation (11.1), at a generic interior point the residual
has the form

Fij = −εUi+1,j − 2Uij + Ui−1,j

h2
x

− εUi,j+1 − 2Uij + Ui,j−1

h2
y

+
φxi+1/2,j − φ

x
i−1/2,j

hx
+
φyi,j+1/2 − φ

y
i,j−1/2

hy
− gij ,

(11.34)

where Uij ≈ u(xi, yj). The face-center fluxes are computed as in (11.23), allowing a flux-
correction limiter ψ(θ):

φxi+1/2,j =

{
a [Uij + ψ(θij)(Ui+1,j − Uij)] , a ≥ 0,

a [Ui+1,j + ψ (1/θi+1,j) (Uij − Ui+1,j)] , a < 0,
(11.35)

where a = ax(xi+1/2,j) and θi = (Uij − Ui−1,j)/(Ui+1,j − Uij), with similar formulas for the
other four faces of Vij .

Code both.c solves the following three problems (option -bth_problem) for advection-
diffusion equation (11.30):

layer: This problem has an exponential boundary layer of O(ε) width [49, 55] at y = 1 and
an exact solution u(x, y) = x(1 − e(y−1)/ε)/(1 − e−2/ε). [Data: a = (0, 1), g = 0,
and b is determined from the exact solution.]

glaze: This “double-glazing” problem is an advection-diffusion model which applies to the
temperature of a convecting fluid in a cell with one hot wall [154]. Unlike layer where
the wind blows only in the y direction, the wind here is “recirculating” and it blows
in all directions. There are characteristic boundary layers [49] from the corners where
the boundary values b(x) are discontinuous. [Data: a =

(
2y(1− x2),−2x(1− y2)

)
,

g = 0, and b = 1 where x = 1 (otherwise zero); see Exercise 11.19.]

nowind: The same Poisson problem as solved by ch6/fish.c, with exact solution u(x, y) =
εxey . [Data: a = (0, 0), g and b determined from u.]

Solutions to layer and glaze are shown in Figure 11.13; these problems are the same as Ex-
amples 6.1.1 and 6.1.4 from [49], respectively. The default value ε = 1/200 can be adjusted by
option -bth_eps.
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Figure 11.13. Results from both.c. Problem layer has an exact solution and a downstream
boundary layer at y = 1 (left; ε = 1/10 in (11.30)). Problem glaze shows the flow of heat for a circulating
wind and a hot wall at x = 1 (right; ε = 1/200; compare Figure 6.5 in [49]).

Regarding the limiter ψ in (11.35), set by -bth_limiter, we implement: ψ = 0 (none; first-
order upwinding), ψ = 1/2 (centered), and van Leer (vanleer; (11.26)). For the vanleer
limiter the star stencil has width two.

As usual we implement the residual in FormFunctionLocal() (not shown). However,
based on prior positive experiences using -snes_fd_color on structured grids (Chapters 6–9),
both.c does not include an analytic Jacobian. (Writing one is not hard, especially for the none
and centered limiters; see Exercises 11.23 and 11.15.) We also implement a feature which
will be explained below when testing multigrid, namely -bth_none_on_peclet. It causes the
residual code to switch the limiter to none on any grid such that Ph > 1.

Advection is not stagnation
After compiling both.c in the usual way, the brave reader might set aside this narrative and just
run it with the goal of finding optimal solver options on high-resolution grids. Here are some
hints:

(i) Problem (11.30) is linear so -snes_type ksponly works (except for the van Leer limiter,
which is nonlinear).

(ii) The system matrix is nonsymmetric so GMRES is a reasonable KSP type (but pay attention
to restarts).

(iii) Based on prior experience with advection, the none limiter should generate reasonable-
looking results (but with low accuracy).

Returning to the narrative, consider the simpler 1D version of (11.30),

− εu′′ + u′ = 0, u(−1) = 1, u(1) = 0, (11.36)

an ODE boundary value problem. It is straightforward to calculate the solution u(x) = (1 −
e(x−1)/ε)/(1− e−2/ε). Note that problem layer in both.c is a 2D extension of this problem.
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Figure 11.14. If the mesh Peclet number significantly exceeds one—here Ph = 12.5—then the
centered advection scheme is not acceptable, but first-order upwinding (none) and the vanleer limiter
do okay.

Exercise 11.15 asks the reader to build a code both1d.c which solves (11.36). As in the 2D
case, the diffusion is discretized by a centered FD scheme, while advection is by either first-order
upwinding (none), centered, or vanleer limiter. A Jacobian is easy to implement, at least for
the none and centered cases, and as with both.c we allow different limiters in the residual
and Jacobian evaluations.

Assuming that this code has been written, we use it to demonstrate and visualize some im-
portant aspects. The result in an advection-dominated (ε = 1/100) case on a coarse (N = 17)
grid, with a direct solver (-pc_type lu), is shown in Figure 11.14. The centered limiter gives
unacceptable oscillations, but the schemes which were stable for time-dependent advection also
give reasonable solutions here. Observe that the L∞ errors from the stable schemes are large
where the exact solution changes rapidly within a single grid space. (This would also be true of
an interpolant of the exact solution.) This observation, key to the analysis of an FE solution [49]
of the problem, suggests measuring convergence in more forgiving norms (Exercise 11.6).

Under grid refinement we see that the centered limiter works well once the mesh Peclet
number Ph is small enough. Figure 11.15 shows the numerical errors for a broad range of grid
sizes:

for LEV in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16; do
./both1d -snes_rtol 1.0e-11 -snes_converged_reason \

-ksp_type preonly -pc_type lu -da_refine $LEV \
-b1_limiter LIM -b1_jac_limiter JLIM

done

We have used LIM = none,centered,vanleer and JLIM = none,centered,none, respec-
tively.

Figure 11.15, which also serves as a verification of both1d.c, shows that the vanleer
limiter generates uniformly small errors across the full range of values of Ph; it combines the
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Figure 11.15. Numerical errors for both1d.c solving (11.36) with ε = 1/100.

best of the linear flux schemes. However, being nonlinear, it is substantially more expensive
because nontrivial Newton iterations are required (Exercise 11.17). These results also show that
errors from first-order upwinding are not significantly larger than from the van Leer scheme on
coarser grids where Ph > 1, while for Ph < 1 the centered scheme does just as well as
vanleer.

Thus, a natural strategy emerges which can be used in constructing a geometric multigrid
(GMG) solver (Chapter 6). Namely, we apply the centered discretization on grids sufficiently
fine so that Ph < 1, but revert to first-order upwinding when rediscretizing on coarser grids
with Ph > 1. This strategy, which avoids adding a nonlinear limiter to a linear PDE, will yield
optimal computational complexity in 2D cases solved by both.c, and it extends to 3D as well.
(Note that a direct solver like LU, i.e., -ksp_type preonly -pc_type lu, is already optimal
in the tridiagonal or pentadiagonal 1D problem solved by both1d.c.)

The application of multigrid to diffusion problems is motivated by the stagnation of the clas-
sical iterations on fine grids, which are slow to reduce low-frequency error components (Chapter
6 and [21]). However, adding advection does not make stagnation worse; the opposite is true.
For example, suppose we choose ε = 1/10, 1/200 and a classical Gauss-Seidel (GS) iteration as
a solver:

$ ./both1d -b1_eps EPS -da_refine 4 -snes_type ksponly \
-ksp_type richardson -pc_type sor -pc_sor_forward \
-ksp_monitor_true_residual

The result is shown in Figure 11.16; compare [49] Figure 7.2. Apparently having more advection
is better; the ε = 1/200 result suggests no stagnation at all in reducing the residual norm.

This result is dependent on variable order, however, and an effective 2D or 3D iteration will
need to follow the flow. To illustrate in 1D, suppose we fix ε = 1/25 in the above run and we
try -pc_sor_forward, -pc_sor_backward, or no option (SSOR). This yields Figure 11.17;
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Figure 11.16. GS iterations can be fast for advection-dominated problems.

0 10 20 30 40 50 60
sweeps (see text)

10 4

10 3

10 2

10 1

100

re
la

tiv
e 

re
sid

ua
l n

or
m

with flow (forward)
against flow (backward)
SSOR

Figure 11.17. Flow-following variable ordering is important for iterations on advection problems.

compare Figure 7.4 in [49]. Because the SSOR iteration does two sweeps per iteration (Chap-
ter 6), we double its iteration count for the figure. The forward method causes the greatest
residual reduction because the wind a = 1 is in the same direction as the sequence in which
forward updates the variables. The backward ordering is especially slow to get even the first
order-of-magnitude reduction (Exercise 11.16), but note it does no harm—residual norms do not
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Multigrid for advection-diffusion problems 305

grow though little progress is made. SSOR is slower in iterations than forward for the simple
reason that it does both a forward and a backward sweep during each iteration.

In planning for a multigrid solver we may draw the conclusions that the advection operator
must be discretized in a suitable way and that the smoother must follow the flow [49, 144, and
references therein]. In fact, the following principle is expanded in the next section:

Fact 19. Advection is not stagnation. Discretizations and iterations for advection-diffusion equa-
tions, either as solvers or multigrid smoothers, must be stable on coarse grids and follow the flow.
Stagnation is only an issue when the mesh Peclet number is small and the choice of advection
discretization unimportant.

We do one more experiment with both1d.c, using ε = 1/100, GMRES, GMG precondi-
tioning, and a flow-following GS smoother:

$ ./both1d -b1_eps 0.01 -snes_type ksponly -da_refine $LEV \
-ksp_converged_reason -pc_type mg -mg_levels_ksp_type richardson \
-mg_levels_pc_type sor -mg_levels_pc_sor_forward

The result for very fine grids, LEV=15,...,20, corresponding to N = 6.6 × 105 to 2.1 × 107

degrees of freedom, is that six KSP iterations suffice in each case. The run time of this apparently
optimal solver is within a factor of three of the O(N) LU direct solver on all grids. This is a very
promising result for 2D or 3D problems because a GMRES+GMG strategy should be (roughly)
dimension independent, while a direct-solver strategy falls apart with increasing dimension.

Multigrid for advection-diffusion problems
We now compose geometric multigrid (GMG) solvers for 2D advection-diffusion equation (11.30).
Based on three core choices,

(i) V-cycles,

(ii) rediscretization on each grid level, using first-order upwinding if the mesh Peclet number
exceeds one (Ph > 1), and

(iii) smoothing operators which respect the flow [49],

these solvers show good performance across a range of resolution (h), diffusion constant (ε), and
processor count. Though particular runs involve further specific choices, advection-diffusion
equation solvers with these basic features are often optimal and weak scalable (Chapter 8).

Choice (i) means simply using -pc_type mg, which defaults to V-cycles. Because each
V-cycle makes significant progress, we use the default of one application per Krylov iteration
(-pc_mg_multiplicative_cycles 1). Recall that W-cycles are unwise in parallel because of
the communication costs imposed by coarse-grid visits (Chapter 7).

The easiest version of choice (ii) is to use the none limiter on all grid levels, the default in
both.c. However, using the centered limiter when a finer grid satisfies Ph < 1 gives excellent
results which converge at O(h2). Note that Galerkin coarse grid matrices are an alternative to
rediscretization (Chapter 6), but naive application does not work here (Exercise 11.22). We do
not pursue the necessary operator-dependent interpolation/restriction approach, but see [144].

For (iii), if the wind is in positive-coordinate directions only, as in the default
problem layer, it suffices to use GS as the smoother (-mg_levels_pc_type sor
-mg_levels_pc_sor_forward). For recirculating flows, however, we will compare SSOR
and ILU smoothers and see that both are acceptable. Because the default Chebyshev iteration
has trouble estimating the eigenvalue distribution for the highly nonsymmetric system matrix,
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Figure 11.18. Number of GMG-preconditioned bcgs iterations using first-order upwinding and
GS smoothing for problem layer in both.c.

at least in advection-dominated cases (below), we will only apply the smoother in the classical
manner: -mg_levels_ksp_type richardson. (The reader can check that with chebyshev
either the number of iterations is larger or the solver does not converge.) In parallel the smoother
adds domain decomposition (Chapter 6).

For nonsymmetric advection-diffusion problems the obvious KSP choice is GMRES. How-
ever, the fact that memory usage then grows as iterations proceed has motivated the construction
of nonsymmetric Krylov iterations with fixed memory requirements. Among the best established
are CGS (conjugate gradient squared [136]; cgs), BiCGSTAB (biconjugate gradient stabilized
[146]; bcgs), and TFQMR (transpose-free quasiminimum residuals [56]; tfqmr). Any discus-
sion of these methods would be tangential here, but see [66] for an overview. For now a quick
test on a fine-grid ε = 1/200 glaze problem suggests that the run times of gmres with restart
30, cgs, bcgs, and tfqmr are all quite comparable, with a slight advantage to bcgs. Without
any claim that it is superior across the category of advection-diffusion equations, we use bcgs in
the following tests with, at least, assurance that the memory footprint is small.

Thus, as a first experiment using the default layer problem, we count iterations in serial
solves which use first-order upwinding (on all levels), bcgs, and a preconditioner of one V-cycle
down to a 3 × 3 coarse grid, an lu direct solve on that coarse grid, and two sweeps of classical
GS as pre/post-smoothers:

$ ./both -bth_eps EPS -snes_type ksponly -ksp_type bcgs -da_refine LEV \
-ksp_converged_reason -pc_type mg -mg_levels_ksp_type richardson \
-mg_levels_pc_type sor -mg_levels_pc_sor_forward

We do runs for ε = 1/10, 1/200 and LEV=3,...,11, square grids m × m for m = 17, 33,
65, . . . , 4097; the finest has N > 107 degrees of freedom and needs more than 16 GB memory.
The result is shown in Figure 11.18.

Four KSP iterations suffice on all grids; fewer are needed when the advection is most dom-
inant. The cost of a V-cycle is a small multiple of the cost of a smoother on the finest grid,
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Figure 11.19. Numerical errors for problem layer with a GMG solver which rediscretizes by
first-order upwinding if Ph > 1, but which uses the O(h2) centered scheme otherwise.

and likewise for the cost of a few BCGS iterations, thus we have an optimal solver and even
“textbook multigrid efficiency,” a result also supported by theory [49, 144].

Recall that option -bth_none_on_peclet adds a Ph > 1 test in the residual evaluation and
switches the limiter to none if the test succeeds.37 This stable rediscretization on coarse grids
applies inside V-cycles. Fixing ε = 1/200, and adding the following options to the above runs,

-bth_limiter centered -bth_none_on_peclet -ksp_rtol 1.0e-10

we get the expected O(h2) convergence rate of the centered method on grids with Ph < 1
(Figure 11.19). Results from one of these runs generated the left part of Figure 11.13. Note that
the vanleer limiter remains an option in both.c, an appropriate choice if the finest grid satisfies
Ph > 1. Concerning verification, both.c also includes a diffusion-only nowind problem which
can be used to separately confirm the O(h2) convergence of the diffusion discretization (not
shown; Exercise 11.20).

Now we return to (iii) above, the principle that smoothers should respect the flow. Consider
recirculating wind as in the glaze problem (Exercise 11.19). SSOR is a candidate smoother
because each iteration traverses the grid in forward and backward orders, and thus at any location
half the sweeps are (vaguely) in the wind direction. A significant improvement might be a 4-
direction Gauss-Seidel iteration [49, 144], but this is not an existing PETSC PC. However, we
are not limited to the classical iterations, and incomplete factorization smoothers are known to
be effective on anisotropic diffusion and advection-diffusion problems [144, section 7.5, and
references therein], so we propose to test these also.

To compare smoothers we do the following runs with the default none limiter:

$ ./both -bth_problem glaze -bth_eps 0.005 -snes_type ksponly -ksp_type bcgs \
-pc_type mg -mg_levels_ksp_type richardson -da_refine LEV

37We mention three details: 1. Computing Ph for a given grid uses a representative wind scale a = max |a(x)|.
2. The default threshold 1.0 can be adjusted with -bth_peclet_threshold. 3. A warning appears if the test succeeds
on all grids (and thus the user’s limiter was never applied).
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308 Chapter 11. Advection without, and then with, diffusion

We add one of three smoothers:

SSOR: -mg_levels_pc_type sor

ILU(0): -mg_levels_pc_type ilu

ILU(1): -mg_levels_pc_type ilu -mg_levels_pc_factor_levels 1

The last of these uses the sparsity pattern of the square of the system matrix to determine the
allowed nonzero entries of the LU factors, and thus it allocates extra memory (in addition to the
memory already used in out-of-place ILU). Note that, because first-order upwinding uses a star
stencil, ILU(1) gives similar preconditioning to using ILU(0) and a width-two box stencil.

Table 11.4. Number of KSP iterations for different smoothers on the glaze problem with recir-
culating flow.

smoother mx = 65 129 257 513 1025 2049
SSOR 5 6 7 8 8 8

ILU(0) 5 6 6 7 7 7
ILU(1) 3 4 4 5 5 5

Table 11.4 shows the results for LEV=5,6,7,8,9,10 corresponding to mx = my =
65, . . . , 2049 grids. The ILU smoothers reduce the number of iterations, and an extra level of fill
reduces further to about the level seen with the unidirectional wind and GS smoothing (Figure
11.18). On the other hand, the SSOR smoother actually uses the fewest flops and least time.
We may expect any of these smoothers to generate an optimal solver, though the constant (in
“O(N)”) is larger than it was for unidirectional wind.

As our final example we solve the ε = 1/100 glaze problem in parallel using GMG precon-
ditioning and a domain decomposition smoother. The O(h2) centered discretization is used on
fine grids, with none deeper in the V-cycles. The runs are of this form:

$ mpiexec -n P ./both -bth_eps 0.01 -bth_problem glaze \
-da_grid_x 17 -da_grid_y 17 -da_refine LEV \
-bth_limiter centered -bth_none_on_peclet -snes_type ksponly \
-ksp_type bcgs -pc_type mg -mg_levels_ksp_type richardson \
-mg_levels_pc_type asm -mg_levels_sub_pc_type sor

The smoother is ASM+SSOR and the 17× 17 coarse grid problem is solved with redundant LU.
(The telescope PC would permit a much coarser coarse grid; see Chapter 7.)

Consider weak scaling with P = 1, 4, 16, 64 processes and LEV=4,5,6,7, respectively. Each
process owns a 257× 257 subgrid, so when P = 64 the grid has N = 20492 ≈ 4× 106 degrees
of freedom. In the P = 1 case this grid will barely resolve the boundary layers in the sense that
Ph = 0.78 is close to one, while for larger P the solution features are well resolved.

To measure performance we add options -ksp_converged_reason and -log_view and
read the “Flop:” line of the performance summary. The result (Figure 11.20) is that the number
of KSP iterations only changes from 6 to 7 as P increases. The per-iteration average flops count
on each process is essentially constant. Load balance is within 1.1% (not shown). This weak-
scaling result confirms that our multigrid strategy for a 2D linear advection-diffusion problem
scales as well as it did for the Poisson equation (Chapter 8).
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Figure 11.20. In weak-scaling runs where each process owns a 257×257 subgrid, KSP iterations
(circles) and average flops per process (stars) are nearly constant from P = 1 to P = 64 processes.

Exercises
11.1. Show that if u solves PDE (11.1) then it solves (11.2) for g̃ constructed from g, and vice

versa. Observe that if∇ · a = 0 then g = g̃.
11.2. (This is a harmless reminder of solution by characteristics.)

(a) Consider the 1D version of (11.2) on R1 with solution u(t, x):

ut + a(x)ux = g(x, u). (11.37)

If X(t) = X(t; η) is the solution of the scalar ODE Ẋ(t) = a(X(t)) with ini-
tial condition X(0) = η, i.e., a characteristic curve for (11.37), show that U(t) =
u(t,X(t)) solves U̇(t) = g(X(t), U(t)).

(b) Given an initial condition u(0, x) = q(x) for (11.37), describe how to use part (a)
to solve the initial value problem.

(c) Solve the linear example ut + (1 + x2)ux = 0 with u(0, x) = e−x
2

.

11.3. (a) Show that combining (11.7) with (11.9) gives a second-order in space MOL scheme.

(b) After reducing to 1D, taking a = α constant, and setting g = 0, (11.1) becomes the
simple advection equation ut + αux = 0. The system from part (a) becomes

U ′i = −αUi+1 − Ui−1

2hx
. (11.38)

With periodic boundary conditions on a grid of m points, equation (11.38) is U ′ =
AU where A is an m × m circulant matrix [143] with constant diagonals which
wrap around (aij = ars if r− i = s− j mod m). For such matrices an orthogonal
basis of eigenvectors {vp(j) = exp(i2πpj/m)}m−1

p=0 is known, where i =
√
−1,
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310 Chapter 11. Advection without, and then with, diffusion

independently of the matrix entries. Confirm this and then find λp so that Avp =
λpvp. (A similar calculation gives the eigenvalues of matrix (11.15).)

(c) Now consider applying the forward Euler scheme to (11.38), and recall the region
of absolute stability from Figure 5.3. Conclude from the eigenvalues computed in
(b) that this scheme, called forward-time centered-space (FTCS), is not absolutely
stable for any ∆t > 0.

(d) Applying the midpoint method for ODEs to (11.38) gives the classical leapfrog
method

U l+1
i − U l−1

i

2∆t
= −α

U li+1 − U li−1

2hx
. (11.39)

Show this is second order in time and space, and, by computing the closed absolute
stability region S for the midpoint method, that (11.39) is conditionally stable under
CFL criterion (11.14).

11.4. By considering all cases in upwinding formula (11.10), and using forward Euler time-
stepping, show that coefficients are positive if and only if CFL condition (11.14) holds.

11.5. Equation (11.11), namely ut + αux = 0 for α > 0, has characteristics which are straight
lines, and the solution is constant along these lines. For a time semidiscretization with
step ∆t, the value of the solution (x, tn+1) can be found by following the characteristic
back in time to (x − α∆t, tn). On a grid {xi} with spacing h, derive the first-order up-
wind (11.20), centered (11.21), and third-order upwind-biased (11.22) flux-discretization
schemes by interpreting them as linear, quadratic, and cubic interpolation, respectively. In
this case the CFL condition ∆t |α| ≤ h avoids extrapolation. (For the third-order scheme
the condition becomes ∆t |α| ≤ 2h.)

11.6. Justify the following statement using the interpolation interpretation from the last exer-
cise: For (11.1) and a discontinuous initial condition we do not expect convergence in L∞

norm for any of the schemes considered in this chapter. Compare our choices of norms in
the text of this chapter.

11.7. For 1D advection equation ut + αux = 0, show that the centered flux (11.9) yields an
MOL scheme with local truncation error O(h2), but that the same scheme is O(h3) for
the modified equation

vt + αvx +
αh2

6
vxxx = 0. (11.40)

Using Fourier series and periodic boundary conditions, show that solutions of (11.40)
include dispersing waves. (Pure translation does not solve (11.40). Dispersion relations
are discussed in [103].)

11.8. Show that if ψ(θ) = 1/2 then (11.23) reduces to (11.21), while if ψ(θ) = 1/3 + (1/6)θ
then (11.23) reduces to (11.22).

11.9. Suppose v(x) is continuous on [0, L], and extend it periodically to R. Considering par-
titions P = {x0 < x1 < · · · < xn−1} of [0, L], extended periodically, define the total
variation

TV(v) = sup
P

n−1∑
i=0

|v(xi+1)− v(xi)|,

(Compare definition (11.27). Note TV(v) = ∞ is possible even for continuous func-
tions v(x).) Suppose u(x, t) solves ut + a(x)ux = 0 with periodic boundary conditions.
By considering the flow generated by characteristic curves, show that TV(u(x, t)) =
TV(u(x, 0)).
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Exercises 311

11.10. Confirm that equations (11.8) are true under the given hypotheses. Now use
TSMonitorSet() to add a monitor of

∑
ij Uij to advect.c. Confirm in serial and par-

allel that the value is constant in cases where g = 0.
11.11. By perhaps designing your own—see Figure 11.6 for ideas—or by using other flux-

correction limiters from the literature, can you get smaller errors for -adv_problem
straight than the results shown in Figures 11.10–11.12, i.e., generated with the Ko-
ren limiter? If so, are the numerical solutions visibly different than those shown in Figure
11.4? (The author finds it hard to improve on Koren performance without greatly expand-
ing the stencil. Compare [142].)

11.12. Figures 11.11 and 11.12 show error norm results from -adv_problem smooth, an initial
state which is in C6. Confirm that initial condition cone, which is merely C0, generates
similar convergence rates over these grids.

11.13. Consider the following ODE boundary value problems, with 0, 1, or 2 boundary condi-
tions as given, for u(x) on the interval x ∈ (0, 1). Compute all solutions. Identify which
problems are well-posed, i.e., for which there exists a unique solution.

(i) u′ = 0.

(ii) u′ = 0, u(0) = a.

(iii) u′ = 0, u(0) = a, u(1) = b.

(iv) −εu′′ + u′ = 0, u(0) = a, u(1) = b.

11.14. (Continuing the theme of the above exercise.) Let a = (2, 1) ∈ R2. Consider the follow-
ing PDE boundary value problems for solution u(x, y) on the square Ω = (0, 1)2 ⊂ R2.
Find all solutions, if possible, and identify which problems are well posed. (State a space
of functions on Ω in which the solution is found.)

(i) a · ∇u = 0.

(ii) a · ∇u = 0, u(0, y) = 1, u(x, 0) = 0.

(iii) a · ∇u = 0, u(0, y) = 1, u(x, 0) = 0, u(1, y) = 0, y(x, 1) = 0.

(iv) −ε∇2u+ a · ∇u = 0, u(0, y) = 1, u(x, 0) = 0, u(1, y) = 0, y(x, 1) = 0.

11.15. Construct both1d.c to solve 1D problem (11.36). Use FV/FD strategies analogous to
(11.34). Implement the same limiters, and also an analytical Jacobian, though not neces-
sarily for the van Leer limiter. Reproduce Figures 11.14, 11.15, and 11.16.

11.16. Do calculations by hand in the N = 5 point case to do an iteration of Gauss-Seidel for
the first-order upwind discretization of 1D problem (11.36). Specifically, start with a
zero initial iterate and do one iteration each in the forward (flow-following) and backward
(against-flow) variable orderings.

11.17. (Do Exercise 11.15 first.) Run the following visualization to see Newton iterations for the
van Leer limiter:

$ ./both1d -b1_limiter vanleer -snes_grid_sequence 5 -snes_fd_color \
-snes_monitor_solution draw -ksp_view_mat draw -draw_pause 1

Quantify the cost of the van Leer limiter compared to no limiter.
11.18. (Do Exercise 11.15 first. This exercise suggests a minor variation on the van Leer scheme.

The interested reader should see the literature on high-resolution schemes, including the
rather different presentations in [84, 103, 114].) A look at Figure 11.6 suggests that a
smooth formula like the second-order van Leer scheme (11.26) can be built which comes
closer to the third-order (i.e., for smooth solutions away from extrema) Koren scheme
(11.25). In particular, note that ψ′(1) = 1/4 for the van Leer scheme while ψ′(1) = 1/6
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312 Chapter 11. Advection without, and then with, diffusion

for the third-order upwind-biased scheme (11.22) on which Koren is based. For c > 0
define

ψa(θ) =
1

2

θ + c|θ|
1 + c|θ|

.

Show that if c = 2, then ψ′c(1) = 1/6, and that the scheme satisfies the symmetry property
ψc(θ)/θ = ψc(1/θ). Implement ψ2(θ) as a limiter in both1d.c. By redoing Figure
11.15, show that the scheme has slightly improved order of convergence. Show, however,
that the graph of ψ2(θ) does not quite stay in the Sweby region.

11.19. Show that the characteristics of the reduced problem (11.32) are level curves of a stream
function [2] Ψ(x) satisfying

a(x) =

(
∂Ψ

∂y
,−∂Ψ

∂x

)
.

Compute a stream function for the wind in problem glaze. Thereby make a contour plot
which shows the characteristic curves of the reduced problem. Then, perhaps also using
a visualization like the following:

$ ./both -bth_problem glaze -da_refine 8 -pc_type mg \
-mg_levels_ksp_type richardson -snes_view_solution draw

and/or Figure 11.13, explain in a few sentences the balance of physical processes which
generate this advection-diffusion solution.

11.20. Confirm that results for the a = 0 problem nowind in both.c are the same as from
ch6/fish.c (which solves the same problem by default). Specifically, set ε = 1 and
confirm that the system matrix is the same for corresponding grids (-ksp_view_mat), that
the O(h2) convergence rate is the same, and that the performance of CG+GMG solvers
is the same. (A technicality: -fsh_initial_gonboundary 0 is needed to get the same
initial iterate as in both.c.)

11.21. Example 6.1.3 in [49] describes a boundary value problem for (11.30) with an internal
layer of width O(

√
ε); the problem also exhibits exponential boundary layers. Add this

problem to both.c; the data is a =
(
−1/2,

√
3/2
)
, g = 0, and b = 1 where y > 2x− 1

while otherwise zero. Test the multigrid solver techniques in the text which applied to
problems layer and glaze. There should be few surprises.

11.22. The literature [144, section 7.7.5, and references therein] suggests that operator-dependent
interpolation/restriction operators are needed to make a Galerkin coarse-grid strategy suc-
ceed. Show that naive use of Galerkin coarse-grid matrices does not work. For example,
consider this visualization, a V-cycle run using first-order upwinding and GS smoothing
on problem layer, with and without -pc_mg_galerkin:

$ ./both -da_refine X -snes_converged_reason -ksp_converged_reason \
-pc_type mg -mg_levels_ksp_type richardson \
-mg_levels_pc_type sor -mg_levels_pc_sor_forward \
-ksp_monitor_solution draw -draw_pause 1

On all but the coarsest grids, -pc_mg_galerkin causes a line-search failure.
11.23. Implement and test an analytical Jacobian for the none and centered limiters in both.c.
11.24. (This exercise assumes you have already done Exercise 7.12.) Write a code which solves

the following advection-modified Liouville-Bratu equation with ε > 0:

− ε∇2u+∇ · (au) = ελeu, u|∂Ω = b, (11.41)
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Exercises 313

First verify your discretizations (residual evaluation) using exact solutions:

• problem layer from both.c on Ω = (−1, 1)2, for a case where λ = 0 but a is
nonzero, and

• Exercise 7.12 part (iv) on Ω = (0, 1)2, for a case when ε = λ = 1 and a = 0.

(Note that the boundary conditions arise from the solutions.) Next, fix some nonzero wind
field a(x), according to taste, and set zero Dirichlet boundary conditions on Ω = (0, 1)2.
Solve (11.41) when ε = λ = 1 and demonstrate optimality of a multigrid solver in that
case. Finally, recalling that the critical exponent is λ ≈ 6.81 when a = 0, for your
nonzero wind a estimate the dependence of the critical exponent (Exercise 7.12 part (ii))
on the amount of diffusion: λ = λ̃(ε).
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Chapter 12

Inequality constraints

The problem in this chapter is not literally a PDE because its solution is subject to inequality
constraints. It must be posed in a global manner, by a variational inequality (weak) or comple-
mentarity problem (strong) formulation. These two new formulations are equivalent up to the
same regularity concerns which distinguish weak and strong forms for PDEs (Chapters 9 and
10).

We solve the classical obstacle problem for a linearized elastic membrane [36, 51, 91, 130],
a nonlinear problem because of the constraint. The solution does satisfy a PDE, the interior
condition, in that portion of the domain where the inequality constraints are not active. The
constraints are a source of boundary conditions which apply along a curve with a priori unknown
location, the free boundary.

Because the interior condition is the linear Poisson equation, we can re-use the residual- and
Jacobian-evaluation code from the FD Poisson equation solver of Chapter 6, but the problem
is nonlinear so we use SNES. Only two “SNESVI” subtypes adapt the Newton method to allow
inequality constraints, but otherwise we proceed as we have for nonlinear, elliptic PDE problems
on a 2D structured DMDA grids, making solver choices like those for the minimal surface (Chapter
7) and p-Laplacian (Chapter 9) equations. Thus, after explaining SNESVI, we construct optimal
solvers by applying grid-sequenced and multigrid-preconditioned (nonlinear full cycle) Newton-
Krylov methods.

The classical obstacle problem
Suppose that an elastic membrane at height z = u(x, y) is attached to a rigid wire frame at
height z = g(x, y) along the boundary of a planar region Ω, and suppose that the membrane is
subject to a distributed load f(x, y). Assume we also place a rigid, smooth obstacle, defined by
a continuously differentiable function z = ψ(x, y), underneath the membrane. For the problem
to make sense, along the boundary the obstacle must be below the wire frame: ψ

∣∣
∂Ω
≤ g. The

classical obstacle problem asks, What is the minimum energy configuration of the membrane
subject to the constraint that the membrane is on or above the obstacle, i.e., u ≥ ψ?

Figure 12.1 shows an example where Ω is a square, ψ is the upper unit hemisphere, and
f = 0. (For aesthetic reasons we picture the obstacle as a closed sphere.) Also, the boundary
condition g on ∂Ω is, in this case, given by a formula for a radially symmetric exact solution (see
below).

A more complete and physical membrane model would use the formulas of a minimal surface
(Chapter 7; see also Exercise 12.11), but for this classical version of the problem [36, 51, 91, 130]
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316 Chapter 12. Inequality constraints

Figure 12.1. The solution u (wire frame) to an obstacle problem.

we accept the standard small-displacements linearization. The membrane therefore has a shape
which is determined either by the Poisson equation or by contact with the obstacle:

−∇2u = f where u > ψ,

u = ψ otherwise, and (12.1)
u = g on ∂Ω.

As the reader may already see, equations (12.1) are not an adequate way to pose our problem.
In advance of solving the problem the inactive set

Ru = {x, y
∣∣u(x, y) > ψ(x, y)} ⊆ Ω, (12.2)

on which the Poisson equation applies, is unknown. (Regarding the terminology, the constraint
u ≥ ψ is not active, i.e., an equality, on Ru.) The complement Au = Ω \ Ru is called the
coincidence [130] or active set. Finding the sets Ru, Au, and the free boundary

Γu = ∂Ru ∩ Ω, (12.3)

on which a Dirichlet boundary condition u = ψ applies, are all part of the problem.

Example. Figure 12.2 shows these sets for the same case as in Figure 12.1. We use this case, on
the square domain Ω = (−2, 2)2, both for illustration and code verification. The hemispherical
obstacle has formula

ψ(r) =

{√
1− r2, r ≤ r0,

`(r), r > r0,

where r = (x2 + y2)1/2, r0 = 0.9, and `(r) = ψ(r0) +ψ′(r0)(r− r0) is the unique linear func-
tion making ψ continuous and continuously differentiable. The exact solution u(x, y) satisfies
Laplace’s equation on Ru, namely the radial ODE

r u′′(r) + u′(r) = 0. (12.4)

We find the exact solution via free and fixed boundary conditions:

u(a) = ψ(a), u′(a) = ψ′(a), u(2) = 0; (12.5)

the first two conditions apply at an unknown radius r = a with 0 < a < 1. The solution to
ODE (12.4) is u(r) = −A log(r) + B on the interval a < r < 2. Conditions (12.5) can then be
reduced to a root-finding problem for a,

a2(log(2)− log(a)) = 1− a2,
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The classical obstacle problem 317

Ru

Au

∂Ω

Γu

Figure 12.2. Sets for the solution to the obstacle problem in Figure 12.1.

with solution a = 0.697965148223374. It follows that A = a2(1− a2)−1/2 and B = A log(2),
giving an exact formula for u(r).

The solution is now defined for all r ≥ 0. Restricting this solution to Ω supplies the boundary
condition g(x, y) = u(r(x, y)), along the square ∂Ω.

For any obstacle problem, u = ψ along the free boundary Γu. However, more is true because
the membrane is also tangent to the obstacle. That is, along Γu two equations hold: u = ψ
and ∇u = ∇ψ. Speaking heuristically, such simultaneous Dirichlet and Neumann conditions
along Γu imply an overdetermined Poisson problem on Ru, but, because the location of Γu is
also unknown, the problem can be well posed [130]. In fact, the following theory reformulates
the problem as minimization in a closed, convex subset of a function space. After showing the
well-posedness of this formulation, we can also show that a sufficiently-regular solution has a
strong “complementarity” formulation.

Suppose Ω ⊂ Rd is a bounded region with Lipschitz boundary, and assume g is a continuous
function defined on ∂Ω. Recall from Chapters 9 and 10 that W 1,2(Ω) is the space of functions v
for which

∫
Ω
|v|2 < ∞ and

∫
Ω
|∇v|2 < ∞. Suppose ψ ∈ W 1,2(Ω) satisfies ψ ≤ g along ∂Ω.

Let W 1,2
g (Ω) be the affine subspace of functions with boundary value v = g (in a trace sense

[51]). Define the nonempty admissible set

Kψ =
{
v ∈W 1,2

g (Ω)
∣∣ v ≥ ψ} , (12.6)

which is closed and convex (Exercise 12.1). Finally, supposing f ∈ L2(Ω), define a quadratic
functional over v ∈W 1,2

g (Ω):

I[v] :=

∫
Ω

1

2
|∇v|2 − fv. (12.7)

Functional I[v] is similar to the one in Chapter 9, namely for the p = 2 Helmholtz problem.
It is convex onKψ , so 0 ≤ λ ≤ 1 and v, w ∈ Kψ imply I[λv+(1−λ)w] ≤ λI[v]+(1−λ)I[w].
Furthermore it is strictly convex; if 0 < λ < 1 and v 6= w then the inequality is strict.

Theorem 12.1. [51, 91] The following weak formulations of the obstacle problem are equivalent,
and there exists a unique solution u ∈ Kψ:

I[u] ≤ I[v] for all v ∈ Kψ, (12.8)

or ∫
Ω

∇u · ∇(v − u) ≥
∫

Ω

f(v − u) for all v ∈ Kψ. (12.9)
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318 Chapter 12. Inequality constraints

Condition (12.8) is a constrained minimization, or calculus-of-variations [51], formulation
while (12.9) is a variational inequality (VI). The equivalence of the two formulations follows by
differentiating the functional I[v] and exploiting convexity, being careful to apply the functional
only to elements of Kψ (Exercise 12.2). Then, noting that the functional is coercive (Chapter
9), meaning that I[v] is large whenever v ∈ Kψ has large W 1,2(Ω) norm, general functional
analysis arguments show that a solution to the minimization formulation exists (Exercise 12.1).
The strict convexity of I[v] implies that the minimizer of I[v] over Kψ is unique.

Even if equivalent problems (12.8) and (12.9) are well posed, do they carry the meaning we
intended in problem (12.1)? While the space W 1,2(Ω) includes functions for which classical
second derivatives do not exist, strong statements like (12.1) require that the solution has second
derivatives. In fact we can show that if we also assume that, for some p ≥ 1, u ∈W 2,p(Ω)∩Kψ

solves the VI (12.9) then two strong statements hold, first the interior condition on Ru,

−∇2u = f, (12.10)

and second the following complementarity problem (CP) formulation on all of Ω,

−∇2u− f ≥ 0,

u− ψ ≥ 0, (12.11)

(−∇2u− f)(u− ψ) = 0.

(In fact these hold only almost everywhere.) The third statement in (12.11), called “complemen-
tarity” in the optimization literature [118], says that either the Poisson equation or u = ψ holds
in Ω.

Both (12.10) and (12.11) follow from integration by parts on smooth test functions. First
suppose φ is a function with compact support in the open set Ru, and suppose it has continuous
derivatives of all orders: φ ∈ C∞c (Ru). Because u > ψ on Ru, and by continuity, there is ε > 0
so that v = u ± εφ > ψ on Ru. Note v ∈ Kψ if we extend φ by zero to all of Ω. Then (12.9)
implies

∫
Ω
∇u · ∇(±εφ) ≥

∫
Ω
f(±εφ) or, after integration by parts,

±ε
∫

Ω

(−∇2u− f)φ ≥ 0,

and thus
∫

Ω
(−∇2u−f)φ = 0. Because φwas an arbitrary test function supported inRu, (12.10)

holds.
On the other hand, suppose the test function is nonnegative but has arbitrary compact support:

φ ∈ C∞c (Ω) and φ ≥ 0. Let v = u + φ so again v ∈ Kψ . Applying (12.9) and integration by
parts, ∫

Ω

(−∇2u− f)φ ≥ 0.

This implies−∇2u−f ≥ 0 a.e. on Ω, so we have shown the first part of (12.11). The second part
simply says u ∈ Kψ . Combining the interior condition (12.10) together with the fact u− ψ = 0
on Au shows the third part of (12.11).

Because the set on which it holds is unknown, equation (12.10) is just as inadequate as our
first formulation (12.1). By contrast, though it requires more regularity than needed for the well-
posedness of weak formulations (12.8) and (12.9), CP (12.11) is a reasonable way to state a
free-boundary problem because each condition in (12.11) holds a.e. in Ω.

Constrained minimization problems, VIs, and CPs are all closely related. In fact, CP (12.11)
can be restated as the first-order Karush-Kuhn-Tucker (KKT) conditions [118] of minimization
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Newton solvers for bound-constrained problems 319

problem (12.8) by using a slack variable or Lagrange multiplier λ ∈ L2(Ω):

−∇2u− λ = f,

u− ψ ≥ 0,

λ ≥ 0,

λ(u− ψ) = 0.

(12.12)

(This follows from (12.11) by the substitution λ = −∇2u− f .) Though strong form (12.12) has
twice as many variables, it allows algorithms such as the primal-dual active set method [81].

On the other hand, the class of problems described by VIs and CPs is strictly larger than the
class of constrained minimizations. For example, the VI∫

Ω

F (u, |∇u|)∇u · ∇(v − u) ≥
∫

Ω

f(v − u) for all v ∈ K, (12.13)

where K is some closed and convex subset of a Sobolev space, clearly generalizes (12.9). This
VI is typically not the first-order condition of a constrained optimization. Indeed, in the context
of constrained optimization a VI is a statement about the first derivative of the functional, so a VI
derived from optimization must have the symmetry which arises from commutativity of second
derivatives, namely a symmetric Hessian matrix. Generally (12.13) does not have this symme-
try. The geometry of an ice sheet flow is an example of a VI/CP which is not the constrained
minimization of a functional [30, 86].

We conclude the well-posedness theory with a few observations:

(i) If u solves (12.8) and/or (12.9) then its second derivatives are generally not continuous on
Ω because the Laplacian ∇2u will jump along the free boundary Γu. For example, in the
problem shown in Figures 12.1 and 12.2 the active set Au is part of the upper hemisphere
of the obstacle, thus∇2u = ∇2ψ is bounded above by a negative constant onAu. Because
u satisfies∇2u = 0 on Ru, the Laplacian has a jump discontinuity along Γu.

(ii) The data of the problem shown in Figures 12.1 and 12.2 could be made arbitrarily smooth
without changing the solution behavior near the free boundary. Thus, in contrast to the
Poisson equation, an obstacle problem can have arbitrarily smooth data and yet not have a
solution in C2.

(iii) One defines a solution u of obstacle problem (12.9) to be degenerate if it just happens
to solve the Poisson equation on part of its active set Au. More precisely, the solution is
nondegenerate if −∇2u− f > 0 everywhere in the interior of Au. If an obstacle problem
is nondegenerate then the free boundary Γu is stable with respect to sufficiently small
perturbations of the data [130, section 6:5]. When it comes to the numerical determination
of the coincidence set we will assume nondegeneracy.

Newton solvers for bound-constrained problems
Our code in this Chapter, obstacle.c, will solve the classical obstacle problem using either of
two bound-constrained Newton solvers suited to VI/CP problems. Otherwise the code acts as
expected; it sets up DMDA and SNES objects, calls SNESSolve(), and measures numerical error
against an exact solution. There is substantial code reuse because the residual- and Jacobian-
evaluation call-backs are unchanged from the Poisson solver in Chapter 6, so the new code
is quite short. We only write new functions for the exact solution and for a SNES call-back
supplying the inequality bounds.
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320 Chapter 12. Inequality constraints

The two SNESVI types are variants of line-search Newton methods:

• vinewtonrsls, which stands for “VI-adapted Newton solver with reduced-space line
search,” abbreviated RS below, and

• vinewtonssls, a “semismooth” version, abbreviated SS.

These types allow bound (box) constraints given by vectors Xl,Xu ∈ R̂N ,

Xl ≤ u ≤ Xu, (12.14)

where R̂ = [−∞,+∞] denotes the extended real line.
Both SNESVI types were originally designed to solve finite-dimensional nonlinear comple-

mentarity problems (NCPs), namely

F (w) ≥ 0 and w ≥ 0 and wF (w) = 0, (12.15)

where w ∈ RN and F : RN → RN (the residual), but they have been enhanced to allow
two-sided bounds (12.14) [15]. Note that discretization is, of course, needed to put a continuum
obstacle problem like (12.11) in finite-dimensional NCP form (12.15). Furthermore, a translation
w = u−ψ and F (w) = −∇2(w+ψ)−f would be needed to put (12.11) into literal form (12.15),
but the SNESVI types use arbitrary bound constraints (12.14) directly, so this is unnecessary.

The last condition in (12.15), complementarity, can be interpreted either as a pointwise prod-
uct wF (w) = 0 or as an inner product w>F (w) = 0; the forms are equivalent because of
the first two conditions. The condition says that either an entry wi is zero or the corresponding
residual entry Fi(w) is zero. The problem is nondegenerate if, once the problem is solved, for
each i either wi > 0 or Fi(w) > 0.

We supply exactly the same residual which was used in Chapter 6 for the Poisson equation,
namely the FD discretization of F (u) = −∇2u − f , and its Jacobian. There is, however, one
important detail regarding the user-supplied functions, namely that for SNESVI the Jacobian must
be positive-definite. That is, the sign of the residual is important; the residual written for Chapter
6 already has the correct sign.

We set the SNES type and a new kind of call-back:

SNESSetType(snes,SNESVINEWTONRSLS);
SNESVISetComputeVariableBounds(snes,&FormBounds);

Function FormBounds() is shown below in Code 12.1. In our problem there is no upper bound
so Xu = +∞ = PETSC_INFINITY; compare Exercise 12.10.

/ / fo r ca l l −back : t e l l SNESVI we want psi <= u < + i n f i n i t y
PetscErrorCode FormBounds(SNES snes , Vec Xl , Vec Xu) {

DM da ;
DMDALocalInfo i n fo ;
PetscInt i , j ;
PetscReal ** aXl , dx , dy , x , y ;
SNESGetDM(snes,&da) ;
DMDAGetLocalInfo (da,& in fo ) ;
dx = 4.0 / (PetscReal ) ( in fo .mx−1) ;
dy = 4.0 / (PetscReal ) ( in fo .my−1) ;
DMDAVecGetArray(da , Xl , &aXl ) ;
for ( j = in fo . ys ; j < in fo . ys+in fo .ym; j ++) {

y = −2.0 + j * dy ;
for ( i = in fo . xs ; i < in fo . xs+in fo .xm; i ++) {

x = −2.0 + i * dx ;
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Newton solvers for bound-constrained problems 321

aXl [ j ] [ i ] = psi (x , y ) ;
}

}
DMDAVecRestoreArray(da , Xl , &aXl ) ;
VecSet (Xu,PETSC_INFINITY) ;
return 0;

}

Code 12.1. c/ch12/obstacle.c, part I. A call-back gives the VI/CP bounds.

We now sketch how the RS and SS algorithms work. Both are documented by [15], as solvers
for problem (12.15), and they are similar in outline. Each one uses the current iterate to de-
fine an active set and it constructs a linear system based on this set and the supplied functions
(call-backs). It then solves a linear (Newton) system to calculate a search direction, and finally
performs a constrained line search to compute a new iterate which sufficiently decreases a merit
function. However, in other details the algorithms differ:

RS. For an iterate wk ∈ RN the disjoint active and inactive sets in this algorithm are defined
as

A(wk) =
{
i ∈ {1, . . . , N}

∣∣wki = 0 and Fi(wk) > 0
}
,

I(wk) =
{
i ∈ {1, . . . , N}

∣∣wki > 0 or Fi(wk) ≤ 0
}
.

(12.16)

The set A(w) identifies the variables where the lower bound is active and the function
value is positive (thus ignorable). Said the other way, an index i is in I(w) if we should
try to adjust variable wi to either help solve that equation (make Fi(w) zero) or activate
that constraint (make wi zero). These sets are implemented using an index set (IS) type.

Prior to convergence there may be i ∈ I(wk) such that wki > 0 and Fi(wk) < 0, violating
complementarity (12.15) for that index. However, once the iteration converges to limit ŵ,
then, within a tolerance, Fi(ŵ) = 0 for each i ∈ I(ŵ), and thus the intended equations
F = 0 have been solved on the inactive set.

At each iteration a search direction is calculated by (approximately) solving a modified
Newton step linear system. Only the inactive variables Ik = I(wk) are involved:

J(wk)Ik,Ik d
k
Ik = −F (wk)Ik . (12.17)

Here J(w) denotes the user-supplied, or finite differenced, Jacobian. The subscripts indi-
cate that only rows and columns corresponding to inactive degrees of freedom are included.
Once (12.17) is solved then the method also sets dki = 0 for all i ∈ A(wk), thus defining
a search direction dk ∈ RN .

Let K = {w ≥ 0} be the admissible set and assume wk ∈ K. The search direction dk

may lead outside the admissible set, i.e. wk + βdk /∈ K may occur for some β > 0.
However, in RS the line search (Chapter 4) only evaluates the residual and Jacobian on
admissible vectors. The simplest projection is used to achieve this, namely π : RN → K
defined by π[w]i = wi if wi > 0 and π[w]i = 0 if wi ≤ 0. Also, because an NCP solution
ŵ may yield positive residual values Fi(ŵ) for i ∈ A(ŵ), RS redefines the residual in the
line search as follows:

F̃i(w) =

{
Fi(w) if wi > 0,

min{Fi(w), 0} if wi ≤ 0.
(12.18)

The line search then seeks a new iterate wk+1 = π[wk + βdk], β > 0 satisfying a
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322 Chapter 12. Inequality constraints

sufficient-decrease condition using the modified residual (12.18) and a 2-norm merit func-
tion, namely

‖F̃
(
π[wk + βdk]

)
‖2 ≤ (1− σβ) ‖F̃ (wk)‖2, (12.19)

where σ = 10−4 [15].

SS. The formulas of this method, which in contrast to RS may ask the user’s code to evaluate
nonadmissible iterates, are more complicated. We only give a brief summary.

A function ϕ : R2 → R is an NCP function when ϕ(a, b) = 0 if and only if a ≥ 0, b ≥ 0,
and ab = 0. The Fischer-Burmeister (FB) function,

ϕFB(a, b) = a+ b−
√
a2 + b2, (12.20)

is such an NCP function (Exercise 12.5), and SS redefines the residual F̂ : RN → RN
using it:

F̂i(w) = ϕFB(wi, Fi(w)). (12.21)

The main idea is that F̂ (w) = 0 if and only if w solves (12.15).

In rough outline the SS method solves the NCP by applying an unconstrained Newton
method to the equation F̂ (w) = 0. However, because an NCP function may not be smooth
(continuously differentiable)—indeed ϕFB is not—the method cannot simply compute
the Jacobian derivative of F̂ . Instead it computes a “subdifferential” Hk(w) ∈ RN×N
[15]. This matrix is constructed using certain scale-and-translate formulas applied to the
user-supplied Jacobian, based upon a different definition of the active and inactive sets
compared to (12.16). The new formulas preserve the symmetry and positive-definiteness
of the user-supplied Jacobian (if it is SPD). Then the method solves the linear (Newton)
system in all variables,

Hk(wk)dk = −F̂ (wk) (12.22)

to compute a search direction dk ∈ RN . The line-search sufficient-descent criterion uses
1
2‖F̂ (w)‖22 as a merit function. Projection is not applied before evaluating F̂ and thus the
user’s residual code must handle vectors outside the admissible set. For remaining details
see [15].

Newton-multigrid and grid sequencing
We now solve the obstacle problem using constraint-adapted, preconditioned Newton-Krylov
methods. Of the two SNESVI types we choose RS as the default (for reasons given below). The
linear systems (12.17) and (12.22) are SPD in this case so the CG iteration is set as the default
KSP type.

Recall that optimal O(N) performance can only occur when the number of SNES and KSP
iterations is independent of grid resolution. This, of course, depends on high-quality precon-
ditioning, and only multigrid approaches exhibit the necessary spectral equivalence for elliptic
PDEs (Chapters 6–11). We try both DMDA-based geometric (GMG) and algebraic (AMG; Chapter
10) multigrid preconditioning.

After building the code obstacle.c in the usual way (cd ch12/ && make obstacle),
consider runs of the form

$ ./obstacle -snes_type VI PC -da_refine LEV

for VI equal to vinewtonrsls or vinewtonssls. After a bit of experimentation we see that the
following solvers converge at levels LEV = 3, 4, 5, 6, 7:
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Newton-multigrid and grid sequencing 323

• GMG: PC = -pc_type mg -mg_levels_ksp_max_it 3

• AMG: PC = -pc_type gamg -pc_gamg_type classical

Regarding these choices, note the SS+GMG run with LEV = 6 diverges when using two smoother
sweeps, but all levels converge with the stronger smoother. Also, classical AMG reduces the
number of KSP iterations compared to smoothed aggregation (Chapter 10) in all of these cases.

Table 12.1 shows the result. The major point is that the SNES iterations increase substantially
with grid resolution. We also observe that the number of KSP iterations is generally steady over
grid resolutions except with the SS+GMG combination.

Table 12.1. Number of SNES and KSP iterations to solve the obstacle problem using the two
SNESVI types (RS,SS) and two types of multigrid preconditioning. KSP iterations are for the last Newton
step.

RS SS

grid SNES GMG KSP AMG KSP SNES GMG KSP AMG KSP

17× 17 3 4 4 7 5 4
33× 33 6 3 4 11 7 4
65× 65 7 4 4 11 11 4

129× 129 12 4 4 16 13 4
257× 257 21 4 5 25 23 5

Why is the SNES count is increasing? The essential reason is that quadratic convergence of the
Newton iteration is blocked until the (discrete) active and inactive sets stabilize. That is, the SNES
first has to find the free boundary, and only then can the interior condition, the Poisson equation,
be precisely solved. On fine grids almost all the work is in finding the active/inactive sets.

To see this concretely and visually, first note that obstacle.c sets w0 to zero for simplicity.
As the reader can check by visualization (below), for both SNESVI types the second SNES iterate
w1 is admissible and nearly equal to max{0, ψ}, so w1 has a too-large active set. The iteration
must decrease the active set to its final configuration before it enters the domain of quadratic
convergence. With the default RS type we can see the behavior using -snes_vi_monitor:

$ ./obstacle -pc_type mg -da_refine 5 -snes_vi_monitor
0 SNES VI Function norm 8.02729 Active lower constraints 729/885 ...
1 SNES VI Function norm 1.4556 Active lower constraints 629/729 ...
2 SNES VI Function norm 0.463479 Active lower constraints 553/629 ...

...
6 SNES VI Function norm 2.44749e-08 Active lower constraints 421/421 ...

done on 65 x 65 grid ... CONVERGED_FNORM_RELATIVE, SNES iters = 6, ...
errors: av |u-uexact| = 9.818e-05, |u-uexact|_inf = 5.991e-04, ...

The pair of numbers following “Active lower constraints” is in the form active/at-bound.
The active variables satisfy both wki = ψi (actually the condition is wki ≤ ψi + δ for a tolerance
δ > 0) and Fi(wk) > 0. That is, these variables are in the active set as defined by (12.16).
The larger at-bound number gives the variables satisfying only the first condition. In this run the
at-bound variables wi which have a negative F value are moving away from the constraint, so
the estimated active set gets smaller.

In the above run the default RS type monotonically decreases the number of active variables.
While SS also starts with an active set which is too large, the number of active variables does not
decrease monotonically. At convergence, however, the two types agree on the number of active
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324 Chapter 12. Inequality constraints

variables. On this problem the interior condition is the linear Poisson equation, but note the SS
type introduces a nonlinearity into the residual (12.21). It then needs a few more iterations to
converge once the active/inactive set identification is completed.

The following X-windows-based visualizations help to understand the iterations of SNESVI
solvers:

• -snes_monitor_solution draw shows Newton iterates wk

• -snes_monitor_solution_update draw shows Newton steps dk

• -snes_vi_monitor_residual shows residual values F̃i(wk); see (12.18)

The last of these viewers displays zero residual at each point in A(wk)—see (12.16)—so the
inactive variables, corresponding to nonzero residual values where more work remains to be
done, are visible (Exercise 12.6).

Many elementary numerical methods for obstacle problems can only move the approximated
free boundary by one grid cell per iteration [65], and this is true of the above runs. This fact
implies that, under grid refinement, the number of Newton iterations increases with the number
of grid points in each direction, exactly as seen in Table 12.1. The number of SNES iterations
is roughly proportional to the number of grid spaces between the free-boundary positions for
the initial iterate and the converged solution. We must fix this behavior if we want to build an
optimal solver.

So, with these preliminary results and visualizations in mind, how do we reduce the number
of SNES iterations on fine grids? One can show that on a coarse grid almost any admissible
iterate is comparably effective (Exercise 12.7), and so for finer grids we propose to exploit grid-
sequencing (Chapter 7). Combining this with multigrid preconditioning, the resulting nonlinear
full multigrid cycles will transcend the limitations on moving the free-boundary.

To do so we simply replace -da_refine with -snes_grid_sequence in the above runs.
The result in Table 12.2 shows nongrowing, or slowly growing, SNES iteration counts on the finest
grid. The SS+GMG combination again shows growing KSP iterations; this solver combination is
not recommended.

Table 12.2. Using -snes_grid_sequence to redo the runs in Table 12.1 produces nongrowing
SNES iterations for RS, and slowly increasing for SS. SNES iterations are on the last (finest) grid and KSP
iterations on the last Newton step.

RS SS

grid SNES GMG KSP AMG KSP SNES GMG KSP AMG KSP

17× 17 3 4 4 5 5 4
33× 33 4 4 4 8 7 4
65× 65 2 4 4 6 11 4

129× 129 2 4 4 6 14 4
257× 257 3 4 4 7 21 4

Optimal and scalable solver combinations
From the above runs there are three candidate solvers with apparently grid-independent itera-
tions, namely RS+GMG, RS+AMG, and SS+AMG. However, a look at -log_view output shows
that the first is the most efficient. For example, on the finest (257 × 257) grid, in the runs in
Table 12.2, RS+AMG did 2.4 times, and SS+AMG 8.4 times, more flops than RS+GMG. The big
difference is in the PCApply event.
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Optimal and scalable solver combinations 325

We can make the fastest solver RS+GMG even more efficient by using the default two
smoother sweeps (i.e., -mg_levels_ksp_max_it 2) and by switching the smoother to using
-mg_levels_ksp_type richardson instead of the default chebyshev. We now test this com-
bination for algorithmic complexity, convergence, and parallel performance.

First, a graph of flops/N as a function of N is nearly level, other than a wobble of one
SNES iteration on two grids, up to a 4097 × 4097 grid with N > 107 degrees of freedom
(Figure 12.3). Thus, despite greatly reduced solution regularity relative to the corresponding
Poisson problem, we have good evidence of solver optimality (Chapter 7) on this nonlinear and
inequality-constrained problem.

102 103 104 105 106 107

N = degrees of freedom
0

1000

2000

3000

flo
ps

 / 
N

Figure 12.3. A grid-sequenced, GMG-preconditioned RS solver shows nearly constant flops/N
as a function of N .

Regarding convergence, the left part of Figure 12.4 shows how the average (|Ω|−1‖u −
uexact‖L1 ) and maximum (‖u− uexact‖L∞ ) error norms depend on the grid spacing h. By fitting
results from the seven finest grids, we see convergence rates relatively close toO(h2). Given that
our centered FD discretization from Chapter 6 has O(h2) local truncation error for smooth solu-
tions, and given that the solution of this obstacle problem has only bounded, but not continuous,
second derivatives, i.e., u ∈W 2,∞(Ω) \ C2(Ω), such rates are all that could be desired.

The right side of Figure 12.4 shows a measure of convergence which is specifically relevant
to inequality constrained problems. For this particular problem the coincidence (active) set is a
disc centered at the origin with known radius and area (Figure 12.2). By assigning area h2 to each
grid point in the numerically computed active set we can compute the percentage error in active-
set area. This quantity converges at a rate just slower than O(h1) (Figure 12.4), which is the best
possible because the numerical solution cannot determine the location of the free boundary to
less than one grid space h. (Note the interpolant of the exact solution also has O(h1) active-set
area error.)

We end with a quick weak-scaling study (Chapter 8), only looking at flops performance (and
not run time). For parallel multigrid we choose overlapping ASM and SSOR as the smoother
and a large coarse grid to allow redundant (Chapter 7) treatment, but otherwise the solver is the
same as our preferred serial solver:
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Figure 12.4. The numerical error norms ‖u − uexact‖ (left) and active-set area errors (right)
converge at close to the desired rates.
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Figure 12.5. SNES iterations on the finest grid, and KSP iterations during the last SNES iteration,
in weak-scaling runs.

$ mpiexec -n P ./obstacle -pc_type mg -mg_levels_ksp_type richardson \
-mg_levels_pc_type asm -mg_levels_sub_pc_type sor \
-da_grid_x 17 -da_grid_y 17 -snes_grid_sequence LEV -log_view

For P = 1, 4, 16, 64 we choose LEV = 4, 5, 6, 7, respectively; each process owns a 257 × 257
grid with roughly 7× 104 degrees of freedom.

In a weak scaling solver we expect both the maximum and average flops over all processes to
be nearly constant, and that is what we see. The SNES and KSP counts (Figure 12.5) are small and
nearly constant; this parallel smoother is nearly as good as in serial. In maximum and average
flops (Figure 12.6; left) we also see what we want.

However, the Max/Min values, the imbalance ratio, which would be close to 1 for good load
balance, suddenly jumps above 18 at P = 64 (Figure 12.6; right). The reason, which has to do
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1 [257] 4 [513] 16 [1025] 64 [2049]
processes P [grid mx]
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Figure 12.6. Maximum and average flops per process are nearly constant (left), but the flops
imbalance ratio (max /min) jumps upward at P = 64 (right).

Ru

Au

Figure 12.7. With P = 64 processes, laid-out by the DMDA as shown (dashed grid), four processes
own only active-set grid points. (Compare Figure 12.2.)

with our particular obstacle problem, is shown in Figure 12.7. There is a big difference in solver
effort between the grid points in the active set of the converged solution (i.e., Au), i.e., which
correspond to trivial equations, and the grid points in the complementary inactive set (Ru) where
a PDE is being solved. This extreme level of imbalance is special to the RS solver; in RS the
active-set degrees of freedom are not included in the linear system. This seems unfair—some
processes do nothing while the others labor away—but it is not a serious barrier to weak scaling.

Exercises
12.1. Show that Kψ defined in (12.6) is closed and convex. Use the Poincaré inequality on

W 1,2
0 (Ω) [51] to show that I[u] defined by (12.7) is strictly convex and coercive on

W 1,2
g (Ω). Then show (by contradiction) that any minimizer (12.8) is unique. Finally

show that a solution u ∈ Kψ exists for formulation (12.8). (See section 8.4.2 of [51].)
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328 Chapter 12. Inequality constraints

12.2. Show the equivalence of formulations in Theorem 12.1. (Consider the function f(ε) =
I[u+ ε(v − u)] for 0 ≤ ε ≤ 1. In one direction we know f(ε) ≥ f(0), while in the other
we can show f(ε) is differentiable and nondecreasing.)

12.3. (The next two exercises may clarify the ideas behind, and the name of, the RS method.)
Suppose f : Rn → R is smooth and consider the equality-constrained optimization prob-
lem

min
Ax=b

f(x),

where A ∈ Rm×n has full row rank, b ∈ Rm, and 0 ≤ m ≤ n. A reduced-space Newton
method for this problem modifies the line-search Newton equations (Chapter 4) to ensure
that the iterates remain in the feasible set {x |Ax = b}. One way to do this uses a null-
space matrix [71, 118] for A, namely a full-rank matrix Z ∈ Rn×(n−m) whose columns
form a basis of the null space of A. The method then solves step equations

(Z>Hf (xk)Z)v = −Z>∇f(xk), (12.23)

whereHf is the Hessian of f . Note that the (n−m)×(n−m) matrix Ĥ = Z>Hf (xk)Z
is the reduced Hessian while Z>∇f(xk) ∈ Rn−m is the reduced gradient. The Newton
update is xk+1 = xk + Zv.

Show that if xk is feasible then xk+1 is also feasible. Also show that if Hf (xk) is
positive-definite then Ĥ is also positive-definite, thus that the linear system (12.23) has a
unique solution.

12.4. An active set method for the inequality constrained problem

min
Ax≥b

f(x) (12.24)

generates feasible iterates xk ∈ {x |Ax ≥ b} and maintains a working set Wk of the
indices of the constraint equations i which are active at xk, i.e., for which the scalar
equation a>i x = bi holds, where a>i is a row of A. At each iteration the method solves
the equality-constrained problem in which the active constraints are treated as equalities.
That is, it solves

min
Ãx=b̃

f(x),

where Ã, b̃ are the rows of A,b corresponding to the indices inWk. Depending on the
implementation, indices may enter and leave the working set based on a ratio test [71] or
on the values of Lagrange multipliers. (The RS method from [15] uses the projected line
search (12.19) and a modified residual (12.18) for these purposes.)

If A = I then (12.24) becomes a lower-bound constrained problem

min
x≥b

f(x). (12.25)

Show that in this case null space matrices for the active constraints have entries of zero
and one only, with actions that can be described using index sets. Then show that the
reduced-space Newton equation (12.23) can be written

Hf (xk)Ik,Ik sIk = −∇f(xk)Ik , (12.26)

where Ik is the index-set complement ofWk. A direction s ∈ Rn is defined by adding
sWk = 0. Solving linear system (12.26), which is the same as (12.17), is then followed
by the usual update xk+1 = xk + λs where λ comes from a line search. Finally note
that problem (12.25) corresponds to NCP (12.15) under the substitutions w = x− b and
F (w) = ∇f(w + b).

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Exercises 329

12.5. Show that the Fischer-Burmeister function (12.20) is an NCP function. Next show that if
F̂ defined by (12.21) then F̂ (w) = 0 if and only if w solves NCP (12.15).

12.6. In an obstacle.c run with -pc_type mg -da_refine 4, and testing each SNESVI
solver, try the visualization -snes_vi_monitor_residual. Compare
-snes_monitor_residual draw. The latter view is less useful for a VI/CP problem;
explain.

12.7. Modify obstacle.c to generate random but admissible initial iterates, that is, satisfying
u0 ≥ ψ and u0

∣∣
∂Ω

= g. Show that on coarse grids the SNES iterations are insensitive to
the differences among these initial iterates but on fine grids one generally sees large SNES
iteration counts proportional to the movement, in grid cells, of the free boundary.

12.8. Currently the only way in PETSC to handle optimization problems with general linear
inequality constraints is to add variables to convert to box constraints. For example,
for constraints c ≤ Ax ≤ d one introduces new variables y = Ax to give a larger
problem in unknowns (x,y). The problem has box inequality constraints on y, triv-
ial inequality constraints on x (i.e., −∞ ≤ x ≤ +∞), and new equality constraints
Ax − y = 0. In a fixed, low-dimensional vector space, construct such an example prob-
lem minc≤Ax≤d f(x). Generate an equivalent problem with box constraints, decide on
an optimization strategy subject to the new homogeneous, linear equality constraints, and
demonstrate a SNESVI solver.

12.9. Consider the following porous-dam free-boundary problem in complementarity (i.e., NCP)
form [9, 20]:

−∇2u+ 1 ≥ 0, u ≥ 0, u(−∇2u+ 1) = 0. (12.27)

Here u(x, y) is the pressure, and the dam is saturated where u > 0. In [20] the domain is
the rectangle Ω = [0, a]× [0, y1] (Figure 12.8) with dimensions a = 16 m and y1 = 24 m.
Face CD has height y2 = 4 m. The boundary conditions are Dirichlet,

g(x, y) =


(y1 − y)2/2 on AB,
((a− x)y2

1 + x y2
2)/(2a) on BC,

(y2 − y)2/2 on CD,
0 on DFA.

(12.28)

Modify obstacle.c to a code dam.c which will solve the above problem. Write a
function for g(x, y), but reuse Poisson equation tools from Chapter 6. A recommended
coarse grid is 3× 4, with equal spacing hx = hy = 8 m. As no exact solution is known,
a minimal verification is to compare results on a 5× 7 grid (-da_refine 1) to Table 4.1
in [20].

A modeling goal might be to compute the height of the seepage face ED in Figure
12.8. Write a function GetSeepageFaceHeight() which extracts this quantity from
the solution; a threshold for “wet” will be needed. Note that the seepage face may be
distributed across multiple processors so use MPI_Allreduce() with MPIU_MAX. Choose
an optimal solver from this chapter to generate high-resolution results. (On centimeter-
scale grids the author computes |ED| ≈ 8.7 m.)

12.10. Elastoplastic torsion failure [98, and references therein] involves an upper bound on the
unknowns. In complementarity form on Ω = (0, 1)2 the problem is

−∇2u ≥ 2C, u ≤ ψ, (∇2u+ 2C)(ψ − u) = 0, (12.29)

where u = 0 along ∂Ω. The upper obstacle is ψ(x) = dist(x, ∂Ω). In 2D this problem
models the stress potential u of a bar with cross section Ω. The applied torsion and other
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330 Chapter 12. Inequality constraints

Figure 12.8. The problem of partial saturation (seepage) of water through a porous, rectangular
dam. Figure taken from [20].

physical properties are parameterized by C. The bar responds elastically at locations
where the stress is below the threshold (u < ψ), but plastic failure occurs at that threshold.
The active set where u = ψ is thus the plastic-failure part, while on the inactive set an
elastic model equation −∇2u = 2C applies.

Modify obstacle.c to elasto.c to solve the above problem. Again one may reuse
Poisson equation tools from Chapter 6. Minimal verification is to compare to Figure 4.2
in [98], which shows results for C = 2.5, 10. Demonstrate an optimal solver.

12.11. Solve a minimal-surface equation (MSE; Chapter 7) obstacle problem. For example, make
small modifications to ch7/minimal.c so that it solves the MSE version of the Example
at the beginning of the current chapter. (Assume the same domain, obstacle, and Dirichlet
boundary values.) Demonstrate an optimal solver, and then use high-resolution grids to
compare the coincidence set and the free boundary to those computed by obstacle.c.
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Chapter 13

Finite element method III:
Firedrake and DMPlex

The next two chapters break the mould. Their Python [149] example codes use the Firedrake
[126] finite element (FE) library, so direct calls to PETSC are avoided. Why? Because too much
of our coding effort has been in discretizing PDEs using relatively standard methods. One way to
explore solvers for more interesting PDEs is to make discretization someone else’s responsibility.
Firedrake is one way for the power of PETSC—its run-time-controllable solver stack—to break
free of the discretization clutter.

In Firedrake application codes a PDE weak form is stated using only a few lines of the Unified
Form Language (UFL; [5]). The UFL is a Python component of both the Firedrake and FEnICs
[107] libraries, and these libraries allow users to apply the FE method without knowing how it is
implemented. However, Firedrake adds an abstraction layer (PyOP2) which separates the local
discretization from its parallel execution over the mesh [126]. Furthermore, key Firedrake data
structures are actually PETSC objects, especially DM, IS, Vec, and Mat types, accessed through
the petsc4py interface [39].

In the examples of the next two chapters, the discrete equations, linear or nonlinear, are
solved using PETSC, with full command-line control of the solvers though familiar options. All
of the Newton iteration, Krylov space, and preconditioning principles and options discussed so
far remain available. Thus with Firedrake one can quickly state a PDE boundary-value problem,
choose among a rich collection of FE methods and function spaces, use unstructured meshes in
parallel, and have the full power of PETSC solvers, all with minimal programmer effort at the
discretization stage. The contrast to our limited FE examples in Chapters 9 and 10, with their
long C codes and restrictive discretization choices, is substantial.

In this short chapter we solve the Poisson equation yet again. However, Firedrake’s dis-
cretization flexibility allows us to immediately play with higher-degree polynomial elements, and
we demonstrate an elementary h/p FE method [87], essentially a spectral method [142]. We also
look under the hood at how an unstructured mesh is managed by PETSC DMPlex objects [85, 95].
DMPlex is used by Firedrake [100] for the topology and geometry of unstructured meshes.

We omit any discussion of the Firedrake installation process, for which the reader should see
the “Download” link at

www.firedrakeproject.org.

Furthermore no Python programming introduction is attempted here. (However, certain advice
specific to this Chapter’s examples is in p4pdes/python/README.md.)

The Firedrake and FEnICs libraries share both FE ideas and the UFL. Thus the extensive
FEnICs tutorial literature (e.g., [101, 107]) may be a useful supplement to the Firedrake docu-
mentation, modulo many details of syntax and solver control.
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332 Chapter 13. Finite element method III: Firedrake and DMPlex

The Poisson equation (one last time)
Recall the Poisson problem from Chapters 3, 6, and 10. Considering only Dirichlet boundary
conditions, u ∈W 1,2

g (Ω) satisfies the weak form∫
Ω

∇u · ∇v − fv = 0 (13.1)

for all test functions v ∈ W 1,2
0 (Ω). The corresponding strong form is −∇2u = f on Ω and

u = g on ∂Ω.
A UFL statement of (13.1) is similar to the mathematical symbols themselves. In fact, the

core of our first Firedrake code is in the following few lines which define a FE function space,
state a weak form, and solve a discrete system F(u) = 0:

W = FunctionSpace(mesh, ’Lagrange’, degree=k)
u, v = Function(W), TestFunction(W)
F = (dot(grad(u), grad(v)) - f_rhs * v) * dx
bc = DirichletBC(W, g_bdry, bdry_ids)
solve(F == 0, u, bcs=[bc], ...)

(The full code will be shown momentarily.) Note that additional formulas for f and g must define
Functions f_rhs and g_bdry.

In order for the above lines of code to work correctly we must have defined either a tri-
angular or quadrilateral mesh, including identification of the boundary nodes in an integer ar-
ray bdry_ids. Information about the domain Ω itself, in the mesh variable, is passed into the
FunctionSpace() definition for W as above. While we only allow Pk or Qk elements [36, 49]
here, i.e., Lagrange elements, the degree k may be chosen at run time.

Note that we obtain both a Function u and a TestFunction v from the FunctionSpace
W. The former (u) is a partly symbolic (i.e., partly UFL) object but it also has allocated space
for the values at the nodes of the mesh, one real value for each degree of freedom associated to
W. (The degrees of freedom for each element are actually basis functions for the dual space of
polynomials of a given degree [36], as generated by the FIAT [107] and FInAT [83] components
of Firedrake.) By contrast, a TestFunction is a purely symbolic object used in defining weak
forms.

In defining the residual, integration over Ω in (13.1) is implied by formally multiplying by dx
in the UFL expression which defines the residual F. Then the solve() function sees the residual
function and the Dirichlet boundary conditions, and FE assembly occurs at this point. That is,
the above lines of code defining the weak form and boundary conditions actually store symbolic
information for use inside the solve() function, and calling solve() generates a SNES call-
back (Chapter 4) under the hood.

Our entire Python program fish.py is shown in Code 13.1. It solves the same problem as
the default case of fish.c in Chapter 6. For this particular problem the domain is the unit square
Ω = (0, 1)2 and the right-hand side f is manufactured using the exact solution u(x, y) = −xey .

# ! / usr / bin / env python

from argparse import ArgumentParser , RawTextHelpFormatter
from f i redrake import *
from f i redrake . petsc import PETSc

# Read command−l ine options ( in addi t ion to PETSc solver options
# which use −s_ pre f i x ; see below)
parser = ArgumentParser ( descr ipt ion= " " "
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The Poisson equation (one last time) 333

Use Firedrake ’ s nonlinear solver fo r the Poisson problem
−Laplace (u) = f in the un i t square

u = g on the boundary
Compare c / ch6 / f i sh . c . The pre f i x fo r PETSC solver options is ’ s_ ’ .
Use −help fo r PETSc options and −f ishhelp fo r options to f i sh . py . " " " ,

formatter_class=RawTextHelpFormatter , add_help=False )
parser . add_argument ( ’−f ishhelp ’ , act ion= ’ store_true ’ , defaul t=False ,

help= ’ help fo r f i sh . py options ’ )
parser . add_argument ( ’−mx ’ , type=int , defaul t =3, metavar= ’MX’ ,

help= ’number of gr id points in x−d i rec t ion ’ )
parser . add_argument ( ’−my ’ , type=int , defaul t =3, metavar= ’MY’ ,

help= ’number of gr id points in y−d i rec t ion ’ )
parser . add_argument ( ’−o ’ , metavar= ’NAME’ , type=str , defaul t= ’ ’ ,

help= ’ output f i l e name ending with . pvd ’ )
parser . add_argument ( ’−k ’ , type=int , defaul t =1, metavar= ’K ’ ,

help= ’ polynomial degree for elements ’ )
parser . add_argument ( ’−quad ’ , act ion= ’ store_true ’ , defaul t=False ,

help= ’use quadr i la te ra l f i n i t e elements ’ )
parser . add_argument ( ’−re f ine ’ , type=int , defaul t=−1, metavar= ’X ’ ,

help= ’number of refinement levels (e .g . fo r GMG) ’ )
args , unknown = parser . parse_known_args ( )
i f args . f ishhelp : # −f ishhelp is fo r help with f i sh . py

parser . pr int_help ( )

# Create mesh, enabling GMG via refinement using hierarchy
mx, my = args .mx, args .my
mesh = UnitSquareMesh(mx−1, my−1, quadr i la te ra l=args .quad)
i f args . re f ine > 0:

hierarchy = MeshHierarchy (mesh, args . re f ine )
mesh = hierarchy [ −1] # the f ine mesh
mx, my = (mx−1) * 2**args . re f ine + 1 , (my−1) * 2**args . re f ine + 1

x , y = SpatialCoordinate (mesh)
mesh. _topology_dm . viewFromOptions ( ’−dm_view ’ )
# to p r i n t coordinates : p r i n t (mesh. coordinates . dat . data )

# Define funct ion space , r ight −hand side , and weak form .
W = FunctionSpace (mesh, ’Lagrange ’ , degree=args . k )
f_rhs = Function (W) . in terpo la te (x * exp(y ) ) # manufactured
u = Function (W) # i n i t i a l i z e d to zero here
v = TestFunction (W)
F = ( dot ( grad (u) , grad (v ) ) − f_rhs * v ) * dx

# Define D i r i ch le t boundary condit ions
g_bdry = Function (W) . in terpo la te (− x * exp(y ) ) # = exact solut ion
bdry_ids = (1 , 2 , 3 , 4) # a l l four sides of boundary
bc = DirichletBC (W, g_bdry , bdry_ids )

# Solve system as though i t i s nonlinear : F(u) = 0
solve (F == 0 , u , bcs = [ bc ] , opt ions_pref ix = ’ s ’ ,

solver_parameters = { ’ snes_type ’ : ’ ksponly ’ ,
’ ksp_type ’ : ’ cg ’ } )

# Pr in t numerical error in L_ in f ty and L_2 norm
elementstr = ’%s^%d ’ % ( [ ’P ’ , ’Q’ ] [ args .quad ] , args . k )
u d i f f = Function (W) . in terpo la te (u − g_bdry )
with u d i f f . dat . vec_ro as vud i f f :

er ror_L inf = abs( vud i f f ) .max( ) [ 1 ]
error_L2 = sqrt (assemble( dot ( ud i f f , u d i f f ) * dx ) )
PETSc.Sys . Pr in t ( ’done on %d x %d gr id with %s elements : ’ \

% (mx,my, elementstr ) )
PETSc.Sys . Pr in t ( ’ er ror | u−uexact | _ in f = %.3e , | u−uexact | _h = %.3e ’ \

% ( error_Linf , error_L2 ) )

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



334 Chapter 13. Finite element method III: Firedrake and DMPlex

# Optional ly save to a . pvd f i l e viewable with Paraview
i f len ( args .o) > 0:

PETSc.Sys . Pr in t ( ’ saving solut ion to %s . . . ’ % args .o)
u . rename( ’u ’ )
F i le ( args .o) . wr i te (u)

Code 13.1. python/ch13/fish.py. A brief, powerful Poisson code.

The code is remarkably short given its flexibility and power. Using the prefix -s_, the solver
can be controlled by hundreds of PETSC solver options, with possibilities listed via -help
as usual. The code also reads a few options using the argparse library; these are listed by
-fishhelp.

Looking into the code, the utility method UnitSquareMesh() generates a regular grid of
triangles, laid out like the mesh in Figure 10.19, or a grid of rectangles (quadrilaterals) using
option -quad. Via DMPlex (below), Firedrake manages these meshes as unstructured. The code
in Chapter 14 will demonstrate how to read a mesh from a Gmsh-format file.

As with most examples in the book we solve F(u) = 0 using PETSC SNES, but here we
set the SNES type to ksponly because the problem is linear. The Jacobian matrix, generated by
Firedrake using symbolic differentiation, is SPD so the CG method (Chapter 2) is a good KSP
choice, and it is set as the default.

Note that the code could have been structured to directly solve a linear system using KSP.
This requires different syntax in defining the weak form and invoking the solver:

W = FunctionSpace(mesh, ’Lagrange’, degree=k)
u, v = TrialFunction(W), TestFunction(W)
a = dot(grad(u), grad(v)) * dx
L = f_rhs * v * dx
bc = DirichletBC(W, g_bdry, bdry_ids)
u = Function(W)
solve(a == L, u, bcs=[bc], ...)

Both arguments of the UFL version of the bilinear form a(u, v) =
∫

Ω
∇u · ∇v are symbolic,

a TrialFunction and TestFunction, respectively. Later the solver needs a solution vector
with values on the mesh, the discrete unknowns, so u is redefined as a Function. The code is
otherwise the same (Exercise 13.1).

Running fish.py requires activation of the Python virtual environment in which Firedrake
was built. Thus a first run looks something like this:

$ cd p4pdes/python/ch13
$ unset PETSC_DIR; unset PETSC_ARCH
$ source ~/firedrake/bin/activate
(firedrake) $ ./fish.py
done on 3 x 3 grid with P_1 elements:
error |u-uexact|_inf = 3.365e-03, |u-uexact|_h = 1.190e-03

Note that the uniform mesh (grid) is described in fish.py output by the number of vertices in
each direction; this 9-node grid has 8 triangular elements.

We may immediately try higher-order finite elements and finer grids. For example we can try
P2 elements (Figure 13.1) on a 17× 17 grid:

(firedrake) $ ./fish.py -mx 17 -my 17 -k 2
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Polynomial-degree refinement 335

P 1 P 2 P 3 P 4

Figure 13.1. Triangular Lagrange finite elements and their degrees of freedom.

Using Q3 quadrilateral elements (Chapter 9) is easy too:

(firedrake) $ ./fish.py -refine 3 -quad -k 3

The next section expands on how numerical error depends on element degree k.
Because we are actually running PETSC under the hood, we can easily experiment with

preconditioners, and indeed full control of the SNES/KSP/PC stack is available at the command
line. For example, algebraic multigrid (AMG; Chapter 10), which depends only on the matrix
entries, is available. In addition, because MeshHierarchy() generates refined grids (Code 13.1),
Firedrake can set up interpolation and restriction operators so that geometric multigrid (GMG;
Chapter 6) works too. For example, running the following with either gamg or mg for the PC type
uses P2 elements and a 129× 129 fine grid to yield a solution with more than 10-digit accuracy:

(firedrake) $ ./fish.py -refine 6 -k 2 -s_ksp_rtol 1.0e-12 -s_pc_type X

Add option -s_ksp_converged_reason to see that AMG takes 28 iterations while GMG takes
9. Using GMG preconditioning there are exactly 9 iterations for -refine 3 through -refine
7, so the method is optimal as expected, while untuned AMG gives slowly growing iterations.

Regarding visualization of results we note that the graphical X viewers used with DMDA ex-
amples in previous chapters are not suited to DMPlex unstructured meshes. However, Firedrake
can save the solution to a .pvd file for viewing with Paraview:

(firedrake) $ ./fish.py -refine 3 -o solution.pvd
(firedrake) $ paraview solution.pvd

Use of Paraview can be reasonably straightforward, but we make no attempt to document it here;
see www.paraview.org.

Polynomial-degree refinement
Until now we have regarded “refinement” as the process of making the mesh spacing small, and
the number of unknowns corresponding large, while holding the discretization scheme fixed.
However, with Firedrake we are also free to change the polynomial degree of the elements while
holding the mesh fixed. These two modes of numerical improvement are called h-refinement
and p-refinement, respectively [49]. Spectral methods [142] use pure p-refinement and h/p finite
element methods [87] use both modes. However, the unqualified word “refinement” for FD, FE,
and FV methods is understood to be h-refinement.

To illustrate p-refinement we fix a 5× 5 grid and increase the degree k:

(firedrake) $ for K in 1 2 3 4 5 6 7 8; do \
./fish.py -refine 1 -s_ksp_type preonly \
-s_pc_type cholesky -k $K; done
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Figure 13.2. p-refinement rapidly reduces the numerical error.

The numerical errors generated by these runs decrease rapidly because the solution is smooth and
well-approximated by polynomials (Figure 13.2). It can be shown that, as the polynomial degree
k → ∞, and assuming exact arithmetic, the error would go to zero faster than any negative
power of the k [87]. For P7 and P8 elements our solution is accurate to 12 digits. Given the
conditioning of the matrices (not shown), this level of accuracy cannot be significantly improved
when using double precision [143]. This level of accuracy is not achievable by h-refinement on
the P1 method because we run out of memory (Exercise 13.2).

Matrices in the above loop increase in size from 25 to 1089 rows. For such small matrices
it makes sense to use a direct solver, so here we have chosen Cholesky with nested-dissection
ordering (Chapter 2). The matrices have a block pattern from the 5 × 5 grid, but the blocks are
relatively dense and overall sparsity is in the 4–8% range (Exercise 13.5).

These p-refinement results make a mockery of the Chapter 7 definition of “optimal.” To
illustrate this we let N be the total number of degrees of freedom and we graph flops/N versus
N for both the p-refinement path above and an h-refinement path (Figure 13.3); the latter use P1

elements and CG+GMG preconditioning (Exercise 13.2). The h-refinement runs show optimality
in our usual sense; the amount of work per degree of freedom becomes nearly constant. By
contrast, in p-refinement the work per degree of freedom grows drastically. However, we can
generate a highly accurate solution to the PDE using relatively few total degrees of freedom.
Thus each degree of freedom in p-refinement deserves more effort than a degree of freedom for
a fixed-polynomial-degree method, assuming the PDE solution is smooth [142]. It is thus a fact
of life that the Chapter 7 definition has limitations.

Fact 20. Defining “optimal” as O(N) work for N discrete degrees of freedom makes no sense
for spectral methods. In a successful spectral method the degrees of freedom are worth much
more than they are in a fixed-polynomial-degree FE/FD/FV method.

To make this assertion quantitative we regard the numerical error as a function of the number
of flops, i.e., accuracy as a function of effort. Now p-refinement is a clear winner (Figure 13.4,
left). For example, we get numerical error norms of size 10−7 with a thousand times fewer
flops than the P1 method. The right side of Figure 13.4 shows the same conclusion relative to the
number of nonzero entries in the matrix, i.e., the storage size. Furthermore, the same conclusions
apply for quadrilateral Qk elements (Exercise 13.4).
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Figure 13.3. Measuring flops/N versus N suggests we should reevaluate our use of “optimal”
when describing solvers.
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Figure 13.4. The p-refinement approach is the clear winner by an accuracy-versus-flops (left) or
an accuracy-versus-nonzeros (right) standard.

The underlying DMPlex object
We now exploit our simple Poisson code fish.py in a different way, by looking under the hood
to understand the DMPlex type for managing unstructured meshes. This keeps a promise made
at the end of Chapter 10, where we sketched how unstructured meshes are handled in parallel.

Generally DM objects describe both the topology (e.g., which vertices are connected by edges)
and geometry (coordinates of vertices) of a mesh or grid. They can also describe how solutions
and other fields are laid out on the mesh [85]. Firedrake, however, uses separate DM objects for the
topology/geometry of the mesh, on the one hand, and for discretizations associated to particular
problems on the other [100]. That is, there is one DMPlex for the mesh and one DMShell for
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Figure 13.5. DMPlex mesh index order: elements then vertices then edges.

each function space over that mesh. In the case of fish.py:

• mesh._topology_dm is a DMPlex describing the topology and geometry of mesh, and the
way it is distributed in parallel, while

• W.dm is a DMShell describing the data layout for FunctionSpace W.

Regarding the layout of data, the Stokes example in Chapter 14 illustrates how different
FunctionSpaces in the same program, using the same mesh, may have different degrees of
freedom associated with the mesh points.

All pieces of a DMPlex mesh, i.e., all vertices, edges, and elements, are called points [10], or
n-cells, and every point has a unique index. Consider the example of the triangulation shown in
Figure 13.5, which is a view of mesh._topology_dm:

(firedrake) $ ./fish.py -mx 3 -my 2 -dm_view
DM Object: DM... 1 MPI processes
type: plex

DM... in 2 dimensions:
0-cells: 6
1-cells: 9
2-cells: 4

...

Here the 0,1,2-cells are vertices, edges, and triangular elements, respectively. The index order
shown in the figure is standard for DMPlex [100]: elements first, vertices second, and edges third.
In parallel the elements are strictly partitioned over processes (below), before the distribution of
the vertices and edges, which is one reason why elements come first in the index order.

DMPlex regards a mesh as a relation among points, namely via certain covering relationships
[10]. For example, an edge is covered by two vertices, and a triangle by three edges. (Equiva-
lently one may say that the two vertices are “incident to” the edge, and so on.) Thus, as shown in
Figure 13.6, the topology information in a DMPlex object may be regarded as a directed acyclic
graph (DAG; [34, 100]) with an edge from a point to each of the points which cover it. As shown
in the figure, this DAG is stratified by the topological dimension of the points, also called the
depth.

Only the vertices have geometrical coordinates, i.e., (x4, y4), . . . , (x9, y9). (They are stored
in a VectorFunctionSpace object mesh.coordinates. To reveal these coordinates do
print(mesh.coordinates.dat.data).) Assuming that the edges are linear and the elements
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0 1 2 3

10 11 12 13 14 15 16 17 18

4 5 6 7 8 9

Figure 13.6. The same DMPlex mesh as in Figure 13.5, but as a directed acyclic graph (DAG)
with three strata (horizontal levels).

are planar, the geometry of the mesh is fully defined by these vertex coordinates combined with
the topological/combinatorial information in the DMPlex.

Finite element assembly requires calling DMPlex methods to get the indices of the points
which form the cone [10, 85, 100] of a given point, namely all the points which cover it. One
must also call a method to get the coordinates of the vertices (Exercise 13.6). In fact, recall
that the residual function for a given FE method is assembled element by element by doing the
integrals in the weak form (Chapter 10). For each such integral we need certain data on the
edges which cover the element and on the vertices which cover those edges. Thus we need
the DMPlex transitive closure operation on the element. For example, following edges upward
from element 1 gives closure(1), the edges and vertices needed to compute an integral over
element 1. The reader should confirm that in Chapter 10 we (laboriously) implemented integrals
using the element closure in exactly this way. Now we are happy to let Firedrake and DMPlex
handle all the details.

In parallel the mesh must be distributed so that each MPI process holds sufficient information
for the residual and Jacobian functions to be assembled and for the solver to be applied on the
process’ part of the mesh. To give only a bit more detail, the elements are first strictly partitioned
across the processes so that each rank owns a unique set of elements. However, all edges and
vertices which cover an owned element must also be accessible on that process. This implies
redundant storage of certain lower-dimensional points of the mesh, that is, the storage of ghost
points for the closure of each element. It also follows that there is a distinction between local
(with ghosts) and global (uniquely owned) Vecs, a familiar idea from DMDA structured grids
(Chapter 3).

For example, consider how a mesh with 18 triangular elements is partitioned over 3 MPI
processes:

(firedrake) $ mpiexec -n 3 ./fish.py -mx 4 -my 4 -dm_view
DM Object: Parallel Mesh 3 MPI processes
type: plex

Parallel Mesh in 2 dimensions:
0-cells: 7 8 8
1-cells: 12 13 13
2-cells: 6 6 6

...

The owned elements (2-cells) are strictly partitioned and equally distributed, with 6 on each MPI
rank. However, a relatively obvious mesh decomposition into similar rectangular domains is not
used here. The actual decomposition shown in Figure 13.7 is slightly more efficient; see Exercise
13.7.
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rank 0 rank 1 rank 2

Figure 13.7. Owned (shaded) elements in a mesh partitioned across three MPI processes.

Exercises
13.1. Convert fish.py into a KSP-only code kspfish.py and check that it performs the same

way.
13.2. Generate convergence results for fish.py using Pk and Qk elements, k = 1, 2, 3, and

h-refinement. Recommended runs use options

-s_pc_type mg -s_ksp_rtol 1.0e-14 -refine LEV -k K [-quad]

In particular, confirm O(h2) convergence with P1 elements, but see [49] for the expected
convergence rates with other elements.

13.3. Run in c/ch6/ and python/ch13/, respectively:

$ ./fish -da_refine 1 -ksp_view_mat :A6.m:ascii_matlab
(firedrake) $ ./fish.py -refine 1 -s_ksp_view_mat :A13.m:ascii_matlab

and compare the matrices. (Consider sparsity patterns, diagonal entries, norms, and con-
dition numbers.) Evaluate the choice of diagonal scale used in ch6/fish.c.

13.4. Add -quad to the runs which generated Figure 13.2 to create a figure for Qk elements;
our conclusions regarding p-refinement will not change. Compare h-refinement with Q1

elements and generate new versions of Figures 13.3 and 13.4.
13.5. Consider the p-refinement runs in Figure 13.2. By looking only at larger p values (e.g.,

6, 7, 8), grids of different sizes (e.g. 3 × 3 versus 5 × 5), and either direct solvers (e.g.,
-s_ksp_type preonly -s_pc_type cholesky) or preconditioned Krylov methods
(e.g., -s_ksp_type cg -s_pc_type mg -s_ksp_rtol 1.0e-14), and by counting
flops versus numerical error norms, find a preferred high-accuracy solver for this Pois-
son problem when using substantial p-refinement.

13.6. Consider the serial run

(firedrake) $ ./fish.py -mx 3 -my 2 -dm_view

Reproduce Figures 13.5 and 13.6 by adding code to fish.py which calls these methods
of mesh._topology_dm, a DMPlex object:

• getDepth() to get the dimension, namely 2,

• getChart() to get the range of indices for the mesh, namely 0, . . . , 18,

• getDepthStratum(x) for x = 0, 1, 2 to get the ranges of indices for vertices,
edges, and elements, respectively,
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• getCoordinates().array to get the coordinates of the vertices,

• getCone(x) for x = 0, . . . , 3 to get the indices of the edges which are the (topo-
logical) boundaries of the four elements, and

• getCone(x) again for x = 10, . . . , 18 to get the indices of the vertices which are
the boundaries of the nine edges.

13.7. Modify fish.py so that you can identify the global and local element, edge, and vertex
decompositions in the parallel run
(firedrake) $ mpiexec -n 3 ./fish.py -mx 4 -my 4 -dm_view

(In addition to the methods in the previous exercise, getCoordinatesLocal() is useful
too.) Reproduce Figure 13.7.

D
ow

nl
oa

de
d 

12
/1

1/
20

 to
 1

28
.2

20
.8

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Chapter 14

Stokes equations
(with Firedrake)

The Python code in this chapter uses Firedrake to solve the Stokes model of a viscous fluid. After
glossing the physics of fluids we introduce the strong and weak forms of this model, and then
we apply mixed finite element (FE) methods [49] which approximate the velocity and pressure
variables from different spaces. The resulting discrete Stokes equations are symmetric but indef-
inite, with a natural block structure. The stability of mixed FE methods relates to the spectrum
of this block matrix, which we will make an effort to understand, with important consequences
for preconditioning.

Achieving high performance requires effective preconditioning, of course, but this is non-
trivial. We recall the fieldsplit PC type, introduced in Chapter 7, which composes a precon-
ditioner from chosen PCs on the blocks. For the velocity-velocity block of the Stokes system,
essentially a Laplacian, as in previous chapters we precondition with geometric multigrid. The
key additional step is Schur-complement preconditioning for the pressure variables, as supported
by fieldsplit. With these tools we can demonstrate convergent, optimal, and weak-scaling
Stokes solvers for a lid-driven cavity problem, on 2D unstructured meshes, based on composed
fieldsplit-Schur-multigrid preconditioners. We end with a high-resolution solution for corner
eddies.

Readers unfamiliar with Firedrake should at least read Chapter 13 before this one.

Incompressible viscous fluids
A fluid is a mathematical abstraction in which the density, velocity, and stresses in a large col-
lection of interacting particles are described by continuous functions. Of course, this useful
abstraction underlies many practical scientific and engineering models, and for background on
fluid equations see [2, 153, 156]. Here we present only enough of the theory to state the Stokes
model for very viscous incompressible fluids.

Let Ω ⊂ Rd be a domain with well-behaved boundary; only dimensions d = 2, 3 are con-
sidered. For t > 0 and x ∈ Ω, let u(t,x) ∈ Rd be the (vector) velocity and p(t,x) the (scalar)
pressure. Let ρ > 0 be the density which, for simplicity, we take to be constant. An incompress-
ible, isotropic, viscous fluid is described by the following equations [2]:

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ + f , (14.1)

∇ · u = 0, (14.2)
σ = 2µDu− pI. (14.3)
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344 Chapter 14. Stokes equations (with Firedrake)

Here σ = σij is the (Cauchy) stress tensor, f is a body force, µ is the (dynamic) viscosity, and
Du = (Du)ij is the strain rate tensor, namely the symmetrized gradient

Du =
1

2

(
∇u +∇u>

)
. (14.4)

Note that f has units of force per volume, and it may be in the form f = ρg, where g is the
acceleration of gravity. In general these scalars, vector fields, and tensors will vary in space and
time.

The notation used above may be a stumbling block. Using the 3D coordinate notation x =
(x0, x1, x2), the velocity gradient ∇u is a matrix,

∇u =


∂u0

∂x0

∂u0

∂x1

∂u0

∂x2

∂u1

∂x0

∂u1

∂x1

∂u1

∂x2

∂u2

∂x0

∂u2

∂x1

∂u2

∂x2

 ⇐⇒ (∇u)ij =
∂ui
∂xj

.

Note that the rows of ∇u are the gradients of the components ui. To compute the divergence of
a tensor, such as ∇ · σ in (14.1), one takes divergences of the columns of σ =

[
σij
]
:

∇ · σ =

〈
∂σ00

∂x0
+
∂σ10

∂x1
+
∂σ20

∂x2
,
∂σ01

∂x0
+
∂σ11

∂x1
+
∂σ21

∂x2
,
∂σ02

∂x0
+
∂σ12

∂x1
+
∂σ22

∂x2

〉
.

As the tensor Du is symmetric, and thus by (14.3) the tensor σ is also symmetric, column/row
distinctions will not be critical in our equations.

Equations (14.1)–(14.3) form the Navier-Stokes model. The velocity u, pressure p, and stress
tensor σ are usually treated as the unknowns. Vector equation (14.1) states momentum conser-
vation [119], essentially Newton’s second law ma = F, where the ∂u/∂t + u · ∇u is the
acceleration of a fluid packet as it is carried along by the motion. Scalar equation (14.2) is in-
compressibility, a constraint on the flow. Tensor equation (14.3), the constitutive relation or flow
law [69], says that the rates of deformation Du of a small packet of fluid determine the stresses
which that packet applies to its neighbors (and vice versa by Newton’s third law). More precisely,
the stresses other than pressure, i.e., the deviatoric stresses σ + pI , are proportional to Du with
coefficient 2µ. (This is the meaning of viscosity µ.) Note that if the stresses σ are known then
equations (14.2) and (14.3) determine the pressure: tr(Du) = ∇ ·u = 0 =⇒ p = − tr(σ)/d.

We can clarify the physical meaning by considering units. Stresses like σ and p are in Pascals,
Pa = N m−2, or force per area, while the dynamic viscosity µ has units Pa s = kg m−1 s−1. On
the other hand, the spatial derivatives of velocity appearing in (14.1)–(14.3) have units of s−1,
so-called strain rates. The units for equation (14.1) are thus Pa m−1 = kg m−2 s−2 = N m−3, so
this equation either balances stress gradients or forces per unit volume according to taste.

Equations (14.1)–(14.3) exhibit two flavors of nonlinearity. First is the convective derivative
u · ∇u, which accounts for turbulence [2]. Second is the possibility that the viscosity depends
on deformation rates, for example when µ = µ(|Du|) as happens in geodynamics and glaciers
[108, 133], for example. However, while PETSC is well suited to such nonlinear problems, we
will only consider the linear Stokes model in this chapter. This model arises from (14.1)–(14.3)
by first setting the entire acceleration term on the left side of (14.1) to zero. That is, the Stokes
model is for slow fluids in which the forces of inertia are neglected. Second, we will assume that
the fluid is Newtonian, meaning that the dynamic viscosity µ = µ(x) is solution-independent. If
we also eliminate the stress tensor then the equations combine to become the system

−∇ · (2µDu) +∇p = f , (14.5)
∇ · u = 0. (14.6)
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Incompressible viscous fluids 345

Vector equation (14.5) states that, in a slow fluid, the viscous stress and pressure gradients bal-
ance the body force. A less casual argument than this one would derive (14.5) by scaling the
equations with the dimensionless Reynold’s number R and then sending R → 0; for such an
argument see [2].

System (14.5)–(14.6) is the strong form of our problem, but a clear derivation of the weak
form will be important for applications, for example when the viscosity is variable, and for un-
derstanding preconditioner choices based on block structure. The proof of the following lemma
about the matrix trace tr(A) =

∑d−1
i=0 aii is easy (Exercise 14.1). It says that symmetric and

skew-symmetric matrices are orthogonal in a certain inner product.

Lemma 14.1. If A,B ∈ Rd×d then tr(A>) = tr(A) and tr(AB) = tr(BA). If A is symmetric
(A> = A) and B is skew-symmetric (B> = −B) then tr(AB) = 0.

Definition. For square matrices A,B we define the Frobenius inner product:

A : B = tr(A>B) =

d−1∑
i,j=0

aijbij . (14.7)

Now suppose that the boundary of the domain Ω ⊂ Rd is decomposed into well-behaved
disjoint sets, ∂Ω = ∂DΩ∪ ∂NΩ. On ∂DΩ the velocity u is equal to known values gD (Dirichlet
conditions), so we define a space of admissible velocity fields,

XD =
{
v ∈

(
W 1,2(Ω)

)d ∣∣∣v = gD on ∂DΩ
}
. (14.8)

Let X0 = (W 1,2
0 (Ω))d be the space with v = 0 on ∂DΩ. On ∂NΩ, with outward normal n, a

boundary stress gN is applied (Neumann conditions):

σn = (2µDu− pI)n = gN . (14.9)

(Here “σn” denotes the matrix-vector product, and n is a column vector.) A solution of the
Stokes problem is a velocity-pressure pair u ∈ XD and p ∈ L2(Ω).

In order to apply the FEM, or to state the problem in UFL/Firedrake, we need the weak form
[19, 49]. It arises from integration by parts as follows. If u, p are assumed to be smooth, and
if v ∈ X0 is a velocity test function, and if ∂Ω is nice enough to apply the divergence theorem,
then multiplying (14.5) by v and integrating yields∫

Ω

− [∇ · (2µDu)] · v +

∫
Ω

∇p · v =

∫
Ω

f · v. (14.10)

Recall the integration-by-parts formula which results from the product rule ∇ · (ϕw) = ∇ϕ ·
w + ϕ∇ ·w and the divergence theorem, namely∫

Ω

ϕ∇ ·w =

∫
∂Ω

ϕw · n−
∫

Ω

∇ϕ ·w. (14.11)

Apply this technique to the viscous-stresses term in (14.10), denote the columns ofDu by (Du)i
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346 Chapter 14. Stokes equations (with Firedrake)

and write the test function v in components vi:∫
Ω

[∇ · (2µDu)] · v =

d−1∑
i=0

∫
Ω

∇ · (2µ(Du)i) vi

=

d−1∑
i=0

∫
∂Ω

2µ(Du)i vi · n−
∫

Ω

2µ(Du)i · ∇vi

=

∫
∂Ω

(2µ(Du)n) · v −
∫

Ω

2µDu : ∇v>

The last integral uses the Frobenius product (14.7). Because symmetric and skew-symmetric
matrices are orthogonal in this inner product it follows that

Du : ∇v> = Du :

[
1

2

(
∇v +∇v>

)
− 1

2

(
∇v −∇v>

)]
= Du : Dv.

Finally, dealing also with the pressure term in (14.10) using integration-by-parts formula (14.11),
we have the new form

−
∫
∂Ω

[(
2µDu− pI

)
n
]
· v +

∫
Ω

2µDu : Dv − p∇ · v =

∫
Ω

f · v. (14.12)

Observe that the boundary integral in (14.12) is zero over ∂DΩ, because v = 0 there. Further-
more, the Neumann boundary quantity (14.9) has arisen naturally in this calculation.

The two-equation weak form of the Stokes model follows by using (14.9) in (14.12). The
second equation arises from multiplying the negative of (14.6) by a scalar test function q ∈
L2(Ω) and integrating:∫

Ω

2µDu : Dv −
∫

Ω

p∇ · v =

∫
Ω

f · v +

∫
∂NΩ

gN · v (14.13)

−
∫

Ω

q∇ · u = 0. (14.14)

Observe that p, q ∈ L2(Ω) are not differentiated in these equations, and that only first derivatives
appear on u and v. The symmetric block structure seen later arises from the fact that the negative
divergence is the adjoint of the gradient.

To see the structure of (14.13)–(14.14) more clearly we define bilinear forms

a(w,v) =

∫
Ω

2µDw : Dv, b(w, q) = −
∫

Ω

q∇ ·w. (14.15)

In terms of a combined, symmetric bilinear form

k(u, p;v, q) = a(u,v) + b(v, p) + b(u, q), (14.16)

and a linear functional

`(v) =

∫
Ω

f · v +

∫
∂NΩ

gN · v, (14.17)

the solution pair u ∈ XD, p ∈ L2(Ω) satisfies

k(u, p;v, q) = `(v) for all v ∈ X0 and q ∈ L2(Ω). (14.18)
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Mixed FE methods and the discrete equations 347

“Weak form of the Stokes model” will, from now on, refer to either (14.13)–(14.14) or (14.18);
they are equivalent.

The symmetry of bilinear forms a and k suggests a connection to optimization (Exercise
14.5). However, as shown in detail below, the symmetric matrix formed by discretizing k is
indefinite, with both positive and negative eigenvalues, so (14.18) is not the extremal condition
of a coercive functional. Instead the solution comes from minimizing in some directions and
maximizing in others (Exercise 14.8). Supposing homogeneous boundary conditions for sim-
plicity, one may observe that the velocity u is the minimum of I(v) =

∫
Ω
µ|Dv|2 − f · v over

the subspace K = {∇ · v = 0} ⊂ X0, and then prove that (14.13) applies for some pressure,
i.e., Lagrange multiplier, p ∈ L2 [51, Theorem 8.4.6]. While such a constrained-optimization
approach allows one to show well-posedness of the continuum problem, a more direct approach,
emphasizing the role of an inf-sup condition between the continuum spaces X0 and L2, is in [19,
sections III.4 and III.6]. This condition will also arise as a practical stability consideration when
choosing FE spaces.

If Dirichlet conditions apply on the entire boundary, namely if we are in the enclosed flow
case ∂DΩ = ∂Ω, and if c is any constant, then for v ∈ X0 we have∫

Ω

c∇ · v = c

∫
∂Ω

v · n = 0. (14.19)

That is, in this case (14.13) cannot have a unique solution for p because we may replace p by
p + c. (Equivalently we observe that only ∇p appears in (14.5) and not p itself.) In practice,
nonuniqueness is resolved by telling the solver that the set of constant pressures is a null space.
Also, under the same enclosed-flow hypothesis, incompressibility (14.6) implies

0 =

∫
Ω

∇ · u =

∫
∂Ω

gD · n. (14.20)

That is, the average flow into Ω must be zero, thus the Dirichlet boundary values gD must satisfy
an integral condition.

The above derivation of the Stokes equations allows the viscosity µ to vary in space. We only
consider constant viscosity in computations, but our 2D code stokes.py (below) can handle
variable viscosity µ(x, y). Furthermore one may easily extend the above derivation, and the
code, to non-Newtonian fluids wherein viscosity depends on strain rates [108, 133]. On the other
hand, when µ is constant one may simplify the highest-order term in the momentum equation
(14.5) into a vector Laplacian∇2u (Exercises 14.2 and 14.3), i.e.,

− µ∇2u +∇p = f . (14.21)

This form is common in the literature (e.g., [49, 51]).

Mixed FE methods and the discrete equations
“Mixed” finite element methods for the linear Stokes model enforce the weak form (14.18) over
basis functions coming from distinct velocity and pressure spaces [49]. The resulting symmetric
but indefinite matrix equations have a block structure in which the blocks correspond to the
bilinear forms a and b in (14.15).

To show this structure, suppose we use test function spaces

Vh ⊂ X0, Wh ⊂ L2(Ω) (14.22)

with nu (vector) velocity basis functions φi ∈ Vh and np (scalar) pressure basis functions ψi ∈
Wh. Matrix entries are defined using the bilinear forms

Aij = a(φi,φj), Bij = b(φi, ψj).
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348 Chapter 14. Stokes equations (with Firedrake)

Statement (14.18), enforced on Vh ×Wh, becomes the discrete Stokes equations[
A B>

B 0

] [
u
p

]
=

[
f
0

]
. (14.23)

The body force and boundary stresses combine into fi = `(φi); see (14.17).
To enforce Dirichlet conditions we must first extend gD to all of Ω by using additional hat

functions along the boundary (e.g., as in Chapter 10), and then adding trivial equations for the
boundary nodes in ΩD, but the system of equations continues to have form (14.23). (The details
will, in fact, be handled by Firedrake.) The discrete solution now consists of vectors u ∈ Rnu ,
p ∈ Rnp in bases {φi}, {ψi} respectively. Because of how the Dirichlet conditions are handled,
the total number of degrees of freedom N = nu +np includes the velocities and pressures along
the full boundary ∂Ω.

Observe that A ∈ Rnu×nu is an SPD matrix, and if µ is constant then it discretizes the
vector Laplacian −µ∇2. Matrix B ∈ Rnp×nu is the discretization of the negative divergence
−∇· . Because the transpose corresponds to integration by parts, B> is the discretization of the
gradient ∇. These blocks define the system matrix:

K =

[
A B>

B 0

]
∈ RN×N . (14.24)

By writing out the corresponding scalar component equations in 2D, and ordering the velocity
components {ux} before {uy}, (14.24) expands to

K =

Ax 0 B>x
0 Ay B>y
Bx By 0

 . (14.25)

Here Ax, Ay are (discrete) scalar Laplacians and Bx, By are discretizations of −∂/∂x and
−∂/∂y, respectively. However, because the velocity unknowns are actually interleaved {(ux)0,
(uy)0, (ux)1, (uy)1, . . . }, block structure (14.25) is not what one sees when viewing the assem-
bled matrix at run time. (On the other hand, use -s_mat_type aij -s_ksp_view_mat with
the code below to show block decomposition (14.24).)

Firedrake will handle the assembly of the discrete equations, but the structure of block matrix
K is still important. We will need to understand its spectral properties in order to make educated
choices about efficient solvers, especially Krylov methods and preconditioners leading to optimal
scaling. Thus we will have more to say about K, but first let us get a code running.

A Stokes flow code
The Firedrake code python/ch14/stokes.py solves three different 2D boundary-value prob-
lems for the linear Stokes model, each on the unit square:

• The default is a lid-driven cavity on a unit square domain, a fluid dynamics favorite [49,
107]. Only the top boundary has nonzero (tangential) velocity, and, because the boundary
conditions are Dirichlet, we tell the solver to remove the null space of constant pressure
fields to make the problem well posed. Later we will illustrate a well-known phenomenon
which arises in this example: corner eddies [2, 113].

• Option -nobase gives a variant of the default problem. It has homogeneous Neumann
(σ · n = 0) boundary conditions on the bottom, so fluid flows in and out, and it is well
posed as is; the null space is trivial.
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A Stokes flow code 349

• Option -analytical gives a test problem from [107]. It can be derived by choosing a
stream function, differentiating to get a divergence-free velocity field, choosing a simple
pressure, and then solving equation (14.5) to generate the balancing body force (Exercise
14.14). Again the boundary conditions are all Dirichlet so the null space must be removed.

We show only short excerpts from stokes.py. The first specifies function spaces for a mixed
FE method:

V = VectorFunctionSpace(mesh, ’CG’, degree=K)
if dp:

W = FunctionSpace(mesh, ’DG’, degree=L)
else:

W = FunctionSpace(mesh, ’CG’, degree=L)
Z = V * W

Here the default mesh is a uniform triangulation of the unit square, but option -quad chooses
quadrilaterals instead. One can also read an unstructured mesh from a file (e.g., the mesh shown
later in Figure 14.9), and there is no restriction on the 2D domain Ω as long as boundary condi-
tions are consistently specified.

After initial creation, or having been read from a file, any mesh can be uniformly refined n
times using option -refine n. In Firedrake one may set up a refinement hierarchy in which
the initial mesh is the coarsest, and where each triangle is uniformly refined by a factor of four
at each level. Because interpolation/restriction operators are also supported through Firedrake
and DMPlex, our code thereby allows geometric multigrid (GMG, -s_pc_type mg); we will
demonstrate this capability soon.

Options -udegree and -pdegree set the polynomial degrees K and L of elements in V and
W, respectively, and a discontinuous pressure space is chosen by option -dp. For triangles, if
K is one higher than L and the pressure space is continuous then Z=V*W is the Taylor-Hood
element (Pk+1)2 × Pk [139], with default P2 × P1, the lowest-degree stable combination. We
will compare several stable mixed methods below.

Next in the code we set boundary conditions. As the domain is Ω = (0, 1)2, the sides
(x = 0, 1) are labeled by 1, 2, the bottom (y = 0) as 3, and the top (y = 1) as 4. For the default
and nobase problems the velocity on the top surface is tangential (u · n = 0) and quadratic
(u · t = x(1− x)). The code looks like this:

u_noslip = Constant((0.0, 0.0))
ux_lid = x * (1.0 - x)
u_lid = Function(V).interpolate(as_vector([ux_lid,0.0]))
bcs = [ DirichletBC(Z.sub(0), u_noslip, (1,2,3)),

DirichletBC(Z.sub(0), u_lid, (4,)) ]

In the default and -analytical problems the entire boundary is Dirichlet, thus we tell the solver
that constant velocities form the null space of B (and K):

ns = MixedVectorSpaceBasis(Z,[Z.sub(0),VectorSpaceBasis(constant=True)])

(No null space is set in the -nobase problem.) Observe that the A block in the system matrix K
(14.24) is invertible as long as ∂DΩ is nonempty.

As with our earlier Poisson code, stokes.py solves a general, potentially nonlinear system
F = 0 where, from the weak form (14.18),

F(u, p;v, q) = a(u,v) + b(v, p) + b(u, q)− `(v). (14.26)

(Recall that a, b, and ` are defined in (14.15) and (14.17).) A Function is needed to store the
solution and TestFunctions are used in defining F:
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350 Chapter 14. Stokes equations (with Firedrake)

up = Function(Z)
u,p = split(up)
v,q = TestFunctions(Z)
Du = 0.5 * (grad(u)+grad(u).T)
Dv = 0.5 * (grad(v)+grad(v).T)
F = (2.0 * mu * inner(Du,Dv) - p * div(v) - div(u) * q \

- inner(f_body,v)) * dx

Consider what Firedrake will do with this UFL description of the weak form. Using the
chosen FE spaces it will create a residual function for SNES call-back, namely a computable
function F : RN → RN corresponding to (14.26). Conceptually speaking, to do this it will gen-
erate an ordered basis {(φj , ψj)}N−1

j=0 of the mixed FE space and represent the solution (u, p)
as a linear combination in this basis. Then it will compute the components of the residual,
F (u, p)j = a(u,φj) + b(φj , p) + b(u, ψj)− `(φj), by looping over the elements to do local as-
sembly, and the same ordered basis will supply test functions. The resulting function is generally
similar to our naive FE residual in Chapter 10, for example, but now generated from a high-level
UFL description of the problem.

A Jacobian function JF is also computed by Firedrake via symbolic differentiation from the
UFL form of F [126]. That is, a Jacobian call-back is created with no user effort! This is a huge
advance over hand coding such a function and/or needing to fall back to -snes_fd_color.

The solver is now called in one line which sets boundary conditions, the null space, and
solver parameters:

solve(F == 0, up, bcs=bcs, nullspace=ns, options_prefix=’s’,
solver_parameters={...})

Our substantial discussion of solver parameters is deferred until after we address the spectral
properties of the system matrix. For now we will show no more lines of code from stokes.py,
but note it has fewer than 200 substantive lines. Its additional bookkeeping parts include parsing
options, creating a mesh, packaging preconditioning options (covered below), and reporting on
the solver and solution. Finally, option -o saves the solution in a Paraview-readable form.

A first run might simply show the assembled matrix K for a small grid:

(firedrake) $ ./stokes.py -refine 1 -s_ksp_view_mat
solving on 5 x 5 grid with P_2 x P_1 Taylor-Hood elements ...
Mat Object: (s_) 1 MPI processes
type: nest
Matrix object:
type=nest, rows=2, cols=2
MatNest structure:
(0,0) : type=seqbaij, rows=162, cols=162
(0,1) : type=seqaij, rows=162, cols=25
(1,0) : type=seqaij, rows=25, cols=162
(1,1) : type=seqaij, rows=25, cols=25

(Recall that running Firedrake require activation of the Python virtual environment; see Chapter
13.) We see here that a Firedrake mixed FE method exploits the MATNEST type, with a BAIJ
(blocked) type for the velocity block and the AIJ type for the other blocks; compare forms
(14.24) and (14.25). To actually see the sparsity pattern one must reset the matrix type:

(firedrake) $ ./stokes.py -refine 1 -s_mat_type aij -s_ksp_view_mat draw

Figure 14.1 shows the result. As expected from (14.24), K has a large A block, a wide block B
representing the (negative) divergence, its tall transpose B>, which is the gradient, and a small
zero block to complete the diagonal, the dimensions of which appear in the MATNEST view.
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A Stokes flow code 351

Figure 14.1. Sparsity of K for a uniform 5× 5 grid and P2 × P1 elements.

The code sets the SNES type to KSPONLY, and the default KSP is GMRES, but for mixed
FE methods using MATNEST Firedrake chooses Jacobi as the default PC. This would seem to
be incorrect given that the diagonal of K has many zeros, but in fact the PCJACOBI type sets
diagonal zeros to 1.0 automatically, so convergence is possible. However, these defaults do not
form an adequate solver! For example, the runs

(firedrake) $ ./stokes.py -refine LEV -s_ksp_converged_reason

exceed 104 KSP iterations at -refine 3, a very coarse 17× 17 (uniform) grid.
A first alternative is a direct solver. Indeed, the combination of nested-dissection LU with a

diagonal-block shift (for invertibility), namely

-s_ksp_type preonly -s_pmat_type aij -s_pc_type lu \
-s_pc_factor_shift_type inblocks

succeeds in under one minute run time on levels up to -refine 7 (257 × 257 grid). At that
point the scaling and memory usage become too poor (as expected). Another combination is
unpreconditioned MINRES:

-s_ksp_type minres -s_pc_type none

This gives solver convergence in roughly comparable time, on the same levels up to a 257× 257
grid, but with growing KSP iterations. However, neither of these solvers scales properly. In the
next section we will address preconditioning more seriously.

For now we show an attainable result on a modest grid (Figure 14.2):

(firedrake) $ ./stokes.py -refine 5 -s_ksp_type minres -s_pc_type none \
-s_ksp_converged_reason -o lid5.pvd

Option -showinfo shows that nu = 3.3 × 104 and np = 4.2 × 103 in this case, thus N =
3.7× 104. (Note we will soon solve problems with N = O(107) in comparable time.)

The velocity field in the figure is visualized by streamlines [2] using the “Stream Tracer”
functionality in Paraview. We see the expected flow, a clockwise motion because the tangential
velocity on the lid is positive. There is also evidence of an eddy in the lower-left corner.
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352 Chapter 14. Stokes equations (with Firedrake)

Figure 14.2. Streamlines from a low-resolution (65× 65 uniform grid) solution.

The discrete Stokes matrix and its spectral personality
We will solve linear equations (14.23) by a Krylov method, and convergence depends essentially
on the location of the eigenvalues of the preconditioned discrete Stokes matrix K. Therefore
spectral properties of K need to be understood in order to make educated choices about such
solvers.

As generality is not really needed for this and the next two sections, we assume that both
∂DΩ and ∂NΩ have positive measure. Thus the continuous Stokes problem is well posed [49];
the -nobase problem serves as a concrete example.

Recall from (14.24) that K ∈ RN×N where N = nu + np is the total number of degrees of
freedom. SinceK is symmetric it has only real eigenvalues and, by well-posedness, there will be
no zero eigenvalues. The velocity blockA is SPD, with two copies of the scalar Laplacian. Well-
posedness also implies that B must be wide (nu ≥ np) and have full row rank [49]. Similarly,
B> has full column rank and a trivial null space (Exercise 14.4). However, the subspace null(B)
needs to be large because it is the subspace of (discretely) divergence-free velocity fields in which
we seek a velocity solution u satisfying the momentum equation (14.5).

It is useful to decompose K = KA + KB and sketch a picture of how the spectrum of K
is built from these parts; see Figure 14.3. It is easy to show that KA and KB separately have
spectrum as shown (Exercises 14.6 and 14.7). Specifically, the spectrum of KB is symmetric
around the origin, and it consists of exactly np positive eigenvalues, np negative eigenvalues, and
a zero eigenvalue of multiplicity nu − np. Also, because BB> approximates the scalar operator
−∇2, the nonzero eigenvalues of KB are approximate square roots of Laplacian eigenvalues.

While it is not true that eigenvalues are nice functions of matrix entries, and “σ(K) =
σ(KA) ∪ σ(KB)” is false, we can see how the sketch is correct in important ways. Think
of the eigenvalues of K as starting from those of KB and being perturbed by viscosity. The
µ = 0 case, an inviscid fluid, is a singular limit in which the momentum equation reduces to
∇p = f , so the pressure gradient balances the body force and the pressure is hydrostatic, but
incompressibility also applies. This decoupled, nonunique limit includes a large space of veloc-
ity solutions in the null space of B, namely divergence-free fields. Adding µ > 0 then assigns
a viscous-dissipation cost, determined by the action of A, on these modes. We therefore expect
that the zero eigenvalues of the µ = 0 case will move to the right as µ increases from zero.
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The discrete Stokes matrix and its spectral personality 353

KA =

[
A 0
0 0

]

λ
0

multiplicity np

KB =

[
0 B>

B 0

]

λ
0

multiplicity nu − np

K = KA +KB =

[
A B>

B 0

]

λ
0

[ ]

gap: size and stability?np negative eigenvalues nu positive eigenvalues

Figure 14.3. A sketch of how σ(K) is built from parts of K.

To say this algebraically, the following factorization shows that K has the same number of
positive eigenvalues as KA and the same number of negative eigenvalues as KB :

K =

[
A B>

B 0

]
=

[
I 0

BA−1 I

] [
A 0
0 S

] [
I A−1B>

0 I

]
. (14.27)

Here
S = −BA−1B> ∈ Rnp×np (14.28)

is called the Schur complement [64] of the blockA inK. One can show (Exercise 14.10) that−S
is SPD because A is SPD and B has full rank. Factorization (14.27) says that K is congruent
to the block-diagonal matrix K̃ = [A 0

0 S ], i.e., there is an invertible matrix X so that K =

XK̃X>. Sylvester’s law of inertia [49, 64] asserts that congruent symmetric matrices have the
same number of negative, zero, and positive eigenvalues. Since K̃ has nu positive eigenvalues
from A and np negative eigenvalues from S, the sketch is qualitatively correct.

The size of the gap around zero in σ(K) will grow as µ increases, but the gap also depends on
the domain Ω and the mesh resolution h > 0. The condition number κ(K) will also grow as h→
0 because the mesh supports higher-frequency velocity modes, and computational results for
the -nobase problem confirm this understanding. Figure 14.4, which has (signed) logarithmic
scaling on the horizontal axis, comes from numerical computations using a P2 × P1 mixed
FE method on a coarse 9 × 9 grid. Note that, because of how Firedrake implements Dirichlet
boundary conditions, a high-multiplicity λ = 1 eigenvalue always appears in the spectrum of K
(solid dots), independently of µ.

The figure shows how the eigenvalues move to the right as the viscosity µ increases from
10−5 to 102. For small µ the spectrum of K is a balanced set similar to σ(KB), but with an
additional cluster of small positive eigenvalues. For large µ the spectrum becomes a set more
like σ(KA) but with small-magnitude negative eigenvalues instead of a null space. As µ goes
from 10−5 to 100 the condition number κ(K) decreases from O(106) to its smallest values just
below O(103) when µ ≈ 0.01, and it increases again to O(109) for the stiff fluid with µ = 102.
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354 Chapter 14. Stokes equations (with Firedrake)
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Figure 14.4. The computed eigenvalues λ of K depend on the viscosity µ.

Preconditioning a symmetric, indefinite, and block system
Preconditioners for the discrete Stokes equations must be adapted to the structure and spectrum
of K =

[
A B>

B 0

]
. Because K is symmetric and indefinite, with both negative and positive eigen-

values, MINRES [49, 66] is a natural choice, but then the preconditioning matrix will need to
be SPD because symmetrical preconditioning requires it (Exercise 14.9 and Chapter 2). Alterna-
tively we may disregard symmetry and use GMRES.

All of our approaches will be based on the block structure of K, but they will also exploit
existing preconditioners for the velocity-velocity Laplacian block A. For that block we have
excellent multigrid preconditioners, either GMG (Chapters 6 and 7) or AMG (Chapter 10).

Recall that for the biharmonic problem at the end of Chapter 7, block preconditioners, us-
ing -pc_type fieldsplit and -pc_fieldsplit_type additive, applied a single GMG
V-cycle to invert the diagonal blocks and led to an optimal solution. However, all diagonal
blocks were invertible Laplacians in that example.

We now embark on three routes, seeing where they lead.

Route 1. If only we could invert the diagonal blocks of K, but the lower-right pressure-pressure
block is zero! So, suppose we change that block. This is done by so-called stabilized mixed FE
methods [49]; see Exercise 14.10. However, we will only do computations with stable mixed
methods here because the following routes, for preconditioning K itself, will yield effective
solvers.
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Preconditioning a symmetric, indefinite, and block system 355

Route 2. One preconditioning “extreme” (Chapter 2) is to fully invert K, and at least this can
be done in a blockwise manner. Gauss-Jordan elimination, using the Schur complement S =
−BA−1B> as in (14.27), takes the following form based on two block-diagonal and two block-
triangular factors:[

I −A−1B>

0 I

]
︸ ︷︷ ︸

solve for u

[
I 0
0 S−1

]
︸ ︷︷ ︸

solve for p

[
I 0
−B I

]
︸ ︷︷ ︸

eliminate u
from p eq.

[
A−1 0

0 I

]
︸ ︷︷ ︸
invertA block

[
A B>

B 0

]
=

[
I 0
0 I

]
.

(The reader should check this calculation. See Exercises 14.10 and 14.11.)
If A and S are invertible then multiplying-out the factors yields

K−1 =

[
A−1

(
I +B>S−1BA−1

)
−A−1B>S−1

−S−1BA−1 S−1

]
. (14.29)

Note that (S−1BA−1)> = A−1B>S−1 and thus K−1 is symmetric as expected.
Of course, actually assembling K−1 or A−1 should not be done, because it would cause a

complete loss of sparsity, and anyway the plan is to replace the action of A−1 by an approxima-
tion, a multigrid preconditioner. However, we must find a way to apply S−1 in some manner.
Noting that S is smaller than A, i.e., np < nu, so assembling S−1 is a credible approach, but we
will find that it is not necessary.

Dropping terms from the above product constructs preconditioners. Noting that the block-
triangular factors have unit diagonal, suppose we drop those factors. An approximation remains,

K−1 ≈
[
I 0
0 S−1

] [
A−1 0

0 I

]
=

[
A−1 0

0 S−1

]
, (14.30)

and in fact it matches the “invert the diagonal” intent in Route 1. That is, we may try the matrix

MD =

[
A 0
0 −S

]
(14.31)

as the preconditioning material (Chapter 2) for a MINRES calculation, for example. We have
also changed the sign on the lower-right block because we must supply a SPD preconditioner. It
turns out that this will work well because the spectrum of M−1

D K is known; see below.
Alternatively, one might sacrifice symmetry with a lower-triangular approximation

K−1 ≈
[
I 0
0 S−1

] [
I 0
−B I

] [
A−1 0

0 I

]
=

[
A−1 0

−S−1BA−1 S−1

]
(14.32)

corresponding to preconditioning-material matrix

ML =

[
A 0
B S

]
. (14.33)

Applying M−1
L has nearly the same computation cost as M−1

D , the only difference being that
we also apply the sparse matrix B. (The lower right block can either have a flipped sign or not,
without significantly affecting performance as a preconditioner [116].)

Applying MD or ML as a preconditioner requires a fast method for applying S−1, i.e., for
solving Sp = r. That is, we must still figure out how to approximately invert, i.e., precondition,
the Schur complement block S while being efficient in flops and memory.
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356 Chapter 14. Stokes equations (with Firedrake)

Route 3. Success in preconditioning K using any matrix M will depend on the spectrum of

T = M−1K. (14.34)

Ever since Chapter 2 we have been thinking that the goal is to chooseM so that σ(T ) is clustered
tightly around one, that is, so that M−1 ≈ K−1. However, we should remember how norm-
minimizing Krylov methods actually work. What we need for GMRES, for example, is only that
σ(T ) be clustered near a few nonzero locations in the complex plane, relatively separated from
zero, thus that low-degree polynomials exist which are small on σ(T ). The same applies for
MINRES, but on the real line.

Consider the eigenvalues of T = M−1K if M is a real SPD diagonal matrix, but in the
simplest 2×2 case. That is, supposeK =

[
a b
b 0

]
andM = [ a 0

0 x ] where a > 0, b 6= 0, and x > 0.
Note there is no way to choose x to bring T close to the identity,

T =

[
1 a−1b

x−1b 0

]
,

and det(T ) = −a−1x−1b2 is negative anyway. If, however, we normalize this value to −1,
i.e. we make det(T ) = −1 by choosing x = a−1b2, then the characteristic equation of T is
λ2 − λ− 1 = 0 so the eigenvalues are λ = 1

2

(
1±
√

5
)
.

The reader who has not already forgotten Route 2 might also notice that the formula x =
a−1b2 generalizes to X = BA−1B> = −S. However, in the discrete Stokes equations B ≈
−∇· is not invertible, and this generates a known eigenvalue of T = M−1K. In fact, suppose
u ∈ null(B) and consider a block-diagonal preconditioner M = [A 0

0 X ]. Then

T

[
u
0

]
=

[
A−1 0

0 X−1

] [
A B>

B 0

] [
u
0

]
=

[
u
0

]
.

Thus T = M−1K has an eigenvalue λ = 1. The multiplicity of λ = 1 is at least as large as the
null space of B.

Now, the remarkably recent observation made in [116] is that the informal reasoning in the
last two paragraphs, which yields three real eigenvalues of T , represents the general case for
Schur-complement preconditioning usingMD. See Exercise 14.12 for the proof of the following
theorem.

Theorem 14.2. Assume K in (14.24) is invertible, let S = −BA−1B>, and consider MD in
(14.31). Then T = M−1

D K satisfies

(T − 1)(T 2 − T − 1) = 0,

and thus T has at most three distinct eigenvalues, namely λ = 1 and λ = 1
2

(
1±
√

5
)
.

Thus if we were to use the exact matrix MD as a preconditioner then MINRES would solve
our discrete Stokes problem in at most three iterations. A variant of the argument [116] shows
that GMRES needs at most two iterations using ML from (14.33) for preconditioning. These are
well-known instances where an effective preconditioning matrix exists whose inverse is not an
approximate inverse of the system matrix.

At this point, having seen that the Schur complement S arises in different ways, including
factorization (14.27), we are motivated to consider its spectral properties. Preconditioning the
Stokes equations requires finding an inexpensive approximation of S−1.

Fact 21. The Stokes equations have a zero diagonal block which requires attention. The equations
arise as an equality-constrained minimization problem, so a zero block appears in a mixed FE
method. One must deal with this in some manner. For stable elements, Schur decompositions via
fieldsplit still need a preconditioner for the Schur block.
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Stable elements and Schur complements 357

Stable elements and Schur complements
The matrix S = −BA−1B> should be a well-behaved operator with a bounded inverse. Its
factors approximate differential operators and their inverses, and they multiply together in a way
that suggests cancellation, as follows. When µ > 0 is constant, A ≈ −µ∇2 and B ≈ −∇·, so
BB> ≈ −∇2 also, and, ignoring issues of commutativity, it is reasonable to conclude

S ≈ −(−∇·)(−µ∇2)−1∇ ≈ −µ−1. (14.35)

(Recall that we are assuming that both ∂DΩ and ∂NΩ have positive measure, thus that the prob-
lem is well posed, and that A is invertible.) That is, S wants to be a constant (diagonal) operator
with a single negative eigenvalue. Of course this argument is far too casual, but it correctly
predicts that the eigenvalues of S are clustered near −µ−1 as long as the mixed FE spaces are
chosen in a good way. This choice of FE spaces, and its effect on the invertibility of the Schur
complement, is now the topic.

Our first step is nontrivial. The bilinear form b(v, q) = −
∫

Ω
q∇·v satisfies a nondegeneracy

condition, the inf-sup inequality, over the Hilbert spaces X0 = (H1
0 )2 and L2(Ω). Namely, there

exists γ > 0 so that

inf
q 6=0

sup
v 6=0

b(v, q)

‖v‖X0
‖q‖L2

≥ γ. (14.36)

Standard references prove this inequality and describe its role in proving the well-posedness of
saddle-point problem (14.18) [19, 24, 49]. Exercise 14.13 shows that a weaker kind of non-
degeneracy, namely that b(v, q) = 0 for all v implies q = 0, follows from (14.36).

Inequality (14.36) plays at least two roles in numerical computations. First, if it holds for
FE spaces Vh andWh, and if γ is independent of the mesh spacing parameter h > 0, then the
mixed FE method converges. In fact, the following theorem ([137, Theorem 2.1]; see also [49,
Theorem 3.1]) applies if the solution is smooth. In such an a priori estimate the exact-solution
norms are fixed independent of any aspect of the numerical method, and the theorem provides
an expected rate of convergence as h → 0. We will confirm these rates in actual computations
using the -analytical problem case.

Theorem 14.3. Suppose u and p solve weak form (14.18) and are smooth. Let Vh ⊂ X0 be a Pk
or Qk FE space andWh ⊂ L2(Ω) be a P` or Q` space. Suppose uh ∈ Vh and ph ∈ Wh solve
the discrete Stokes equations (14.23). If γ > 0 exists, independent of h, so that (14.36) holds for
all v ∈ Vh and q ∈ Wh, then there are positive constants, independent of h, so that

‖u− uh‖X0
+ ‖p− ph‖L2 ≤ C1h

k‖u‖Hk+1 + C2h
`+1‖p‖H`+1 . (14.37)

Moreover, if the domain Ω is convex then there are positive constants so that

‖u− uh‖(L2)2 ≤ C3h
k+1‖u‖Hk+1 + C4h

`+2‖p‖H`+1 . (14.38)

The inf-sup inequality (14.36), while abstract, is also relevant to the construction of Schur
complement preconditioning methods. In fact, the constant γ measures the norm of the square
root of the inverse of S. To make this connection precise, suppose that in (14.36) we integrate by
parts in b(q,v) and expand the definitions of inf and sup. Thus for all q ∈ L2 there exists v ∈ X0

so that
(v,∇q) ≥ γ‖v‖X0

‖q‖L2 . (14.39)

(The left side now uses the (L2)2 inner product (v,w) =
∫

Ω
v ·w.) Now letE be the square root

of the positive vector Laplacian −µ∇2. (There is a unique self-adjoint, positive, and unbounded
operator E so that E2 = −µ∇2 [127].) Furthermore, a(v,w) = (Ev, Ew) for all v,w ∈ X0,
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358 Chapter 14. Stokes equations (with Firedrake)

so (E ·, E ·) is equivalent to the ordinary inner product on X0 = (H1
0 )2. In (14.39) define

z = Ev to get z ∈ (L2)2. Thus there is Γ > 0 such that for all q ∈ L2 there exists a z ∈ (L2)2

so that
(z, E−1∇q) ≥ Γ‖z‖(L2)2‖q‖L2 . (14.40)

Equivalently, inequality (14.40) says that for all q ∈ L2 there exists a unit-length z ∈ (L2)2 so
that (z, E−1∇q) ≥ Γ‖q‖L2 . This is really just a lower bound on the norm of E−1∇q,

inf
q 6=0

‖E−1∇q‖(L2)2

‖q‖L2

≥ Γ1, (14.41)

where Γ1 ≥ Γ > 0. What we have shown in (14.41) is that the inf-sup inequality is equivalent
to a lower bound on a certain operator, which thus has no kernel:

Z = E−1∇ : L2 → (L2)2 is bounded below by Γ1 > 0.

It is a small step to square the operator and observe that Z>Z : L2 → L2 is bounded below by
Γ2

1 > 0. But now we have returned to heuristic (14.35),

Z>Z = ∇>E−1E−1∇ = (−∇·)(−µ∇2)−1∇,

that is, the operator Z>Z, which has a lower bound because the inf-sup condition holds, is
essentially the Schur complement up to a sign: S ≈ −Z>Z.

From now on we include a mesh parameter h > 0 in our notation:

Sh = −BhA−1
h B>h . (14.42)

Uniform invertibility of the Schur complement Sh, under mesh refinement, is important to
algorithmic scalability. Specifically, in using block preconditioners MD (14.30) or ML (14.32),
or approximations thereof, control on ‖S−1

h ‖ is needed to get well-clustered spectrum of the
preconditioned system matrix. However, for some choices of mixed FE spaces Vh ×Wh this is
not guaranteed [19, 24, 49]. There are two possible failure modes:

(i) B>h could have a nontrivial null space, or

(ii) S−1
h might exist but the condition numbers κ(Sh) might grow fast as h→ 0.

In the latter case convergence is at risk.
We will see that in fact failure mode (i) occurs for certain well-known unstable mixed FE

choices, but otherwise the estimated condition numbers κ(Sh) are modest, and so we expect
convergence when using such “stable” mixed FE choices in computations. In fact, consider the
runs

(firedrake) $ ./stokes.py -nobase -s_ksp_type minres -s_pc_type none \
-s_mat_type aij -s_ksp_view_mat binary:FILE.dat \
-s_ksp_rtol 1.0 MIXED -refine LEV

Here MIXED corresponds to the choices of elements in the first column of Table 14.1. These runs
simply assemble the Kh matrix over a uniform mesh of triangles and save it to FILE.dat; from
the option -s_ksp_rtol 1.0 the KSP “succeeds” (and stops) after one iteration. We use only
coarse grids LEV=1,2,3,4 because, in producing the table, we compute Sh and κ(Sh) by direct
linear algebra using the definition (14.42), and such computations clearly do not scale as h→ 0.
The table shows that the first three mixed FE methods, which we expect from the literature to
be stable [49, 107], yield uniformly invertible Schur complements Sh. The last two mixed FE
methods, expected to be unstable, in fact exhibit failure mode (i).
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Options for Schur+GMG preconditioners 359

Table 14.1. Above the line: 2-norm condition numbers κ(Sh). Below the line: the dimension of
null(B>h ), i.e., the rank deficiency of Bh.

5× 5 9× 9 17× 17 33× 33
P2 × P1 75.5 113 138 154
Q2 ×Q1 33.9 49.3 60.4 67.6
P2 × P0 5.63 6.61 7.08 7.27
P1 × P1 (4) (4) (4) (4)
P1 × P0 (8) (16) (32) (64)

Options for Schur+GMG preconditioners
How do these Schur-complement preconditioning ideas translate into PETSC solver options?
Note that the solver parameter space is now enormous. It combines choices for FE spaces,
solver options associated to the block structure of K, plus all the options for the inversion of the
diagonal blocks, namely for preconditioners for A and S. Preconditioners for A include the full
space of multigrid parameters (Chapters 6 and 7), but preconditioners for S require new choices
which are covered below. We must limit the choices just to have a sane testing strategy.

In all cases, we will combine Schur-complement block-structured preconditioning with a
single GMG V-cycle on the velocity block A. Thus the following common options apply to all
the runs below:

-s_pc_type fieldsplit -s_pc_fieldsplit_type schur \
-s_fieldsplit_0_ksp_type preonly -s_fieldsplit_0_pc_type mg \
-s_fieldsplit_1_ksp_type preonly

Choosing fieldsplit of type schur is more or less required for solving a stable mixed FE
method because the lower-right block in K is identically zero. For example, the additive type
of fieldsplit, used for the biharmonic equation in Chapter 7, would not work.

The choice of GMG is, of course, based on our results for the Poisson equation (Chapter 6).
That is, a single GMG V-cycle is an O(N) operation with excellent spectral properties. De-
spite the large parameter space for the GMG method, we use only the default settings. (See the
exploration of GMG options in Chapter 6, and Exercise 14.15 for comparison to AMG.)

However, we will explore several variations on Schur preconditioning, so the code stokes.py
packages options into two bundles. (See the code itself for how a Python dictionary is used to
define the bundles.) The first bundle is -schurgmg, which chooses the block form for the pre-
conditioning “material” M :

• -schurgmg diag uses M = MD from (14.31),

• -schurgmg lower uses M = ML from (14.33), and

• -schurgmg full uses M = K.

Thus a -schurgmg bundle includes a Schur factorization choice,

-s_pc_fieldsplit_schur_fact_type diag|lower|full

plus all of the above common options. Note that MINRES is a natural KSP choice for diag, but
GMRES works well in all cases and is obligatory for the lower and full choices; the user sets
-s_ksp_type accordingly. For type diag a bundled sign-flip option generates an approximation
to MD in (14.31):

-s_pc_fieldsplit_schur_scale -1.0
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360 Chapter 14. Stokes equations (with Firedrake)

The second bundle, option -schurpre, addresses how the Schur complement Sh is approx-
imated, that is, how it is applied as a preconditioner Ŝ−1

h . Here we are guided by which schemes
are available in PETSC, and by the literature, to propose two choices:

• -schurpre selfp specifies an approximation to Sh:

Ŝh = DS̃h
where S̃h = −Bh(DAh)−1B>h ∈ Rnp×np , (14.43)

where DA is the diagonal of A. Note that S̃h could be assembled into a relatively small
matrix which retains some sparsity, but in fact Ŝh is only its diagonal, which is even less
expensive. The PETSC options in this bundle are

-s_pc_fieldsplit_schur_precondition selfp \
-s_fieldsplit_1_pc_type jacobi

• -schurpre mass uses the sparse pressure-space mass matrix, defined using a basis of hat
functions ψj forWh:

Qij =

∫
Ω

ψiψj . (14.44)

In a stable mixed FE scheme µ−1Q is known to be spectrally equivalent to −Sh [49,
Theorem 3.22], though with wide bounds. The assembled mass matrix is approximately
inverted using the ICC method. To implement this one defines a Firedrake “auxiliary
operator” [92] which computes µ−1Q. That is, stokes.py defines the following Python
class containing the UFL weak form for (14.44):

class Mass(AuxiliaryOperatorPC):

def form(self, pc, test, trial):
a = (1.0/mu) * inner(test, trial)*dx
bcs = None
return (a, bcs)

In PETSC’s view, the resulting approximation Ŝh is formed starting from the zero pressure-
pressure block in K, i.e., “A11” in [10], so the options are

-s_pc_fieldsplit_schur_precondition a11 \
-s_fieldsplit_1_pc_type python \
-s_fieldsplit_1_pc_python_type __main__.Mass \
-s_fieldsplit_1_aux_pc_type bjacobi \
-s_fieldsplit_1_aux_sub_pc_type icc

In the next section we will test the algorithmic scaling of these solvers, but we can quickly see
some of the most promising combinations. First we consider solutions of the lid-driven cavity
on a fine uniform grid of 1024× 1024 quadrilaterals, using Q2 ×Q1 Taylor-Hood elements and
N = 9.4× 106 degrees of freedom:

(firedrake) $ ./stokes.py -quad -refine 9 -s_ksp_type W \
-schurgmg X -schurpre Y

We measure iterations (-s_ksp_converged_reason) and the flops (-log_view) for all six
cases X = diag|lower|full and Y = selfp|mass. We use W = minres for the diag cases,
but otherwise W = gmres.

The results in Table 14.2 show that the full block structure is more expensive in a flops-per-
iteration sense, and it does not yield a reduction in iterations versus lower. This one comparison
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Convergence and solver performance 361

Table 14.2. KSP iterations and total flops (times 109) for solutions of the default lid-driven cavity
problem on a 1024 × 1024 grid of quadrilaterals and Q2 × Q1 elements. The boxed cases reappear in
Figures 14.7 and 14.8.

X
Y

selfp mass

diag 32 238 19 151

lower 17 143 22 179

full 17 251 22 318

Table 14.3. The same measurements on the same solvers as in Table 14.2, but for a highly
nonuniform triangulation and P2 × P1 elements.

X
Y

selfp mass

diag 30 55.6 21 40.7
lower 16 34.0 26 52.8
full 15 55.6 26 92.5

is far from definitive, but we also consider a nonuniform mesh, shown in Figure 14.9 below, and
with five levels of refinement. Using P2×P1 elements yieldsN = 3.2×106 degrees of freedom.
Measuring the same quantities as before, the results in Table 14.3 confirm our conclusions. There
is no reason to use a full Schur block structure, and indeed the diag+mass and lower+selfp
solvers perform best. These tables explain why we will treat the solver options

-s_ksp_type gmres -schurgmg lower -schurpre selfp

as the defaults from now on.

Convergence and solver performance
As the reader has surely come to expect, we will now test stokes.py for convergence, algorith-
mic scaling (optimality), and parallel scaling.

The rate of convergence will depend on the (mixed) element type, but the theoretical rates
are mostly known. Based on the literature of mixed methods [24, 49], and the above results on
the norms ‖S−1

h ‖, we will only use the following stable element types [107]:

P2 × P1: The default-degree Taylor-Hood element on triangles.

Q2 ×Q1: The Taylor-Hood element on quadrilaterals: -quad.

P2 × P0: “Continuous-discontinuous” (CD) elements on triangles, with piecewise-constants for
pressure: -udegree 2 -pdegree 0 -dp.

P3 × P2: Higher-degree Taylor-Hood on triangles: -udegree 3 -pdegree 2.

We use uniform meshes, starting from a 9 × 9 mesh, through seven levels of refinement to
one with 1025 × 1025 nodes. For P2 × P1, Q2 × Q1, and P2 × P0 elements the finest mesh
yields N ≈ 107 degrees of freedom, and double that for P3 × P2 elements. When measuring
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P2 × P0 = O(h2.24)
P3 × P2 = O(h3.74)

Figure 14.5. L2-norm convergence of velocity u using stable mixed elements.

convergence we choose the following options wherein MIXED corresponds to the choices above:

(firedrake) $ ./stokes.py -analytical -refine LEV -s_ksp_rtol 1.0e-8 \
-s_ksp_type gmres -schurgmg lower -schurpre selfp MIXED

The smooth -analytical exact solution is suitable for testing convergence, but note that
correct evaluation of the numerical error requires a high-degree FE interpolant of the exact solu-
tion. (This is needed because in a (mixed) space Vh ×Wh the FE solution is actually closer to
the exact solution than the interpolant of the exact solution, a fundamental property of conform-
ing FE schemes [49].) Thus we interpolate the exact solution in Pk+2 × Pk+1 for a Pk × Pk−1

computation, for example. Also, we only consider h-refinement even though p-refinement, i.e.,
increasing k, would be effective. The reader is encouraged to experiment with other element
types and refinement modes.

Figure 14.5 shows that L2 velocity errors for the Taylor-Hood elements (Pk×Pk−1 andQk×
Qk−1) go to zero at O(hk+1) rates while pressure errors decay at O(hk) (Figure 14.6), exactly
as expected from (14.38) in Theorem 14.3. The P2 × P0 (CD) method has slower convergence,
even for velocity, because of “corruption” from the low-degree pressure approximation. The
higher-order Taylor-Hood elements converge most rapidly as expected.

Before measuring performance, recall the basic ideas of optimal algorithmic scaling. The KSP
repeatedly applies T = M−1K, where K here is the sparse, block matrix in (14.24). We want
each preconditioner application M−1 to be a fast O(N) operation, and we want the resulting
number of KSP iterations to be independent of N and h (Chapter 7). In order for the latter to
hold T must have clustered spectrum, corresponding to easy-to-generate Krylov polynomials
(Chapter 2), for example as addressed in Theorem 14.2. If these goals are achieved then the
whole solution method should be O(N), i.e., optimal.

We consider the algorithmic scaling of the three boxed solver choices in Table 14.2. Each
combines Schur-complement block structure and a single GMG V-cycle on the velocity block.
Algorithmic scaling here does not depend strongly on element type so we use the same uniform
meshes and Q2 ×Q1 elements as in Figures 14.5 and 14.6.
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P3 × P2 = O(h2.52)

Figure 14.6. L2-norm convergence of pressure.
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Figure 14.7. Preconditioned Krylov iterations for three Schur-GMG solvers.

Figures 14.7 and 14.8 show the number of iterations and the amount of work per degree of
freedom N , respectively, over a more than four orders-of-magnitude increase in N . All of the
solvers show optimality, as desired, with essentially level graphs. Note that the work is essentially
a multiple of the number of KSP iterations, except that preconditioner setup operations, included
in the work estimate, are amortized over the iterations. Because of the fixed number of nonzeros
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Figure 14.8. Flops per degree of freedom for the same solvers.

per row in K, the amount of work required to apply T = M−1K is indeed O(N) in all cases;
this can be confirmed in -log_view output.

Finally we look at parallel weak-scaling wherein the number of degrees of freedom per
process is fixed (Chapter 8). We use a 9× 9 coarse mesh:

(firedrake) $ mpiexec -n P ./stokes.py -quad -mx 9 -my 9 -refine LEV \
-s_ksp_type gmres -schurgmg lower -schurpre selfp

Choosing P = 1, 4, 16, 64 and LEV = 5, 6, 7, 8, respectively, yields 257 × 257 meshes on each
process, with about 6× 105 degrees of freedom.

Table 14.4. Weak scaling for stokes.py with GMRES, -schurgmg lower, and -schurpre selfp.

P N KSP iterations average flops
1 5.9× 105 17 0.89× 1010

4 2.4× 106 20 1.03× 1010

16 9.4× 106 20 1.03× 1010

64 3.8× 107 21 1.08× 1010

The results in Table 14.4 show good weak scaling, but a little thought shows this is no sur-
prise. The only significant solver difference between the serial and parallel cases is a difference
deep inside GMG, namely that the smoother switches from Gauss-Seidel (GS) to its processor-
block version. (Note the coarse grid problem is solved redundantly by LU.) This smoother
change, and imperfect algorithmic scaling (Figures 14.7 and 14.8) accounts for the small in-
crease in iterations.
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Moffatt eddies 365

Figure 14.9. A graded triangulation suitable for eddy hunting. This 794-element mesh is the
multigrid coarse level.

Moffatt eddies
The solvers we have developed for the Stokes problem are powerful. We show this by revealing
small features of the modeled flow in the lid-driven cavity. In theory this flow exhibits infinitely
many, exponentially small corner eddies (vortices) [2, 113]. Finding eddies, by exploiting the
scalability of the solvers, plus Firedrake’s ability to manage unstructured meshes, demonstrates
the effectiveness of our methods.

Consider the triangulation in Figure 14.9. The grading in the corners was generated by a short
script python/ch14/lidbox.py. It defines a geometry with a variable “characteristic length”
along the boundary, varying from 0.1 down to 0.001 in the lower corners. Gmsh uses this value
as a size target for the triangulation (Chapter 10).

To run the example, build the mesh as follows:

$ ./lidbox.py graded.geo
$ gmsh -2 graded.geo # generates graded.msh

The following command then reads the mesh and refines each triangle five times; each becomes
45 = 1024 triangles. It then solves the equations using GMRES iteration, the preferred Schur-
GMG preconditioner bundle, and a tight convergence tolerance:

(firedrake) $ ./stokes.py -mesh graded.msh -refine 5 \
-s_ksp_type gmres -schurgmg lower -schurpre selfp \
-s_ksp_rtol 1.0e-12 -o lid.pvd

Additional options -showinfo -s_ksp_converged_reason will aid in understanding this run.
Note that the mesh has 8.1× 105 elements for N = 3.2× 106 degrees of freedom.

The GMG preconditioner uses six-level V-cycles to approximately invert the velocity-velocity
block, down to the coarse level (the mesh in graded.msh) where a direct LU solver is used. The
solver needs 39 KSP iterations, less than 8 GB memory, and about two minutes run time. Because
-refine 3,4 levels cause 38 and 39 iterations, respectively, the evidence suggests optimality.

We visualize streamlines from output file lid.pvd using Paraview’s “Stream Tracer” func-
tionality. Manual zooming, and reseeding of the Tracer, reveals the first three successive eddies
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366 Chapter 14. Stokes equations (with Firedrake)

Figure 14.10. Zoomed views of the corner eddies, starting with the full square Ω = (0, 1)2 (left)
and expanding each time by a factor of more than 10 (middle and right). The third-level eddy appears in
the right-hand view.

(Figure 14.10). The flow speed is very low in the corners because of the no-slip (u = 0) con-
dition along the walls, but computed streamlines accurately reveal the flow direction. For the
right-angled corners in this experiment, Moffatt’s similarity-solution analysis [113] predicts a
sequence of eddies with each about 1/16th the size of the previous, thus the resolved third eddy
has linear dimensions around 16−3 ≈ 2 × 10−4; see Exercise 14.16. The author was unable to
find the fourth eddy in this or the -refine 6 result.

Exercises
14.1. Prove Lemma 14.1. Then show that (14.7) defines an inner product.
14.2. (a) Starting from the definition of ∇u, then by commuting mixed derivatives and using

incompressibility, show that∇ · (∇u) = 0.

(b) On the other hand, confirm that ∇ ·
(
∇u>

)
=
〈
∇2u0,∇2u1,∇2u2

〉
. This defines

the vector Laplacian symbol∇2u.
14.3. From the notation in the previous exercise, derive the constant-viscosity strong-form mo-

mentum equation (14.21) from (14.5).
14.4. The bilinear form defined in (14.15), b(v, q) = −

∫
Ω
q∇ · v, acts on distinct infinite-

dimensional spaces, thus it becomes a rectangular matrix under FE discretization. While
we do not expect it to be coercive like the bilinear form a, nor invertible in any sense, the
nondegeneracy condition in part (b) may apply.

(a) Suppose b(v, q) is a finite-dimensional bilinear form on v ∈ Rm and q ∈ Rn.
Assuming bases of these spaces, define a matrix M ∈ Rm×n which represents b.
(Essentially, M = B>.)

(b) Show that M has full column rank if and only if

b(v, q) = 0 for all v implies q = 0.

14.5. Consider definition (14.16) for the bilinear form k. This involves a choice of sign to
combine (14.13) and (14.14).
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Exercises 367

(a) Our choice makes the Stokes system matrix symmetric—confirm this—so that we
may use MINRES.

(b) An alternative definition appears in some literature (e.g., [107]), namely

k̂(u, p;v, q) = a(u,v) + b(v, p)− b(u, q).

Show k̂ is not symmetric, but that the discrete equations generated by k̂, namely the
system [

A B>

−B 0

] [
u
p

]
=

[
f
0

]
, (14.45)

is positive-semidefinite. How can this fact be exploited?

14.6. Consider matrix KA (Figure 14.3) and assume that A ∈ Rnu×nu is SPD. Show that
σ(KA) ⊂ {0} ∪ [α1, α2] where αi > 0 and the zero eigenvalue has multiplicity np. Give
tight bounds αi in terms of matrix norms.

14.7. Now consider KB (Figure 14.3) and assume that B ∈ Rnp×nu has full rank, with nu ≥
np. Note that KB is symmetric.

(a) Show that if KBz = λz for z 6= 0 then there is z̃ 6= 0 such that KB z̃ = −λz̃. (Hint.
Negate a portion of the vector.)

(b) Show that KB has a zero eigenvalue of exact multiplicity nu − np.

(c) Show that BB> is SPD and that if BB>p = µ2p then there is z 6= 0 such that
KBz = µz. (Hint. Suppose z =

(
cB>p,p

)
and find c.)

14.8. Stokes model equations (14.5)–(14.6) are the variational equations of a saddle-point prob-
lem, but justifying this claim requires care. To start, assume homogeneous Dirichlet con-
ditions on Ω ⊂ Rd and define

G(v, q) =

∫
Ω

µ|Dv|2 − q∇ · v − f · v (14.46)

for v ∈ (W 1,2
0 )d = X0 and q ∈ L2, and where |Dv|2 = Dv : Dv [49]. Consider the

following saddle-point problem which we will relate to the strong form (14.5)–(14.6):

inf
v∈X0

sup
q∈L2

G(v, q). (14.47)

(a) Fix v ∈ X0 such that ∇ · v 6= 0. Show that supq G(v, q) = +∞. (Hint. Choose a
sequence qn ∈ L2.)

(b) Suppose p is nice enough so that ∇p ∈ (L2)d. Let K = {v | ∇ · v = 0}, a linear
subspace of X0. Show that if v ∈ K then

∫
Ω
v · ∇p = 0. (Gradients are orthogonal

to divergence-free fields.)

(c) On K the functional G is independent of q, so define

H(v) = G
∣∣∣
K

(v, q) =

∫
Ω

µ|Dv|2 − f · v.

Show that if u, p are classical solutions of (14.5)–(14.6) then u minimizes H over
K. (Hint. Consider H(u + w) where w ∈ K, integrate by parts, and use part (b).)
Conclude that a classical solution of (14.5)–(14.6) solves (14.47).
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368 Chapter 14. Stokes equations (with Firedrake)

(d) Conversely, suppose u ∈ X0 and p ∈ L2 solve (14.47), and that G(u, p) < +∞.
Use (a) to show ∇ · u = 0.

(e) Suppose also that u, p are sufficiently regular to do the next steps. Show that if
v ∈ X0 then

G(v, p) =

∫
Ω

µ|Dv|2 +∇p · v − f · v.

Conclude that u, p solve (14.5) and (14.6). (Hint. Consider G(u + εw, p), where
w ∈ X0, and integrate by parts when needed.)

14.9. Suppose K ∈ RN×N is symmetric and M = HH> ∈ RN×N is SPD. Show that M−1K
and H−1KH−> have the same eigenvalues.

14.10. How was the Schur complement discovered? This exercise might make the algebra natu-
ral. Assume that A is SPD and B has full rank.

(a) Do a block row operation on linear system (14.23) to yield the triangular system[
A B>

0 −BA−1B>

] [
u
p

]
=

[
f

−BA−1f

]
.

(b) Let S = −BA−1B> be the Schur complement of A in K. Show that −S is SPD.

(c) Continuing (a), proceed to the formal solution

p = −S−1BA−1f, u = A−1(I +B>S−1BA−1)f.

(Note that only A and S are inverted here.)

(d) Parts (a) and (c) use blockwise Gaussian elimination and back substitution, respec-
tively. Continue with Gauss-Jordan elimination [143] to generate diagonal form, the
congruence factorization (14.27):[

A B>

B 0

]
=

[
I 0

BA−1 I

] [
A 0
0 S

] [
I A−1B>

0 I

]
.

(e) Assuming C is symmetric and positive-semidefinite, generalize parts (a)–(d) to the
equation [

A B>

B −C

] [
u
p

]
=

[
f
g

]
.

Here S = −(C +BA−1B>) is the Schur complement. (This generalization is used
for stabilized mixed FE methods [49].)

14.11. Verify inverse (14.29).
14.12. Prove Theorem 14.2. (Hint. A−1B>(BA−1B>)−1B is a projection. Or see [116]; it is

only four pages long!)
14.13. (This sequel to Exercise 14.4 explores the meaning of inf-sup inequality (14.36), by com-

paring to the finite-dimensional case.) Suppose b(v, q) is a bilinear form on v ∈ Rm
and q ∈ Rn, and consider any norms on these spaces. Nondegeneracy of such a finite-
dimensional bilinear form is equivalent to an inf-sup inequality. In fact, the following four
conditions are equivalent, as will be shown below in parts (a) and (b):
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Exercises 369

(i) For ` ∈ (Rn)∗, a solution q to b(v, q) = `(v), for all v, is unique;

(ii) b(v, q) = 0 for all v implies q = 0;

(iii) sup
v 6=0

b(v, q)

‖v‖
= 0 implies q = 0;

(iv) there exists γ > 0 so that inf
q 6=0

sup
v 6=0

b(v, q)

‖v‖‖q‖
≥ γ.

However, if the dimension were instead infinite then (iv) is stronger than the others. That
is, in function spaces there may be no inf-sup constant even if the form is nondegenerate
in the sense of (ii), for example.

(a) Show: (i) ⇐⇒ (ii) ⇐⇒ (iii).

(b) Show: (iii) ⇐⇒ (iv). (Hint. Consider the SVD.)

(c) Let b(v, q) =

∫ 1

0

xv(x)q(x) dx for v, q ∈ L2[0, 1]. Show (ii) holds but not (iv).

14.14. This problem justifies the -analytical exact solution in stokes.py.

(a) Recall that, by definition, Ψ is a stream function for u if u = 〈∂Ψ/∂y,−∂Ψ/∂x〉
([2]; Exercise 11.19). Show then that∇ · u = 0.

(b) Let Ψ(x, y) = 1
4π sin(4πx) sin(4πy) and find the corresponding u. On Ω = (0, 1)2,

let gD = u
∣∣
∂Ω

and p(x, y) = π cos(4πx) cos(4πy). Assume µ = 1 and derive f so
that equation (14.5) holds. Confirm the formulas in the source code.

(c) Contour the stream function using your favorite tool.

(d) Compare a streamline view of a numerical solution u (using your preferred resolu-
tion and solver options).

14.15. In stokes.py, geometric multigrid is bundled into the -schurgmg options. Modify this
to also allow algebraic multigrid (AMG), either gamg or hypre, for preconditioning the
velocity-velocity block. (Note that gamg requires the MATAIJ type.) After confirming
convergence, compare results with those in Figures 14.7 and 14.8.

14.16. Moffatt’s [113] analysis shows that, because the ratio of successive eddy sizes goes to
zero as the angle α goes to zero, small corner angles should be easier cases in which
to find eddies. In the case of α ≈ 30◦, for example, laboratory observations reveal two
eddies [2]. Modify lidbox.py to build a triangular lid-driven cavity with arbitrary corner
angle 0◦ < α < 180◦ and then use stokes.py and Paraview, and solver choices as
discussed in the text, to reveal as many eddies as possible for your preferred corner angle.
Karniadakis and Sherwin [87, Figures 1.3, 1.4], for example, use a graded mesh of only
30 triangular elements, but with polynomial degree 17, to reveal nine eddies in a 28.1◦

corner; reproduce this result. Also confirm that eddies disappear around α = 146◦.
14.17. A goal for the design of DMPlex is dimension independence [95]. While the UFL state-

ment of the Stokes weak form is already dimension independent, details of the mesh and
the boundary conditions inevitably depend on the dimension.

(a) Without changing any functionality, factor out the mesh-specific and boundary-
condition parts of stokes.py into a module meshbc.py. Rename the remainder
as stoked.py; it has essentially unaltered UFL weak form, solver configuration,
and post-processing.
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370 Chapter 14. Stokes equations (with Firedrake)

(b) Add a dimension option -d 2|3 to stoked.py. Implement 3D meshes, both uni-
form and refined in the corners, and lid-driven boundary conditions, on the unit
cube Ω = (0, 1)3. (Decide on what these boundary conditions should be and add to
meshbc.py accordingly.) Add a 3D .geo file for the refined corners case, and mesh
it with gmsh -3. Your code should now run in 3D; test this.

(c) Decide on and implement a scheme for verification of the 3D results. (Either modify
the -analytical case or set up 3D boundary conditions for which the flow is the
same as the 2D case.)

(d) Can you use the recommended Schur+GMG preconditioners to show optimality in
the 3D case? (This can get expensive.)

(e) Add option -d 1 for completeness. Just how trivial is your 1D solution? (Adding a
body force makes it slightly less trivial.)
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Appendix

Some numerical facts of life

At several places in the book we state inconvenient facts related to the complicated procedure of
solving PDEs numerically. They are repeated below, with their page numbers.

Fact 1. On a digital computer there are unavoidable limitations to numerical accuracy. If real
numbers are represented in floating point with machine precision ε, then the solution of Au = b
can only be computed within an error O(κ(A)ε), where κ(A) is the condition number. 11

Fact 2. Dense direct linear algebra has a high cost. For a dense matrix A ∈ RN×N , computation
of the solution to Au = b, by a direct method such as Gauss elimination (LU decomposition),
whether forming A−1 or not, requires O(N3) operations. 11

Fact 3. You should not assemble the inverse. The matrices A arising from discretized PDEs are
often sparse, but their inverses A−1 are usually dense and may not even fit in memory. 11

Fact 4. The linear system solver error is not the numerical error of the PDE method. Though
solving a linear system Au = b may be part of your method, making ‖e‖ = ‖v − u‖ small for
this system does not control the discretization error or the total numerical error. 12

Fact 5. The rate of residual reduction in a Krylov iteration is at the mercy of the spectrum of your
preconditioned matrix. Whatever Krylov iteration you choose, whether norm-minimizing or not,
good performance depends on the spectral properties of your matrix. A fast solver for a PDE
problem must somehow make the spectral properties of the preconditioned matrix so good that
the Krylov choice becomes almost unimportant. 21

Fact 6. Learning PETSC requires viewing solver objects at run time. If you did not view the
solver with -ksp_view, -snes_view, or -ts_view then you probably do not know what it did,
even if it succeeded. Viewing solvers is the first step to understanding their composition. 29

Fact 7. Parallel preconditioning generally depends on processor count. When the number of MPI
processes changes, a block-matrix or domain-decomposition preconditioner also changes. 38

Fact 8. Understanding the theory of convergence and stability for FD schemes requires thinking
globally, beyond the local truncation error. One must consider either the norms or eigenval-
ues of the family of matrices which are generated as the mesh is refined, and these are global
considerations. 58

Fact 9. Error stagnation will occur at some level of refinement. For a given floating-point preci-
sion, at some point in the refinement path the round-off error will become comparable with the
discretization error. Beyond this level, convergence cannot be verified. 83
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372 Appendix. Some numerical facts of life

Fact 10. Residual-evaluation code must be correct. All other choices about solving nonlinear
equations—Jacobian-evaluation methods, linear solvers, line search, initial iterates, etc.—are
irrelevant if your implementation of the nonlinear residual F(x) is wrong. 90

Fact 11. Stability is obligatory in a numerical scheme. You may seek greater accuracy, but expo-
nential growth of the approximation to a bounded or decaying solution is never acceptable. 109

Fact 12. Effective preconditioners aren’t like Krylov iterations. If you are already using a norm-
minimizing Krylov method then you need to add a fundamentally different idea to build a fast
solver. In PETSC such ideas are lumped into the preconditioner paradigm. LU decomposition,
domain decomposition, multigrid, and fieldsplit are examples. 131

Fact 13. Stalling numerical processes must be wrong [21]. Whenever the computer grinds very
hard for small or slow effect, there must be a better way to achieve the same goal. 134

Fact 14. Strong scaling requires that each process be kept busy on a problem of substantial size.
For a parallel PDE solver with N total degrees of freedom shared over P processes, something
like N/P > 105 is suggested. 207

Fact 15. Parallel efficiency requires assembling matrices using the same distribution as the solver
[134]. The vast majority of matrix entries should be generated on the process where they will be
used most. Do not expect much benefit from setting up a big system elsewhere and then reading
it into PETSC to “solve it in parallel.” 212

Fact 16. The easiest way to make software scalable is to make it sequentially inefficient [73].
Both deliberate and accidental attempts to “game” weak scaling come down to wasting time on
each process, relative to the performance of the best solution method in serial. 213

Fact 17. Parallel reductions are nondeterministic at the bit level. Because floating-point arith-
metic is not exactly associative, different orders of arrival during reductions will affect re-
sults. 215

Fact 18. Achieving good-looking numerical advection results requires effort. Numerical results
for simple advection tend to reveal that high-frequency components are transported at the wrong
rates. Nonlinear flux-limiters or slope-limiters can correct this, and are worth the effort. 296

Fact 19. Advection is not stagnation. Discretizations and iterations for advection-diffusion equa-
tions, either as solvers or multigrid smoothers, must be stable on coarse grids and follow the flow.
Stagnation is only an issue when the mesh Peclet number is small and the choice of advection
discretization unimportant. 305

Fact 20. Defining “optimal” as O(N) work for N discrete degrees of freedom makes no sense
for spectral methods. In a successful spectral method the degrees of freedom are worth much
more than they are in a fixed-polynomial-degree FE/FD/FV method. 336

Fact 21. The Stokes equations have a zero diagonal block which requires attention. The equations
arise as an equality-constrained minimization problem, so a zero block appears in a mixed FE
method. One must deal with this in some manner. For stable elements, Schur decompositions via
fieldsplit still need a preconditioner for the Schur block. 356
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∞-Laplacian, 238

adaptive mesh refinement, 187
additive Schwarz method, 16, 17, 148

convergence, 150
advection equations, 279

solution by characteristics, 280, 299, 309
advection-diffusion equations, 279

advection dominated, 299
exponential boundary layer, 300
inflow boundary condition, 299
internal layer, 299
Peclet number, 299
reduced problem, 299

Ahdahl’s law, 206
algebraic multigrid, see also multigrid, 16,

129, 193, 266, 272, 322, 335
classical, 267, 277
coarse grids, 266
smoothed aggregation, 267

alternating Schwarz method, 148
AMG, see algebraic multigrid
application context, 70, 81
arithmetic intensity, 202
ASM, see additive Schwarz method

backward stable methods, 11
Bash shell, xi
BFGS, see quasi-Newton methods
biharmonic equation, 189
binary files, 272
block Jacobi, 16, 17, 133
BoomerAMG, see Hypre
Bratu equation, see Liouville-Bratu

equation
bytes transferred, 202

C programming language, x

cache memory, 200
calculus of variations, 220, 318
Chebyshev iterative method, 21
CHKERRQ() macro, 7
Cholesky decomposition, 15, 16
circulant matrix, 309
classical iterations

via richardson, 137
cluster architecture, 200
coercive functional, 219, 318
complementarity problem, see variational

inequality
compute node, 200
concurrency (definition), 199
condition number, 10

relation to rounding errors, 11
conservation of energy, 43
convex functional, 219, 317
core (within a CPU chip), 200

diffusion-reaction equation, 78, 120
direct linear solver, 31, 351
-ksp_type preonly, 31
nested-dissection ordering, 63

Dirichlet boundary conditions, 44
discrete conservation, 281
dispersion, 282
DM, xiv, 337

defined as “data management,”
“distributed mesh,” or “distribution
manager”, 44

DMCreateMatrix(), 80, 262
-dm_view, 54
ghost nodes, 47
implementing mesh infrastructure

without, 243
DMDA, 44, 213, 269, 315

boundary types, 46
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creating, 44
-da_grid_x, 44
-da_grid_y, 44
-da_refine, 46
DMDACreate1d(), 65
DMDACreate2d(), 44
DMDACreate3d(), 66
DMDALocalInfo, 50, 79, 147
DMDASetUniformCoords(), 144
DMDASNESSetFunctionLocal(), 88
DMDASNESSetJacobianLocal(), 88
DMDASNESSetObjectiveLocal(), 227
DMDAVecGetArray(), 79
grid hierarchy, 180
locally owned part of grid, 50
parallel distribution of grid, 45
periodic boundary conditions, 121
refinement, 46
stencil types, 46
stencil width, 46
viewing graphically, 54

DMPlex, 129, 274, 331, 337
closure operation, 339
directed acyclic graph, 338

domain decomposition, 129, 137
local and global vector representation,

141
download example codes, 5
-draw_pause, 27

eigenvalue of a matrix, 13
error

in linear system, 12
numerical, 47, 57

code for computing norm, 34
stagnation, 83

Euler-Lagrange equation, 220, 275

FD methods, see finite difference methods
FE methods, see finite element methods
finite difference methods, x

centered diffusion scheme, 184
consistency, 56
convergence rate, 57, 83
convergent scheme, 57
error equation, 57
forward-time centered-space, 310
Lax-Richtmeyer equivalence theorem, 58
leapfrog, 310
local truncation error, 57

stable scheme, 58
stencil, 83
symmetrizing the equations, 49

finite element methods, x, 37, 219
bilinear functions, 222
efficiency relative to structured-grid FD,

269
element residual, 247
Galerkin method, 245
h/p methods, 331, 335
hat function, 224
mixed method, 343, 347
P1 elements, 246
parallel distribution of meshes, 274
Pk elements, 274, 334
Q1 elements, 188, 222
Qk elements, 274, 335
quadrature, 171
reference element, 171, 222, 248
stiffness matrix, 247
test functions, 244, 246
trial functions, 244, 246

finite volume methods, x, 279, 300
centered-flux formula, 281, 286
control volume, 280
Courant-Friedrichs-Lewy (CFL)

condition, 283, 310
dispersion relations, 310
donor cell method, see first-order

upwinding
first-order upwinding, 283, 286, 296
flux-limiter, see also high-resolution

schemes, 286, 292
Godunov’s barrier theorem, 287, 288
high-resolution schemes, 283, 286, 287,

296
Koren limiter, 287
leapfrog scheme, 285
mesh Peclet number, 300, 302
modified equation analysis, 285, 310
monotonicity-preserving scheme, 289
nonoscillatory discretizations, see

high-resolution schemes
numerical diffusion, 282
total variation diminishing, 288
van Leer limiter, 288

Firedrake library, xiii, 274, 331
flops (floating-point operations), 5, 200
flops rate, 200
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fluids, see also Stokes model
eddies, 365
enclosed flow, 347
flow law, 344
incompressibility, 344
lid-driven cavity, 348
momentum conservation, 344
Navier-Stokes model, 344
Newtonian viscosity, 344
strain rate tensor, 344
stream function, 312
stress tensor, 344
viscosity, 344

flux conservation equation, 279
free boundary problem, see variational

inequality
Frobenius inner product, 345
FV methods, see finite volume methods

Gauss quadrature, 232
Gauss-Seidel iteration, 132, 303

amplification factor, 170
Fourier analysis of smoothing, 169
is PC type sor, 16
is a preconditioner, 131
smoothing factor, 170

Gaussian elimination, see LU
decomposition

geometric multigrid, see also multigrid, 16,
129, 137, 157, 193, 303, 322, 335

additive Schwarz method as a smoother,
164

optimality, 177
rediscretization, 147, 154, 158, 305

ghost points, 339
Git, 5
git grep, 7

GMG, see geometric multigrid
Gmsh, 249, 272
.geo files, 249
refinement methods, 251

grep, 7
grid sequencing, 160

heat equation, 111
diffusivity, 111
Fourier’s law, 43
Neumann condition, 115

help string, 6
using grep on -help output to find

options, 7

high frequency mode, 135, 170
high performance computing, 199
h-refinement, 335, 362
Hypre, xiv, 266

ICC, see incomplete Cholesky
ILU, see incomplete LU
imbalance ratio, 200
incomplete Cholesky, 15, 16, 254, 264

scaling of iterations, 63
incomplete LU, 15, 16

as a smoother, 307
index set, 138, 252
induced matrix norm, 10
inf-sup inequality, 357
injection matrix, 138
interconnect, 200

capacity, 202
internal layer, 312
inverse matrix, 10

dense for sparse matrices, 11
IS, see index set
ISGetIndices(), 256

Jacobi iteration, 14, 16, 131
independent of concurrency, 38
is a preconditioner, 131

Jacobian, 68
FD evaluation via coloring, 84

algorithms, 85
column-intersection graph, 84
distance-2 coloring, 84

finite difference (FD) evaluation, 71
of a weak form, 240
Picard approximation, 259

Jacobian-free Newton-Krylov, 86, 187,
229, 258, 297

with preconditioning operator, 88
JFNK, see Jacobian-free Newton-Krylov

Koch snowflake, 272
Krylov space, 17
Krylov space methods, see also KSP , 17

approximation theory, 18
as iterative refinement, 21
CG, see conjugate gradients
Chebyshev, 21

as a smoother, 22, 137
relation to polynomials, 22

conjugate gradients, 19, 254, 334
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386 Index

algorithm, 39
as optimization algorithm, 19
bound on iterations, 62
error reduction and polynomials, 19
norm minimizing, 19
preconditioned, 40
scaling of iterations under grid

refinement, 61
generalized minimum residuals, 20, 301,

351, 356
avoiding restarts, 60
restarts, 20

GMRES, see generalized minimum
residuals

Jacobi and Gauss-Seidel are
preconditioners, 20

minimum residuals, 20, 343, 351, 356
MINRES, see minimum residuals
Richardson iteration, 18

as a smoother, 136
KSP, 21, 27
bcgs, 20
bicg, 20
cg, 21
cgne, 20
cgs, 20
chebyshev, 21
defaults, 30, 56
gmres, 21
-ksp_atol, 30
-ksp_converged_reason, 36
-ksp_max_it, 162
-ksp_monitor, 30
-ksp_monitor_solution, 55
-ksp_monitor_true_residual, 195
-ksp_norm_type, 162
-ksp_rtol, 30
KSPSetFromOptions(), 54
KSPSetNullSpace(), 277
KSPSetOperators(), 28, 54

two Mat arguments to set, 28
KSPSolve(), 29
-ksp_type, 21
-ksp_view, 29
-ksp_view_eigenvalues, 41
-ksp_view_mat, 35
-ksp_view_rhs, 35
-ksp_view_singularvalues, 62, 234
minres, 21
parallel defaults, 31

preonly, 15
richardson, 21
table of types, 21
tfqmr, 20
viewing Mat graphically, 55
viewing convergence with line graph, 55
viewing solution graphically, 55

Laplacian operator, 43
5-point stencil, 123
9-point stencil, 123
finite difference approximation, 47

line search, see Newton iteration
Liouville-Bratu equation, 245, 277, 312
Lipschitz function, 96
-log_view, 7, 72, 200
LU decomposition, xi, 11, 15, 16
O(N3) operations for dense matrices, 11

machine precision, 11
make

makefiles, 5
manufactured solutions, 245
Mat, 23

create and configure, 23
loading from file, 35
MATAIJ, 369
MATAIJ type, 24, 350
MatAssemblyBegin(), 26
MatAssemblyEnd(), 26
MATBAIJ type, 350
MatGetOwnershipRange(), 33
-mat_is_symmetric, 185
MATMPIAIJ type, 25
MatMult(), 33
MATNEST type, 350
MatNorm(), 10
MATSEQAIJ type, 27
MatSetFromOptions(), 23
MatSetValues(), 26, 76
MatStencil, 51
Mat-Vec product, 25
-mat_view, 23, 26, 27
may not have entries, 23
preallocation of memory, 262
saving

binary format, 27
MATLAB text format, 27

setting entries, 25
viewing entries, 26
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Index 387

viewing graphically, 55
matrix, 9
matrix splitting, 16, 131

and simple iteration, 16
-memory_view, 201
Message Passing Interface, ix, 3

broadcast, 8
collective operations, 24
communicator, 6, 24
MPI_Allreduce(), 6, 226
MPICH, 4
MPI_Comm_rank(), 6
mpiexec, 5
rank, 5, 40
reduce, 8
send and receive, 8

method of lines, 95, 112, 120, 280, 289
minimal surface equation, 183
MPI, see Message Passing Interface
multigrid, xi, see also algebraic multigrid,

see also geometric multigrid, see
also subgrid, 16, 129

Chebyshev-based smoothers can adapt to
anisotropy, 164

classical iterations as smoothers, 156
coarse-grid correction, 143, 154, 156
coarse-grid matrix, 143

Galerkin, 143, 153, 158, 266, 271
coarsest grid problem, 158
computational cost model, 159
Dryja and Widlund two-level scheme,

155, 164
exposure of the solver, 161
full approximation scheme, 209
full cycle, 160
incomplete factorizations as smoothers,

307
Kaskade cycle, 160
monolithic solver versus fieldsplit,

193
nonlinear full cycle, 160, 186, 235

optimality, 187
uses -snes_grid_sequence, 160

on fieldsplit blocks, 193
parallelization, 178
pre- and post-smoothers, 157, 168
prolongation matrix, 138
redundant coarse-grid solves, 181
restriction matrix, 138

full-weighting, 153

smoothing operator, 305
two-grid scheme, 156
V-cycle, 158, 305
W-cycle, 159

Nelder-Mead method, 229
Neumann boundary conditions, 238
Newton iteration, 67, 319

globalization, 74, 90
grid sequencing, 186
initial iterates, 186
line search, 90

merit function, 91
sufficient decrease, 91
using an objective, 232

merit function, 91
Picard approximation, 259
quadratic convergence, 73, 90
reduced-space method, 328

Newton-Krylov methods, xi
Newton-multigrid method, 184
nonlinear complementarity problem

(NCP), see variational inequality
nonlinear conjugate gradients, 229
nonlinear diffusion equations, 221
nonlinear Poisson equation, 243
nonuniform memory access, 200

objective functional, 219
obstacle problem, see variational inequality
ODEs (ordinary differential equations), 95

A-stable, 106
absolutely stable, 104, 105

test equation, 105
absolutely stable (revised definition), 106
adaptive Runge-Kutta implicit/explicit

methods (ARKIMEX), 122
adaptive time-stepping, 99, 294
backward Euler method, 97
backwards differentiation formula, 99,

119, 125
consistency of a scheme, 97
convergence of a scheme, 98
Crank-Nicolson method, 104, 109, 119,

125, 281, 297
embedded-pair adaptive methods, 99
Euler method, 97
implicit methods, 97, 297
implicit/explicit methods (IMEX), 120
initial value problems, 95
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388 Index

local truncation error, 97
one-step numerical methods, 98
order of a numerical method, 98
region of absolute stability, 106, 284
Runge-Kutta methods, 98, 293, 294

classical fourth-order method RK4, 98
explicit trapezoid method RK2a, 98,

281
meaning of a tableau, 98
RK3bs, 99, 294

solved by TS objects, 95
stability function of a scheme, 106
stability of a scheme, 98
stages of a one-step numerical method,

98
stiff decay, 108, 114

test equation, 127
stiff systems, 104
theta methods, 103, 120
trapezoid method, 104

optimal solution methods, xii, 175, 336
p-Helmholtz equation, 236
for hyperbolic PDEs, 177
memory limited is a feature, 177
Newton-Krylov, 176
overall strategy, 176
versus “textbook multigrid efficiency”,

176
optimization, 237

active-set method, 328
conjugate gradient, 239
equality constraints, 328
inequality constraints, 328
relation to PDEs, 237
symmetry of the Hessian, 275

options
PetscOptionsBegin() and

PetscOptionsEnd(), 33
PetscOptionsEnum(), 289
PetscOptionsInt(), 33

parallel efficiency, 204
parallel partitioning of meshes, 274
parallel reductions, 6

are nondeterministic, 214
in CG, 39

parallel speedup, 204
Paraview, 335, 365
PC, 15
asm, 17

bjacobi, 17
cholesky, 15
fieldsplit, 17, 128, 137, 189, 191,

343, 354
additive, 128, 192
multiplicative, 191
schur, 343

gamg, 16, 197, 266, 369
hypre, 197, 266, 369
icc, 15
ilu, 15

ILU(0) is serial default, 30
ILU(1), 308

jacobi, 16, 351
lu, 15
mg, 16, 157, 193

how to control, 161
none, 15
parallel defaults, 31
-pc_asm_overlap, 148
-pc_factor_mat_ordering_type, 63
-pc_factor_shift_type, 351
-pc_fieldsplit_type, 192
-pc_mg_levels, 158
PCSetup needs to be parallel, 212
-pc_sor_forward, 133
-pc_type, 15
redundant, 17, 164, 181, 213
sor, 16
-sub_pc_type, 38
svd, 15
table of types, 15
telescope, 17, 213, 308

PDEs (partial differential equations), xii
basic numerical concerns, 55
classification and coverage, xii
quasilinear elliptic, 183, 243, 259
semilinear elliptic, 183
strong form, 221
weak form, 220, 244

PETSc (Portable, Extensible Toolkit for
Scientific computation), ix

configuration and installation, 4
error macros, 7
floating-point types, 4
-help, 6
-help intro, 6
initializing and finalizing, 6
integer types, 4
is not a silver bullet, x
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Index 389

measuring run time, 8
object-oriented but written in C, 23
PETSC_ARCH, 5
PETSC_COMM_SELF, 6
PETSC_COMM_WORLD, 6
PETSC_DECIDE, 46
PETSC_DIR, 5
PetscErrorCode, 7
PetscFinalize(), 4
PetscInitialize(), 4
PetscPrintf(), 6
PetscViewer, 35
profiling by logging stage times, 264
trace-backs, 7
Users Manual, xiv
�with-debugging=0, 66
�with-debugging=1, 7

petsc4py, xiii, 331
p-Helmholtz equation, 220
Picard iteration, 240, 259

as modified Newton iteration, 259
convergence, 276

p-Laplacian operator, 221
regularization, 233

Poisson equation, 43, 143, 243, 332
porous medium equation, 245, 269
power spectrum, 135
preallocation of matrices, 272
preconditioner, 130
preconditioning, xi

additive composition, 142
additive two-level scheme, 155
black-box preconditioner, 130
composition of subgrid corrections, 142
conditions for effectiveness, 14
depends upon concurrency, 60
extremes, 15
left and right, 14
material, 29

supplying to SNES, 76
multiplicative composition, 142, 159, 167
parallel, 38
relation to spectrum, 14
symmetric, 15, 39, 354

p-refinement, 335, 362
problem size (definition), 199
process placement, 201
Python, 331

quadrature, 171

degree, 171
Gauss-Legendre, 171
symmetric rules for triangles, 173
weight function, 171

quasi-Newton methods, 229

reaction-diffusion equation, see
diffusion-reaction equation

residual
of a linear system, 12
of a nonlinear system, 67
relation to A>A-norm of error, 20

Richardson iteration, see also simple
iteration, 12, 131

is steepest descent, 13
no convergence test with SOR, 133
no right-preconditioned form, 131

Robin boundary conditions, 244
row scaling of a matrix, 48
run time (definition), 200

Schur complement, 343, 353, 355, 368
simple iteration, 16, 131

is left-preconditioned Richardson, 16
singular value of a matrix, 13
singular-value decomposition, 15, 16
SLEPc, 41
smoother

Chebyshev, 137
general KSP, 136
Richardson avoids parallel

communication, 136
smoothing factor of a linear iteration, 136
SNES (Scalable Nonlinear Equation

Solver), see also Newton iteration,
68, 315, 319

SNESFunction type, 75
SNESJacobianFunction type, 75
actions inside newtonls, 71
basic advice, 90
call-backs, 68
cast application context to void*, 75
convergence tolerances, 72, 73
finite-differenced Jacobians, see Jacobian
function evaluations may dominate cost

of Newton solve, 72
line-search options, 91
monitor example, 188
ncg, 229
newtonls, 71
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390 Index

options for Jacobian usage, 88
passing parameters, 74
qn, 229
signature of Jacobian call-back, 75
signature of residual call-back, 70
-snes_atol, 74
-snes_converged_reason, 73
-snes_fd, 71, 228, 257

does not scale for PDEs, 83
-snes_fd_color, 71, 228, 262, 269,

272
-snes_fd_function, 228
SNESGetDM(), 145
SNESGetSolution(), 145
-snes_grid_sequence, 235, 324

replaces -da_refine, 186
-snes_mf, 71, 228, 258
-snes_mf_operator, 89, 187, 228, 229,

269
-snes_monitor, 70
SNESMonitorSet(), 92
-snes_monitor_solution, 235
-snes_rtol, 70, 74
SNESSetFromOptions(), 69
SNESSetFunction(), 70
SNESSetJacobian(), 76

two Mat arguments to set, 75
SNESSolve(), 69
-snes_stol, 74
-snes_test_jacobian, 82, 297
-snes_type, 71, 229
-snes_view, 79
-snes_vi_monitor, 323
user-supplied Jacobian function, 74

testing, 77
variational inequality subtypes, 315

visualization, 324
vinewtonrsls, 320
vinewtonssls, 320

Sobolev space W 1,p(Ω), 219
socket (within a compute node), 200
solver complexity, 175, 236
SOR, see successive over-relaxation
sparse matrix, 11
SPD matrix, see symmetric and

positive-definite matrix
spectral methods, 175, 331, 335
spectral radius of a matrix, 13
spectrum of a matrix, 13

SSOR, see symmetric successive
over-relaxation

stagnation, 134
must be wrong, 134

static scaling, 183, 207
stencil

box, 48, 121, 222
star, 48, 292

Stokes model, see also fluids, 344
boundary conditions, 345
continuous-discontinuous elements, 361
discrete equations, 348
inf-sup inequality, 357
mass matrix, 360
stable elements, 358
system matrix, 348

eigenvalues, 352
Taylor-Hood elements, 361
weak form, 346
well-posedness, 347

streams benchmark, 202
strictly convex functional, 220
strong scaling, 203
N/P must be sufficiently large, 204

structured grids, see DMDA
subgrid, see also domain decomposition,

see also multigrid, 137
correction matrix, 141
matrix, 139
prolongation matrix, 138
restriction matrix, 138

successive over-relaxation, 16, 132
SVD, see singular-value decomposition
Sylvester’s law of inertia, 353
symmetric and positive-definite matrix, 13

associated norm, 19
symmetric successive over-relaxation, 133,

304

TAO library, xiv, 229
total variation, 310
transpose of a matrix, 10
triangulation, 246

topology versus geometry, 252
tridiagonal matrix, 34
TS (time-stepping), xiv, see also ODEs, 95
arkimex, 125
bdf, 99, 120
beuler

is θ = 1 theta type, 110
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Index 391

cn
is θ = 1/2 theta type, 110

initialization, 100
Jacobians, 109

for implicit part, 124
monitor function, 116
rk, 98, 103, 119

default is RK3bs, 99
run-time options, 102
setting tolerances, 103
theta type, 110
-ts_adapt_type, 103, 120
-ts_arkimex_type, 125
-ts_atol, 103
-ts_bdf_order, 120
-ts_dt, 103
-ts_init_time, 103
-ts_max_time, 103
-ts_monitor, 102
-ts_monitor_solution, 102
-ts_rk_type, 105
-ts_rtol, 103
-ts_type, 100
-ts_view, 117
writing trajectory, 102

UFL, see Unified Form Language
Unified Form Language, 274, 331, 350
uniform ellipticity, 233, 243

valgrind, xi, 41, 202
variational inequality, 315, 318

active set, 316
admissible set, 317
bound constraints, 320
complementarity problem, 318
Fischer-Burmeister function, 322
inactive set, 316
interior condition, 315, 318

Karush-Kuhn-Tucker conditions, 318
NCP (nonlinear complementarity

problem) function, 322
Newton-multigrid methods, 322
nondegenerate solution, 319
optimal solvers, 325
reduced-space method, 320
semismooth method, 320
weak scaling, 325

Vec, 23
distinction between VecDuplicate()

and VecCopy(), 33
distinction between

VecRestoreArray() and
VecDestroy(), 70

interleaved storage, 190
loading from file, 35
parallel layout, 24
sequential layout, 24
VecAssemblyBegin(), 24
VecAssemblyEnd(), 24
VecAXPY(), 34
VecGetArray(), 70, 256
VecGetArrayRead(), 70, 256
VecNorm(), 10, 34, 294
VecSetSizes(), 24
VecSetValues(), 24
-vec_view, 29

vector Laplacian, 347
vectors

bold font used for, 9
square brackets used for entries, 9

VI, see variational inequality

weak bounded, 210
weak efficiency, 210
weak scaling, 207, 308, 325

by making code serially inefficient, 212
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